Pick up the EEVDF work into the main branch - it's looking good so far.
Conflicts:
kernel/sched/features.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Three LSMs register the implementations for the "capget" hook: AppArmor,
SELinux, and the normal capability code. Looking at the function
implementations we may observe that the first parameter "target" is not
changing.
Mark the first argument "target" of LSM hook security_capget() as
"const" since it will not be changing in the LSM hook.
cap_capget() LSM hook declaration exceeds the 80 characters per line
limit. Split the function declaration to multiple lines to decrease the
line length.
Signed-off-by: Khadija Kamran <kamrankhadijadj@gmail.com>
Acked-by: John Johansen <john.johansen@canonical.com>
[PM: align the cap_capget() declaration, spelling fixes]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Tracefs or debugfs maybe cause hundreds to thousands of PATH records,
too many PATH records maybe cause soft lockup.
For example:
1. CONFIG_KASAN=y && CONFIG_PREEMPTION=n
2. auditctl -a exit,always -S open -k key
3. sysctl -w kernel.watchdog_thresh=5
4. mkdir /sys/kernel/debug/tracing/instances/test
There may be a soft lockup as follows:
watchdog: BUG: soft lockup - CPU#45 stuck for 7s! [mkdir:15498]
Kernel panic - not syncing: softlockup: hung tasks
Call trace:
dump_backtrace+0x0/0x30c
show_stack+0x20/0x30
dump_stack+0x11c/0x174
panic+0x27c/0x494
watchdog_timer_fn+0x2bc/0x390
__run_hrtimer+0x148/0x4fc
__hrtimer_run_queues+0x154/0x210
hrtimer_interrupt+0x2c4/0x760
arch_timer_handler_phys+0x48/0x60
handle_percpu_devid_irq+0xe0/0x340
__handle_domain_irq+0xbc/0x130
gic_handle_irq+0x78/0x460
el1_irq+0xb8/0x140
__audit_inode_child+0x240/0x7bc
tracefs_create_file+0x1b8/0x2a0
trace_create_file+0x18/0x50
event_create_dir+0x204/0x30c
__trace_add_new_event+0xac/0x100
event_trace_add_tracer+0xa0/0x130
trace_array_create_dir+0x60/0x140
trace_array_create+0x1e0/0x370
instance_mkdir+0x90/0xd0
tracefs_syscall_mkdir+0x68/0xa0
vfs_mkdir+0x21c/0x34c
do_mkdirat+0x1b4/0x1d4
__arm64_sys_mkdirat+0x4c/0x60
el0_svc_common.constprop.0+0xa8/0x240
do_el0_svc+0x8c/0xc0
el0_svc+0x20/0x30
el0_sync_handler+0xb0/0xb4
el0_sync+0x160/0x180
Therefore, we add cond_resched() to __audit_inode_child() to fix it.
Fixes: 5195d8e217 ("audit: dynamically allocate audit_names when not enough space is in the names array")
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Use a simple logical shift and increment to calculate the number of slots
taken by the DMA segment boundary.
At least GCC-13 is not able to optimize the expression, producing this
horrible assembly code on x86:
cmpq $-1, %rcx
je .L364
addq $2048, %rcx
shrq $11, %rcx
movq %rcx, %r13
.L331:
// rest of the function here...
// after function epilogue and return:
.L364:
movabsq $9007199254740992, %r13
jmp .L331
After the optimization, the code looks more reasonable:
shrq $11, %r11
leaq 1(%r11), %rbx
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Move the comment down in front of the loop that actually sets the list
member of struct io_tlb_slot to zero.
Fixes: 26a7e09478 ("swiotlb: refactor swiotlb_tbl_map_single")
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
While workqueue.default_affinity_scope is writable, it only affects
workqueues which are created afterwards and isn't very useful. Instead,
let's introduce explicit "default" scope and update the effective scope
dynamically when workqueue.default_affinity_scope is changed.
Signed-off-by: Tejun Heo <tj@kernel.org>
An unbound workqueue can be served by multiple worker_pools to improve
locality. The segmentation is achieved by grouping CPUs into pods. By
default, the cache boundaries according to cpus_share_cache() define the
CPUs are grouped. Let's a workqueue is allowed to run on all CPUs and the
system has two L3 caches. The workqueue would be mapped to two worker_pools
each serving one L3 cache domains.
While this improves locality, because the pod boundaries are strict, it
limits the total bandwidth a given issuer can consume. For example, let's
say there is a thread pinned to a CPU issuing enough work items to saturate
the whole machine. With the machine segmented into two pods, no matter how
many work items it issues, it can only use half of the CPUs on the system.
While this limitation has existed for a very long time, it wasn't very
pronounced because the affinity grouping used to be always by NUMA nodes.
With cache boundaries as the default and support for even finer grained
scopes (smt and cpu), it is now an a lot more pressing problem.
This patch implements non-strict affinity scope where the pod boundaries
aren't enforced strictly. Going back to the previous example, the workqueue
would still be mapped to two worker_pools; however, the affinity enforcement
would be soft. The workers in both pools would have their cpus_allowed set
to the whole machine thus allowing the scheduler to migrate them anywhere on
the machine. However, whenever an idle worker is woken up, the workqueue
code asks the scheduler to bring back the task within the pod if the worker
is outside. ie. work items start executing within its affinity scope but can
be migrated outside as the scheduler sees fit. This removes the hard cap on
utilization while maintaining the benefits of affinity scopes.
After the earlier ->__pod_cpumask changes, the implementation is pretty
simple. When non-strict which is the new default:
* pool_allowed_cpus() returns @pool->attrs->cpumask instead of
->__pod_cpumask so that the workers are allowed to run on any CPU that
the associated workqueues allow.
* If the idle worker task's ->wake_cpu is outside the pod, kick_pool() sets
the field to a CPU within the pod.
This would be the first use of task_struct->wake_cpu outside scheduler
proper, so it isn't clear whether this would be acceptable. However, other
methods of migrating tasks are significantly more expensive and are likely
prohibitively so if we want to do this on every work item. This needs
discussion with scheduler folks.
There is also a race window where setting ->wake_cpu wouldn't be effective
as the target task is still on CPU. However, the window is pretty small and
this being a best-effort optimization, it doesn't seem to warrant more
complexity at the moment.
While the non-strict cache affinity scopes seem to be the best option, the
performance picture interacts with the affinity scope and is a bit
complicated to fully discuss in this patch, so the behavior is made easily
selectable through wqattrs and sysfs and the next patch will add
documentation to discuss performance implications.
v2: pool->attrs->affn_strict is set to true for per-cpu worker_pools.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
workqueue_attrs has two uses:
* to specify the required unouned workqueue properties by users
* to match worker_pool's properties to workqueues by core code
For example, if the user wants to restrict a workqueue to run only CPUs 0
and 2, and the two CPUs are on different affinity scopes, the workqueue's
attrs->cpumask would contains CPUs 0 and 2, and the workqueue would be
associated with two worker_pools, one with attrs->cpumask containing just
CPU 0 and the other CPU 2.
Workqueue wants to support non-strict affinity scopes where work items are
started in their matching affinity scopes but the scheduler is free to
migrate them outside the starting scopes, which can enable utilizing the
whole machine while maintaining most of the locality benefits from affinity
scopes.
To enable that, worker_pools need to distinguish the strict affinity that it
has to follow (because that's the restriction coming from the user) and the
soft affinity that it wants to apply when dispatching work items. Note that
two worker_pools with different soft dispatching requirements have to be
separate; otherwise, for example, we'd be ping-ponging worker threads across
NUMA boundaries constantly.
This patch adds workqueue_attrs->__pod_cpumask. The new field is double
underscored as it's only used internally to distinguish worker_pools. A
worker_pool's ->cpumask is now always the same as the online subset of
allowed CPUs of the associated workqueues, and ->__pod_cpumask is the pod's
subset of that ->cpumask. Going back to the example above, both worker_pools
would have ->cpumask containing both CPUs 0 and 2 but one's ->__pod_cpumask
would contain 0 while the other's 2.
* pool_allowed_cpus() is added. It returns the worker_pool's strict cpumask
that the pool's workers must stay within. This is currently always
->__pod_cpumask as all boundaries are still strict.
* As a workqueue_attrs can now track both the associated workqueues' cpumask
and its per-pod subset, wq_calc_pod_cpumask() no longer needs an external
out-argument. Drop @cpumask and instead store the result in
->__pod_cpumask.
* The above also simplifies apply_wqattrs_prepare() as the same
workqueue_attrs can be used to create all pods associated with a
workqueue. tmp_attrs is dropped.
* wq_update_pod() is updated to use wqattrs_equal() to test whether a pwq
update is needed instead of only comparing ->cpumask so that
->__pod_cpumask is compared too. It can directly compare ->__pod_cpumaks
but the code is easier to understand and more robust this way.
The only user-visible behavior change is that two workqueues with different
cpumasks no longer can share worker_pools even when their pod subsets
coincide. Going back to the example, let's say there's another workqueue
with cpumask 0, 2, 3, where 2 and 3 are in the same pod. It would be mapped
to two worker_pools - one with CPU 0, the other with 2 and 3. The former has
the same cpumask as the first pod of the earlier example and would have
shared the same worker_pool but that's no longer the case after this patch.
The worker_pools would have the same ->__pod_cpumask but their ->cpumask's
wouldn't match.
While this is necessary to support non-strict affinity scopes, there can be
further optimizations to maintain sharing among strict affinity scopes.
However, non-strict affinity scopes are going to be preferable for most use
cases and we don't see very diverse mixture of unbound workqueue cpumasks
anyway, so the additional overhead doesn't seem to justify the extra
complexity.
v2: - wq_update_pod() was incorrectly comparing target_attrs->__pod_cpumask
to pool->attrs->cpumask instead of its ->__pod_cpumask. Fix it by
using wqattrs_equal() for comparison instead.
- Per-cpu worker pools weren't initializing ->__pod_cpumask which caused
a subtle problem later on. Set it to cpumask_of(cpu) like ->cpumask.
Signed-off-by: Tejun Heo <tj@kernel.org>
Checking need_more_worker() and calling wake_up_worker() is a repeated
pattern. Let's add kick_pool(), which checks need_more_worker() and
open-code wake_up_worker(), and replace wake_up_worker() uses. The following
conversions aren't one-to-one:
* __queue_work() was using __need_more_work() because it knows that
pool->worklist isn't empty. Switching to kick_pool() adds an extra
list_empty() test.
* create_worker() always needs to wake up the newly minted worker whether
there's more work to do or not to avoid triggering hung task check on the
new task. Keep the current wake_up_process() and still add kick_pool().
This may lead to an extra wakeup which isn't harmful.
* pwq_adjust_max_active() was explicitly checking whether it needs to wake
up a worker or not to avoid spurious wakeups. As kick_pool() only wakes up
a worker when necessary, this explicit check is no longer necessary and
dropped.
* unbind_workers() now calls kick_pool() instead of wake_up_worker() adding
a need_more_worker() test. This avoids spurious wakeups and shouldn't
break anything.
wake_up_worker() is dropped as kick_pool() replaces all its users. After
this patch, all paths that wakes up a non-rescuer worker to initiate work
item execution use kick_pool(). This will enable future changes to improve
locality.
Signed-off-by: Tejun Heo <tj@kernel.org>
The two work execution paths in worker_thread() and rescuer_thread() use
move_linked_works() to claim work items from @pool->worklist. Once claimed,
process_schedule_works() is called which invokes process_one_work() on each
work item. process_one_work() then uses find_worker_executing_work() to
detect and handle collisions - situations where the work item to be executed
is still running on another worker.
This works fine, but, to improve work execution locality, we want to
establish work to worker association earlier and know for sure that the
worker is going to excute the work once asssigned, which requires performing
collision handling earlier while trying to assign the work item to the
worker.
This patch introduces assign_work() which assigns a work item to a worker
using move_linked_works() and then performs collision handling. As collision
handling is handled earlier, process_one_work() no longer needs to worry
about them.
After the this patch, collision checks for linked work items are skipped,
which should be fine as they can't be queued multiple times concurrently.
For work items running from rescuers, the timing of collision handling may
change but the invariant that the work items go through collision handling
before starting execution does not.
This patch shouldn't cause noticeable behavior changes, especially given
that worker_thread() behavior remains the same.
Signed-off-by: Tejun Heo <tj@kernel.org>
Add three more affinity scopes - WQ_AFFN_CPU, SMT and CACHE - and make CACHE
the default. The code changes to actually add the additional scopes are
trivial.
Also add module parameter "workqueue.default_affinity_scope" to override the
default scope and "affinity_scope" sysfs file to configure it per workqueue.
wq_dump.py and documentations are updated accordingly.
This enables significant flexibility in configuring how unbound workqueues
behave. If affinity scope is set to "cpu", it'll behave close to a per-cpu
workqueue. On the other hand, "system" removes all locality boundaries.
Many modern machines have multiple L3 caches often while being mostly
uniform in terms of memory access. Thus, workqueue's previous behavior of
spreading work items in each NUMA node had negative performance implications
from unncessarily crossing L3 boundaries between issue and execution.
However, picking a finer grained affinity scope also has a downside in that
an issuer in one group can't utilize CPUs in other groups.
While dependent on the specifics of workload, there's usually a noticeable
penalty in crossing L3 boundaries, so let's default to CACHE. This issue
will be further addressed and documented with examples in future patches.
Signed-off-by: Tejun Heo <tj@kernel.org>
While wq_pod_type[] can now group CPUs in any aribitrary way, WQ_AFFN_NUM
init is hard coded into workqueue_init_topology(). This patch modularizes
the init path by introducing init_pod_type() which takes a callback to
determine whether two CPUs should share a pod as an argument.
init_pod_type() first scans the CPU combinations testing for sharing to
assign consecutive pod IDs and initialize pod_type->cpu_pod[]. Once
->cpu_pod[] is determined, ->pod_cpus[] and ->pod_node[] are initialized
accordingly. WQ_AFFN_NUMA is now initialized by calling init_pod_type() with
cpus_share_numa() which tests whether the CPU belongs to the same NUMA node.
This patch may change the pod ID assigned to each NUMA node but that
shouldn't cause any behavior changes as the NUMA node to use for allocations
are tracked separately in pod_type->pod_node[]. This makes adding new
affinty types pretty easy.
Signed-off-by: Tejun Heo <tj@kernel.org>
While renamed to pod, the code still assumes that the pods are defined by
NUMA boundaries. Let's generalize it:
* workqueue_attrs->affn_scope is added. Each enum represents the type of
boundaries that define the pods. There are currently two scopes -
WQ_AFFN_NUMA and WQ_AFFN_SYSTEM. The former is the same behavior as before
- one pod per NUMA node. The latter defines one global pod across the
whole system.
* struct wq_pod_type is added which describes how pods are configured for
each affnity scope. For each pod, it lists the member CPUs and the
preferred NUMA node for memory allocations. The reverse mapping from CPU
to pod is also available.
* wq_pod_enabled is dropped. Pod is now always enabled. The previously
disabled behavior is now implemented through WQ_AFFN_SYSTEM.
* get_unbound_pool() wants to determine the NUMA node to allocate memory
from for the new pool. The variables are renamed from node to pod but the
logic still assumes they're one and the same. Clearly distinguish them -
walk the WQ_AFFN_NUMA pods to find the matching pod and then use the pod's
NUMA node.
* wq_calc_pod_cpumask() was taking @pod but assumed that it was the NUMA
node. Take @cpu instead and determine the cpumask to use from the pod_type
matching @attrs.
* apply_wqattrs_prepare() is update to return ERR_PTR() on error instead of
NULL so that it can indicate -EINVAL on invalid affinity scopes.
This patch allows CPUs to be grouped into pods however desired per type.
While this patch causes some internal behavior changes, nothing material
should change for workqueue users.
v2: Trigger WARN_ON_ONCE() in wqattrs_pod_type() if affn_scope is
WQ_AFFN_NR_TYPES which indicates that the function is called with a
worker_pool's attrs instead of a workqueue's.
Signed-off-by: Tejun Heo <tj@kernel.org>
workqueue_attrs can be used for both workqueues and worker_pools. However,
some fields, currently only ->ordered, only apply to workqueues and should
be cleared to the default / invalid values.
Currently, an unbound workqueue explicitly clears attrs->ordered in
get_unbound_pool() after copying the source workqueue attrs, while per-cpu
workqueues rely on the fact that zeroing on allocation gives us the desired
default value for pool->attrs->ordered.
This is fragile. Let's add wqattrs_clear_for_pool() which clears
attrs->ordered and is called from both init_worker_pool() and
get_unbound_pool(). This will ease adding more workqueue-only attrs fields.
In get_unbound_pool(), pool->node initialization is moved upwards for
readability. This shouldn't cause any behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
For an unbound pool, multiple cpumasks are involved.
U: The user-specified cpumask (may be filtered with cpu_possible_mask).
A: The actual cpumask filtered by wq_unbound_cpumask. If the filtering
leaves no CPU, wq_unbound_cpumask is used.
P: Per-pod subsets of #A.
wq->attrs stores #U, wq->dfl_pwq->pool->attrs->cpumask #A, and
wq->cpu_pwq[CPU]->pool->attrs->cpumask #P.
wq_update_pod() is called to update per-pod pwq's during CPU hotplug. To
calculate the new #P for each workqueue, it needs to call
wq_calc_pod_cpumask() with @attrs that contains #A. Currently,
wq_update_pod() achieves this by calling wq_calc_pod_cpumask() with
wq->dfl_pwq->pool->attrs.
This is rather fragile because we're calling wq_calc_pod_cpumask() with
@attrs of a worker_pool rather than the workqueue's actual attrs when what
we want to calculate is the workqueue's cpumask on the pod. While this works
fine currently, future changes will add fields which are used differently
between workqueues and worker_pools and this subtlety will bite us.
This patch factors out #U -> #A calculation from apply_wqattrs_prepare()
into wqattrs_actualize_cpumask and updates wq_update_pod() to copy
wq->unbound_attrs and use the new helper to obtain #A freshly instead of
abusing wq->dfl_pwq->pool_attrs.
This shouldn't cause any behavior changes in the current code.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: K Prateek Nayak <kprateek.nayak@amd.com>
Reference: http://lkml.kernel.org/r/30625cdd-4d61-594b-8db9-6816b017dde3@amd.com
During boot, to initialize unbound CPU pods, wq_pod_init() was called from
workqueue_init(). This is early enough for NUMA nodes to be set up but
before SMP is brought up and CPU topology information is populated.
Workqueue is in the process of improving CPU locality for unbound workqueues
and will need access to topology information during pod init. This adds a
new init function workqueue_init_topology() which is called after CPU
topology information is available and replaces wq_pod_init().
As unbound CPU pods are now initialized after workqueues are activated, we
need to revisit the workqueues to apply the pod configuration. Workqueues
which are created before workqueue_init_topology() are set up so that they
always use the default worker pool. After pods are set up in
workqueue_init_topology(), wq_update_pod() is called on all existing
workqueues to update the pool associations accordingly.
Note that wq_update_pod_attrs_buf allocation is moved to
workqueue_init_early(). This isn't necessary right now but enables further
generalization of pod handling in the future.
This patch changes the initialization sequence but the end result should be
the same.
Signed-off-by: Tejun Heo <tj@kernel.org>
wq_pod_init() is called from workqueue_init() and responsible for
initializing unbound CPU pods according to NUMA node. Workqueue is in the
process of improving affinity awareness and wants to use other topology
information to initialize unbound CPU pods; however, unlike NUMA nodes,
other topology information isn't yet available in workqueue_init().
The next patch will introduce a later stage init function for workqueue
which will be responsible for initializing unbound CPU pods. Relocate
wq_pod_init() below workqueue_init() where the new init function is going to
be located so that the diff can show the content differences.
Just a relocation. No functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Workqueue is in the process of improving CPU affinity awareness. It will
become more flexible and won't be tied to NUMA node boundaries. This patch
renames all NUMA related names in workqueue.c to use "pod" instead.
While "pod" isn't a very common term, it short and captures the grouping of
CPUs well enough. These names are only going to be used within workqueue
implementation proper, so the specific naming doesn't matter that much.
* wq_numa_possible_cpumask -> wq_pod_cpus
* wq_numa_enabled -> wq_pod_enabled
* wq_update_unbound_numa_attrs_buf -> wq_update_pod_attrs_buf
* workqueue_select_cpu_near -> select_numa_node_cpu
This rename is different from others. The function is only used by
queue_work_node() and specifically tries to find a CPU in the specified
NUMA node. As workqueue affinity will become more flexible and untied from
NUMA, this function's name should specifically describe that it's for
NUMA.
* wq_calc_node_cpumask -> wq_calc_pod_cpumask
* wq_update_unbound_numa -> wq_update_pod
* wq_numa_init -> wq_pod_init
* node -> pod in local variables
Only renames. No functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
With the recent removal of NUMA related module param and sysfs knob,
workqueue_attrs->no_numa is now only used to implement ordered workqueues.
Let's rename the field so that it's less confusing especially with the
planned CPU affinity awareness improvements.
Just a rename. No functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
A pwq (pool_workqueue) represents an association between a workqueue and a
worker_pool. When a work item is queued, the workqueue selects the pwq to
use, which in turn determines the pool, and queues the work item to the pool
through the pwq. pwq is also what implements the maximum concurrency limit -
@max_active.
As a per-cpu workqueue should be assocaited with a different worker_pool on
each CPU, it always had per-cpu pwq's that are accessed through wq->cpu_pwq.
However, unbound workqueues were sharing a pwq within each NUMA node by
default. The sharing has several downsides:
* Because @max_active is per-pwq, the meaning of @max_active changes
depending on the machine configuration and whether workqueue NUMA locality
support is enabled.
* Makes per-cpu and unbound code deviate.
* Gets in the way of making workqueue CPU locality awareness more flexible.
This patch makes unbound workqueues use per-cpu pwq's the same way per-cpu
workqueues do by making the following changes:
* wq->numa_pwq_tbl[] is removed and unbound workqueues now use wq->cpu_pwq
just like per-cpu workqueues. wq->cpu_pwq is now RCU protected for unbound
workqueues.
* numa_pwq_tbl_install() is renamed to install_unbound_pwq() and installs
the specified pwq to the target CPU's wq->cpu_pwq.
* apply_wqattrs_prepare() now always allocates a separate pwq for each CPU
unless the workqueue is ordered. If ordered, all CPUs use wq->dfl_pwq.
This makes the return value of wq_calc_node_cpumask() unnecessary. It now
returns void.
* @max_active now means the same thing for both per-cpu and unbound
workqueues. WQ_UNBOUND_MAX_ACTIVE now equals WQ_MAX_ACTIVE and
documentation is updated accordingly. WQ_UNBOUND_MAX_ACTIVE is no longer
used in workqueue implementation and will be removed later.
* All unbound pwq operations which used to be per-numa-node are now per-cpu.
For most unbound workqueue users, this shouldn't cause noticeable changes.
Work item issue and completion will be a small bit faster, flush_workqueue()
would become a bit more expensive, and the total concurrency limit would
likely become higher. All @max_active==1 use cases are currently being
audited for conversion into alloc_ordered_workqueue() and they shouldn't be
affected once the audit and conversion is complete.
One area where the behavior change may be more noticeable is
workqueue_congested() as the reported congestion state is now per CPU
instead of NUMA node. There are only two users of this interface -
drivers/infiniband/hw/hfi1 and net/smc. Maintainers of both subsystems are
cc'd. Inputs on the behavior change would be very much appreciated.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Leon Romanovsky <leon@kernel.org>
Cc: Karsten Graul <kgraul@linux.ibm.com>
Cc: Wenjia Zhang <wenjia@linux.ibm.com>
Cc: Jan Karcher <jaka@linux.ibm.com>
When a CPU went online or offline, wq_update_unbound_numa() was called only
on the CPU which was going up or down. This works fine because all CPUs on
the same NUMA node share the same pool_workqueue slot - one CPU updating it
updates it for everyone in the node.
However, future changes will make each CPU use a separate pool_workqueue
even when they're sharing the same worker_pool, which requires updating
pool_workqueue's for all CPUs which may be sharing the same pool_workqueue
on hotplug.
To accommodate the planned changes, this patch updates
workqueue_on/offline_cpu() so that they call wq_update_unbound_numa() for
all CPUs sharing the same NUMA node as the CPU going up or down. In the
current code, the second+ calls would be noops and there shouldn't be any
behavior changes.
* As wq_update_unbound_numa() is now called on multiple CPUs per each
hotplug event, @cpu is renamed to @hotplug_cpu and another @cpu argument
is added. The former indicates the CPU being hot[un]plugged and the latter
the CPU whose pool_workqueue is being updated.
* In wq_update_unbound_numa(), cpu_off is renamed to off_cpu for consistency
with the new @hotplug_cpu.
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, all per-cpu pwq's (pool_workqueue's) are allocated directly
through a per-cpu allocation and thus, unlike unbound workqueues, not
reference counted. This difference in lifetime management between the two
types is a bit confusing.
Unbound workqueues are currently accessed through wq->numa_pwq_tbl[] which
isn't suitiable for the planned CPU locality related improvements. The plan
is to unify pwq handling across per-cpu and unbound workqueues so that
they're always accessed through wq->cpu_pwq.
In preparation, this patch makes per-cpu pwq's to be allocated, reference
counted and released the same way as unbound pwq's. wq->cpu_pwq now holds
pointers to pwq's instead of containing them directly.
pwq_unbound_release_workfn() is renamed to pwq_release_workfn() as it's now
also used for per-cpu work items.
Signed-off-by: Tejun Heo <tj@kernel.org>
pool_workqueue release path is currently bounced to system_wq; however, this
is a bit tricky because this bouncing occurs while holding a pool lock and
thus has risk of causing a A-A deadlock. This is currently addressed by the
fact that only unbound workqueues use this bouncing path and system_wq is a
per-cpu workqueue.
While this works, it's brittle and requires a work-around like setting the
lockdep subclass for the lock of unbound pools. Besides, future changes will
use the bouncing path for per-cpu workqueues too making the current approach
unusable.
Let's just use a dedicated kthread_worker to untangle the dependency. This
is just one more kthread for all workqueues and makes the pwq release logic
simpler and more robust.
Signed-off-by: Tejun Heo <tj@kernel.org>
Unbound workqueue CPU affinity is going to receive an overhaul and the NUMA
specific knobs won't make sense anymore. Remove them. Also, the pool_ids
knob was used for debugging and not really meaningful given that there is no
visibility into the pools associated with those IDs. Remove it too. A future
patch will improve overall visibility.
Signed-off-by: Tejun Heo <tj@kernel.org>
Collect first_idle_worker(), worker_enter/leave_idle(),
find_worker_executing_work(), move_linked_works() and wake_up_worker() into
one place. These functions will later be used to implement higher level
worker management logic.
No functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
wq->cpu_pwqs is a percpu variable carraying one pointer to a pool_workqueue.
The field name being plural is unusual and confusing. Rename it to singular.
This patch doesn't cause any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
insert_work() always tried to wake up a worker; however, the only time it
needs to try to wake up a worker is when a new active work item is queued.
When a work item goes on the inactive list or queueing a flush work item,
there's no reason to try to wake up a worker.
This patch moves the worker wakeup logic out of insert_work() and places it
in the active new work item queueing path in __queue_work().
While at it:
* __queue_work() is dereferencing pwq->pool repeatedly. Add local variable
pool.
* Every caller of insert_work() calls debug_work_activate(). Consolidate the
invocations into insert_work().
* In __queue_work() pool->watchdog_ts update is relocated slightly. This is
to better accommodate future changes.
This makes wakeups more precise and will help the planned change to assign
work items to workers before waking them up. No behavior changes intended.
v2: WARN_ON_ONCE(pool != last_pool) added in __queue_work() to clarify as
suggested by Lai.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
* Drop the trivial optimization in worker_thread() where it bypasses calling
process_scheduled_works() if the first work item isn't linked. This is a
mostly pointless micro optimization and gets in the way of improving the
work processing path.
* Consolidate pool->watchdog_ts updates in the two callers into
process_scheduled_works().
Signed-off-by: Tejun Heo <tj@kernel.org>
worker->flags used to be accessed from scheduler hooks without grabbing
pool->lock for concurrency management. This is no longer true since
6d25be5782 ("sched/core, workqueues: Distangle worker accounting from rq
lock"). Also, it's unclear why worker_pool->flags was using the "X" rule.
All relevant users are accessing it under the pool lock.
Let's drop the special "X" rule and use the "L" rule for these flag fields
instead. While at it, replace the CONTEXT comment with
lockdep_assert_held().
This allows worker_set/clr_flags() to be used from context which isn't the
worker itself. This will be used later to implement assinging work items to
workers before waking them up so that workqueue can have better control over
which worker executes which work item on which CPU.
The only actual changes are sanity checks. There shouldn't be any visible
behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Unbound workqueue execution locality improvement patchset is about to
applied which will cause merge conflicts with changes in for-6.5-fixes.
Let's avoid future merge conflict by pulling in for-6.5-fixes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Adding support for bpf_get_func_ip helper for uprobe program to return
probed address for both uprobe and return uprobe.
We discussed this in [1] and agreed that uprobe can have special use
of bpf_get_func_ip helper that differs from kprobe.
The kprobe bpf_get_func_ip returns:
- address of the function if probe is attach on function entry
for both kprobe and return kprobe
- 0 if the probe is not attach on function entry
The uprobe bpf_get_func_ip returns:
- address of the probe for both uprobe and return uprobe
The reason for this semantic change is that kernel can't really tell
if the probe user space address is function entry.
The uprobe program is actually kprobe type program attached as uprobe.
One of the consequences of this design is that uprobes do not have its
own set of helpers, but share them with kprobes.
As we need different functionality for bpf_get_func_ip helper for uprobe,
I'm adding the bool value to the bpf_trace_run_ctx, so the helper can
detect that it's executed in uprobe context and call specific code.
The is_uprobe bool is set as true in bpf_prog_run_array_sleepable, which
is currently used only for executing bpf programs in uprobe.
Renaming bpf_prog_run_array_sleepable to bpf_prog_run_array_uprobe
to address that it's only used for uprobes and that it sets the
run_ctx.is_uprobe as suggested by Yafang Shao.
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Tested-by: Alan Maguire <alan.maguire@oracle.com>
[1] https://lore.kernel.org/bpf/CAEf4BzZ=xLVkG5eurEuvLU79wAMtwho7ReR+XJAgwhFF4M-7Cg@mail.gmail.com/
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Tested-by: Viktor Malik <vmalik@redhat.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230807085956.2344866-2-jolsa@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
syzbot reports a verifier bug which triggers a runtime panic.
The test bpf program is:
0: (62) *(u32 *)(r10 -8) = 553656332
1: (bf) r1 = (s16)r10
2: (07) r1 += -8
3: (b7) r2 = 3
4: (bd) if r2 <= r1 goto pc+0
5: (85) call bpf_trace_printk#-138320
6: (b7) r0 = 0
7: (95) exit
At insn 1, the current implementation keeps 'r1' as a frame pointer,
which caused later bpf_trace_printk helper call crash since frame
pointer address is not valid any more. Note that at insn 4,
the 'pointer vs. scalar' comparison is allowed for privileged
prog run.
To fix the problem with above insn 1, the fix in the patch adopts
similar pattern to existing 'R1 = (u32) R2' handling. For unprivileged
prog run, verification will fail with 'R<num> sign-extension part of pointer'.
For privileged prog run, the dst_reg 'r1' will be marked as
an unknown scalar, so later 'bpf_trace_pointk' helper will complain
since it expected certain pointers.
Reported-by: syzbot+d61b595e9205573133b3@syzkaller.appspotmail.com
Fixes: 8100928c88 ("bpf: Support new sign-extension mov insns")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230807175721.671696-1-yonghong.song@linux.dev
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Two commits:
* The recently added cpu_intensive auto detection and warning mechanism was
spuriously triggered on slow CPUs. While not causing serious issues, it's
still a nuisance and can cause unintended concurrency management
behaviors. Relax the threshold on machines with lower BogoMIPS. While
BogoMIPS is not an accurate measure of performance by most measures, we
don't have to be accurate and it has rough but strong enough correlation.
* A correction in Kconfig help text.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZNFMTQ4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGb+4AQCniWx3rwWWmLgviPR0AfYWbcQ8/P/qGh++fmsR
tEF3sQD/bLdeWcVa1pSzXjhGtRVGsTis6oOhk81A0zIZlx0v2Qg=
=sThu
-----END PGP SIGNATURE-----
Merge tag 'wq-for-6.5-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue fixes from Tejun Heo:
- The recently added cpu_intensive auto detection and warning mechanism
was spuriously triggered on slow CPUs.
While not causing serious issues, it's still a nuisance and can cause
unintended concurrency management behaviors.
Relax the threshold on machines with lower BogoMIPS. While BogoMIPS
is not an accurate measure of performance by most measures, we don't
have to be accurate and it has rough but strong enough correlation.
- A correction in Kconfig help text
* tag 'wq-for-6.5-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: Scale up wq_cpu_intensive_thresh_us if BogoMIPS is below 4000
workqueue: Fix cpu_intensive_thresh_us name in help text
The member variable bstat of the structure cgroup_rstat_cpu
records the per-cpu time of the cgroup itself, but does not
include the per-cpu time of its descendants. The per-cpu time
including descendants is very useful for calculating the
per-cpu usage of cgroups.
Although we can indirectly obtain the total per-cpu time
of the cgroup and its descendants by accumulating the per-cpu
bstat of each descendant of the cgroup. But after a child cgroup
is removed, we will lose its bstat information. This will cause
the cumulative value to be non-monotonic, thus affecting
the accuracy of cgroup per-cpu usage.
So we add the subtree_bstat variable to record the total
per-cpu time of this cgroup and its descendants, which is
similar to "cpuacct.usage*" in cgroup v1. And this is
also helpful for the migration from cgroup v1 to cgroup v2.
After adding this variable, we can obtain the per-cpu time of
cgroup and its descendants in user mode through eBPF/drgn, etc.
And we are still trying to determine how to expose it in the
cgroupfs interface.
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Use LIST_HEAD() to initialize cull_list instead of open-coding it.
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
There's no need to use '<=' when knowing 'l->list[mid] != pid' already.
No functional change intended.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
kexec_mutex is replaced by an atomic variable
in 05c6257433 (panic, kexec: make __crash_kexec() NMI safe).
But there are still two comments that referenced kexec_mutex,
replace them by kexec_lock.
Signed-off-by: Wenyu Liu <liuwenyu7@huawei.com>
Acked-by: Baoquan He <bhe@redhat.com>
Acked-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
On a laptop with hibernation set up but not actively used, and with
secure boot and lockdown enabled kernel, 6.5-rc1 gets stuck on boot with
the following repeated messages:
A start job is running for Resume from hibernation using device /dev/system/swap (24s / no limit)
lockdown_is_locked_down: 25311154 callbacks suppressed
Lockdown: systemd-hiberna: hibernation is restricted; see man kernel_lockdown.7
...
Checking the resume code leads to commit cc89c63e2f ("PM: hibernate:
move finding the resume device out of software_resume") which
inadvertently changed the return value from resume_store() to 0 when
!hibernation_available(). This apparently translates to userspace
write() returning 0 as in number of bytes written, and userspace looping
indefinitely in the attempt to write the intended value.
Fix this by returning the full number of bytes that were to be written,
as that's what was done before the commit.
Fixes: cc89c63e2f ("PM: hibernate: move finding the resume device out of software_resume")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Verify if the pointer obtained from bpf_xdp_pointer() is either an error or
NULL before returning it.
The function bpf_dynptr_slice() mistakenly returned an ERR_PTR. Instead of
solely checking for NULL, it should also verify if the pointer returned by
bpf_xdp_pointer() is an error or NULL.
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/bpf/d1360219-85c3-4a03-9449-253ea905f9d1@moroto.mountain/
Fixes: 66e3a13e7c ("bpf: Add bpf_dynptr_slice and bpf_dynptr_slice_rdwr")
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230803231206.1060485-1-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
syzbot reported an UBSAN array-index-out-of-bounds access in bpf_mprog_read()
upon bpf_mprog_detach(). While it did not have a reproducer, I was able to
manually reproduce through an empty mprog entry which just has miniq present.
The latter is important given otherwise we get an ENOENT error as tcx detaches
the whole mprog entry. The index 4294967295 was triggered via NULL dtuple.prog
which then attempts to detach from the back. bpf_mprog_fetch() in this case
did hit the idx == total and therefore tried to grab the entry at idx -1.
Fix it by adding an explicit bpf_mprog_total() check in bpf_mprog_detach() and
bail out early with ENOENT.
Fixes: 053c8e1f23 ("bpf: Add generic attach/detach/query API for multi-progs")
Reported-by: syzbot+0c06ba0f831fe07a8f27@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/r/20230804131112.11012-1-daniel@iogearbox.net
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
err and tlinks is assigned first, so it does not need to initialize the
assignment.
Signed-off-by: Li kunyu <kunyu@nfschina.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Link: https://lore.kernel.org/r/20230804175929.2867-1-kunyu@nfschina.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Since commit e76ecaeef6 ("cgroup: use cgroup_kn_lock_live() in other
cgroup kernfs methods"), cgroup_kn_lock_live() is used in cgroup kernfs
methods. Update corresponding comment.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRdM/uy1Ege0+EN1fNar9k/UBDW4wUCZMvevwAKCRBar9k/UBDW
42Z0AP90hLZ9OmoghYAlALHLl8zqXuHCV8OeFXR5auqG+kkcCwEAx6h99vnh4zgP
Tngj6Yid60o39/IZXXblhV37HfSiyQ8=
=/kVE
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Martin KaFai Lau says:
====================
pull-request: bpf-next 2023-08-03
We've added 54 non-merge commits during the last 10 day(s) which contain
a total of 84 files changed, 4026 insertions(+), 562 deletions(-).
The main changes are:
1) Add SO_REUSEPORT support for TC bpf_sk_assign from Lorenz Bauer,
Daniel Borkmann
2) Support new insns from cpu v4 from Yonghong Song
3) Non-atomically allocate freelist during prefill from YiFei Zhu
4) Support defragmenting IPv(4|6) packets in BPF from Daniel Xu
5) Add tracepoint to xdp attaching failure from Leon Hwang
6) struct netdev_rx_queue and xdp.h reshuffling to reduce
rebuild time from Jakub Kicinski
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (54 commits)
net: invert the netdevice.h vs xdp.h dependency
net: move struct netdev_rx_queue out of netdevice.h
eth: add missing xdp.h includes in drivers
selftests/bpf: Add testcase for xdp attaching failure tracepoint
bpf, xdp: Add tracepoint to xdp attaching failure
selftests/bpf: fix static assert compilation issue for test_cls_*.c
bpf: fix bpf_probe_read_kernel prototype mismatch
riscv, bpf: Adapt bpf trampoline to optimized riscv ftrace framework
libbpf: fix typos in Makefile
tracing: bpf: use struct trace_entry in struct syscall_tp_t
bpf, devmap: Remove unused dtab field from bpf_dtab_netdev
bpf, cpumap: Remove unused cmap field from bpf_cpu_map_entry
netfilter: bpf: Only define get_proto_defrag_hook() if necessary
bpf: Fix an array-index-out-of-bounds issue in disasm.c
net: remove duplicate INDIRECT_CALLABLE_DECLARE of udp[6]_ehashfn
docs/bpf: Fix malformed documentation
bpf: selftests: Add defrag selftests
bpf: selftests: Support custom type and proto for client sockets
bpf: selftests: Support not connecting client socket
netfilter: bpf: Support BPF_F_NETFILTER_IP_DEFRAG in netfilter link
...
====================
Link: https://lore.kernel.org/r/20230803174845.825419-1-martin.lau@linux.dev
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Nothing scary here. Feels like the first wave of regressions
from v6.5 is addressed - one outstanding fix still to come
in TLS for the sendpage rework.
Current release - regressions:
- udp: fix __ip_append_data()'s handling of MSG_SPLICE_PAGES
- dsa: fix older DSA drivers using phylink
Previous releases - regressions:
- gro: fix misuse of CB in udp socket lookup
- mlx5: unregister devlink params in case interface is down
- Revert "wifi: ath11k: Enable threaded NAPI"
Previous releases - always broken:
- sched: cls_u32: fix match key mis-addressing
- sched: bind logic fixes for cls_fw, cls_u32 and cls_route
- add bound checks to a number of places which hand-parse netlink
- bpf: disable preemption in perf_event_output helpers code
- qed: fix scheduling in a tasklet while getting stats
- avoid using APIs which are not hardirq-safe in couple of drivers,
when we may be in a hard IRQ (netconsole)
- wifi: cfg80211: fix return value in scan logic, avoid page
allocator warning
- wifi: mt76: mt7615: do not advertise 5 GHz on first PHY
of MT7615D (DBDC)
Misc:
- drop handful of inactive maintainers, put some new in place
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmTMCRwACgkQMUZtbf5S
Irv1tRAArN6rfYrr2ulaTOfMqhWb1Q+kAs00nBCKqC+OdWgT0hqw2QAuqTAVjhje
8HBYlNGyhJ10yp0Q5y4Fp9CsBDHDDNjIp/YGEbr0vC/9mUDOhYD8WV07SmZmzEJu
gmt4LeFPTk07yZy7VxMLY5XKuwce6MWGHArehZE7PSa9+07yY2Ov9X02ntr9hSdH
ih+VdDI12aTVSj208qb0qNb2JkefFHW9dntVxce4/mtYJE9+47KMR2aXDXtCh0C6
ECgx0LQkdEJ5vNSYfypww0SXIG5aj7sE6HMTdJkjKH7ws4xrW8H+P9co77Hb/DTH
TsRBS4SgB20hFNxz3OQwVmAvj+2qfQssL7SeIkRnaEWeTBuVqCwjLdoIzKXJxxq+
cvtUAAM8XUPqec5cPiHPkeAJV6aJhrdUdMjjbCI9uFYU32AWFBQEqvVGP9xdhXHK
QIpTLiy26Vw8PwiJdROuGiZJCXePqQRLDuMX1L43ZO1rwIrZcWGHjCNtsR9nXKgQ
apbbxb2/rq2FBMB+6obKeHzWDy3JraNCsUspmfleqdjQ2mpbRokd4Vw2564FJgaC
5OznPIX6OuoCY5sftLUcRcpH5ncNj01BvyqjWyCIfJdkCqCUL7HSAgxfm5AUnZip
ZIXOzZnZ6uTUQFptXdjey/jNEQ6qpV8RmwY0CMsmJoo88DXI34Y=
=HYkl
-----END PGP SIGNATURE-----
Merge tag 'net-6.5-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Jakub Kicinski:
"Including fixes from bpf and wireless.
Nothing scary here. Feels like the first wave of regressions from v6.5
is addressed - one outstanding fix still to come in TLS for the
sendpage rework.
Current release - regressions:
- udp: fix __ip_append_data()'s handling of MSG_SPLICE_PAGES
- dsa: fix older DSA drivers using phylink
Previous releases - regressions:
- gro: fix misuse of CB in udp socket lookup
- mlx5: unregister devlink params in case interface is down
- Revert "wifi: ath11k: Enable threaded NAPI"
Previous releases - always broken:
- sched: cls_u32: fix match key mis-addressing
- sched: bind logic fixes for cls_fw, cls_u32 and cls_route
- add bound checks to a number of places which hand-parse netlink
- bpf: disable preemption in perf_event_output helpers code
- qed: fix scheduling in a tasklet while getting stats
- avoid using APIs which are not hardirq-safe in couple of drivers,
when we may be in a hard IRQ (netconsole)
- wifi: cfg80211: fix return value in scan logic, avoid page
allocator warning
- wifi: mt76: mt7615: do not advertise 5 GHz on first PHY of MT7615D
(DBDC)
Misc:
- drop handful of inactive maintainers, put some new in place"
* tag 'net-6.5-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (98 commits)
MAINTAINERS: update TUN/TAP maintainers
test/vsock: remove vsock_perf executable on `make clean`
tcp_metrics: fix data-race in tcpm_suck_dst() vs fastopen
tcp_metrics: annotate data-races around tm->tcpm_net
tcp_metrics: annotate data-races around tm->tcpm_vals[]
tcp_metrics: annotate data-races around tm->tcpm_lock
tcp_metrics: annotate data-races around tm->tcpm_stamp
tcp_metrics: fix addr_same() helper
prestera: fix fallback to previous version on same major version
udp: Fix __ip_append_data()'s handling of MSG_SPLICE_PAGES
net/mlx5e: Set proper IPsec source port in L4 selector
net/mlx5: fs_core: Skip the FTs in the same FS_TYPE_PRIO_CHAINS fs_prio
net/mlx5: fs_core: Make find_closest_ft more generic
wifi: brcmfmac: Fix field-spanning write in brcmf_scan_params_v2_to_v1()
vxlan: Fix nexthop hash size
ip6mr: Fix skb_under_panic in ip6mr_cache_report()
s390/qeth: Don't call dev_close/dev_open (DOWN/UP)
net: tap_open(): set sk_uid from current_fsuid()
net: tun_chr_open(): set sk_uid from current_fsuid()
net: dcb: choose correct policy to parse DCB_ATTR_BCN
...
module_init_layout_section() choses whether the core module loader
considers a section as init or not. This affects the placement of the
exit section when module unloading is disabled. This code will never run,
so it can be free()d once the module has been initialised.
arm and arm64 need to count the number of PLTs they need before applying
relocations based on the section name. The init PLTs are stored separately
so they can be free()d. arm and arm64 both use within_module_init() to
decide which list of PLTs to use when applying the relocation.
Because within_module_init()'s behaviour changes when module unloading
is disabled, both architecture would need to take this into account when
counting the PLTs.
Today neither architecture does this, meaning when module unloading is
disabled there are insufficient PLTs in the init section to load some
modules, resulting in warnings:
| WARNING: CPU: 2 PID: 51 at arch/arm64/kernel/module-plts.c:99 module_emit_plt_entry+0x184/0x1cc
| Modules linked in: crct10dif_common
| CPU: 2 PID: 51 Comm: modprobe Not tainted 6.5.0-rc4-yocto-standard-dirty #15208
| Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
| pstate: 20400005 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : module_emit_plt_entry+0x184/0x1cc
| lr : module_emit_plt_entry+0x94/0x1cc
| sp : ffffffc0803bba60
[...]
| Call trace:
| module_emit_plt_entry+0x184/0x1cc
| apply_relocate_add+0x2bc/0x8e4
| load_module+0xe34/0x1bd4
| init_module_from_file+0x84/0xc0
| __arm64_sys_finit_module+0x1b8/0x27c
| invoke_syscall.constprop.0+0x5c/0x104
| do_el0_svc+0x58/0x160
| el0_svc+0x38/0x110
| el0t_64_sync_handler+0xc0/0xc4
| el0t_64_sync+0x190/0x194
Instead of duplicating module_init_layout_section()s logic, expose it.
Reported-by: Adam Johnston <adam.johnston@arm.com>
Fixes: 055f23b74b ("module: check for exit sections in layout_sections() instead of module_init_section()")
Cc: stable@vger.kernel.org
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRdM/uy1Ege0+EN1fNar9k/UBDW4wUCZMvqewAKCRBar9k/UBDW
48yeAQCnPnwzcvy+JDrdosuJEErhMv0pH3ECixNpPBpns95kzAEA9QhSYwjAhlFf
61d6hoiXj/sIibgMQT/ihODgeJ4wfQE=
=u7qn
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Martin KaFai Lau says:
====================
pull-request: bpf 2023-08-03
We've added 5 non-merge commits during the last 7 day(s) which contain
a total of 3 files changed, 37 insertions(+), 20 deletions(-).
The main changes are:
1) Disable preemption in perf_event_output helpers code,
from Jiri Olsa
2) Add length check for SK_DIAG_BPF_STORAGE_REQ_MAP_FD parsing,
from Lin Ma
3) Multiple warning splat fixes in cpumap from Hou Tao
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
bpf, cpumap: Handle skb as well when clean up ptr_ring
bpf, cpumap: Make sure kthread is running before map update returns
bpf: Add length check for SK_DIAG_BPF_STORAGE_REQ_MAP_FD parsing
bpf: Disable preemption in bpf_event_output
bpf: Disable preemption in bpf_perf_event_output
====================
Link: https://lore.kernel.org/r/20230803181429.994607-1-martin.lau@linux.dev
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
xdp.h is far more specific and is included in only 67 other
files vs netdevice.h's 1538 include sites.
Make xdp.h include netdevice.h, instead of the other way around.
This decreases the incremental allmodconfig builds size when
xdp.h is touched from 5947 to 662 objects.
Move bpf_prog_run_xdp() to xdp.h, seems appropriate and filter.h
is a mega-header in its own right so it's nice to avoid xdp.h
getting included there as well.
The only unfortunate part is that the typedef for xdp_features_t
has to move to netdevice.h, since its embedded in struct netdevice.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/20230803010230.1755386-4-kuba@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
__pv_queued_spin_unlock_slowpath() is defined in a header file as
a global function, and designed to be called from inline asm, but
there is no prototype visible in the definition:
kernel/locking/qspinlock_paravirt.h:493:1: error: no previous \
prototype for '__pv_queued_spin_unlock_slowpath' [-Werror=missing-prototypes]
Add this to the x86 header that contains the inline asm calling it,
and ensure this gets included before the definition, rather than
after it.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230803082619.1369127-8-arnd@kernel.org
When operating with shadow stacks enabled, the kernel will automatically
allocate shadow stacks for new threads, however in some cases userspace
will need additional shadow stacks. The main example of this is the
ucontext family of functions, which require userspace allocating and
pivoting to userspace managed stacks.
Unlike most other user memory permissions, shadow stacks need to be
provisioned with special data in order to be useful. They need to be setup
with a restore token so that userspace can pivot to them via the RSTORSSP
instruction. But, the security design of shadow stacks is that they
should not be written to except in limited circumstances. This presents a
problem for userspace, as to how userspace can provision this special
data, without allowing for the shadow stack to be generally writable.
Previously, a new PROT_SHADOW_STACK was attempted, which could be
mprotect()ed from RW permissions after the data was provisioned. This was
found to not be secure enough, as other threads could write to the
shadow stack during the writable window.
The kernel can use a special instruction, WRUSS, to write directly to
userspace shadow stacks. So the solution can be that memory can be mapped
as shadow stack permissions from the beginning (never generally writable
in userspace), and the kernel itself can write the restore token.
First, a new madvise() flag was explored, which could operate on the
PROT_SHADOW_STACK memory. This had a couple of downsides:
1. Extra checks were needed in mprotect() to prevent writable memory from
ever becoming PROT_SHADOW_STACK.
2. Extra checks/vma state were needed in the new madvise() to prevent
restore tokens being written into the middle of pre-used shadow stacks.
It is ideal to prevent restore tokens being added at arbitrary
locations, so the check was to make sure the shadow stack had never been
written to.
3. It stood out from the rest of the madvise flags, as more of direct
action than a hint at future desired behavior.
So rather than repurpose two existing syscalls (mmap, madvise) that don't
quite fit, just implement a new map_shadow_stack syscall to allow
userspace to map and setup new shadow stacks in one step. While ucontext
is the primary motivator, userspace may have other unforeseen reasons to
setup its own shadow stacks using the WRSS instruction. Towards this
provide a flag so that stacks can be optionally setup securely for the
common case of ucontext without enabling WRSS. Or potentially have the
kernel set up the shadow stack in some new way.
The following example demonstrates how to create a new shadow stack with
map_shadow_stack:
void *shstk = map_shadow_stack(addr, stack_size, SHADOW_STACK_SET_TOKEN);
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-35-rick.p.edgecombe%40intel.com
bpf_probe_read_kernel() has a __weak definition in core.c and another
definition with an incompatible prototype in kernel/trace/bpf_trace.c,
when CONFIG_BPF_EVENTS is enabled.
Since the two are incompatible, there cannot be a shared declaration in
a header file, but the lack of a prototype causes a W=1 warning:
kernel/bpf/core.c:1638:12: error: no previous prototype for 'bpf_probe_read_kernel' [-Werror=missing-prototypes]
On 32-bit architectures, the local prototype
u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
passes arguments in other registers as the one in bpf_trace.c
BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
const void *, unsafe_ptr)
which uses 64-bit arguments in pairs of registers.
As both versions of the function are fairly simple and only really
differ in one line, just move them into a header file as an inline
function that does not add any overhead for the bpf_trace.c callers
and actually avoids a function call for the other one.
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/ac25cb0f-b804-1649-3afb-1dc6138c2716@iogearbox.net/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230801111449.185301-1-arnd@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since commit 8f36aaec9c ("cgroup: Use rcu_work instead of explicit rcu
and work item"), css_free_work_fn has been renamed to css_free_rwork_fn.
Update corresponding comment.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Add kernel-doc of param @rotor to fix warnings:
kernel/cgroup/cpuset.c:4162: warning: Function parameter or member
'rotor' not described in 'cpuset_spread_node'
kernel/cgroup/cpuset.c:3771: warning: Function parameter or member
'work' not described in 'cpuset_hotplug_workfn'
Signed-off-by: Cai Xinchen <caixinchen1@huawei.com>
Acked-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Convert the only printk() to use pr_*() helper. No functional change.
Signed-off-by: Kamalesh Babulal <kamalesh.babulal@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
It has recently come to my attention that nvidia is circumventing the
protection added in 262e6ae708 ("modules: inherit
TAINT_PROPRIETARY_MODULE") by importing exports from their proprietary
modules into an allegedly GPL licensed module and then rexporting them.
Given that symbol_get was only ever intended for tightly cooperating
modules using very internal symbols it is logical to restrict it to
being used on EXPORT_SYMBOL_GPL and prevent nvidia from costly DMCA
Circumvention of Access Controls law suites.
All symbols except for four used through symbol_get were already exported
as EXPORT_SYMBOL_GPL, and the remaining four ones were switched over in
the preparation patches.
Fixes: 262e6ae708 ("modules: inherit TAINT_PROPRIETARY_MODULE")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
CFS bandwidth limits and NOHZ full don't play well together. Tasks
can easily run well past their quotas before a remote tick does
accounting. This leads to long, multi-period stalls before such
tasks can run again. Currently, when presented with these conflicting
requirements the scheduler is favoring nohz_full and letting the tick
be stopped. However, nohz tick stopping is already best-effort, there
are a number of conditions that can prevent it, whereas cfs runtime
bandwidth is expected to be enforced.
Make the scheduler favor bandwidth over stopping the tick by setting
TICK_DEP_BIT_SCHED when the only running task is a cfs task with
runtime limit enabled. We use cfs_b->hierarchical_quota to
determine if the task requires the tick.
Add check in pick_next_task_fair() as well since that is where
we have a handle on the task that is actually going to be running.
Add check in sched_can_stop_tick() to cover some edge cases such
as nr_running going from 2->1 and the 1 remains the running task.
Reviewed-By: Ben Segall <bsegall@google.com>
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230712133357.381137-3-pauld@redhat.com
In cgroupv2 cfs_b->hierarchical_quota is set to -1 for all task
groups due to the previous fix simply taking the min. It should
reflect a limit imposed at that level or by an ancestor. Even
though cgroupv2 does not require child quota to be less than or
equal to that of its ancestors the task group will still be
constrained by such a quota so this should be shown here. Cgroupv1
continues to set this correctly.
In both cases, add initialization when a new task group is created
based on the current parent's value (or RUNTIME_INF in the case of
root_task_group). Otherwise, the field is wrong until a quota is
changed after creation and __cfs_schedulable() is called.
Fixes: c53593e5cb ("sched, cgroup: Don't reject lower cpu.max on ancestors")
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20230714125746.812891-1-pauld@redhat.com
bpf tracepoint program uses struct trace_event_raw_sys_enter as
argument where trace_entry is the first field. Use the same instead
of unsigned long long since if it's amended (for example by RT
patch) it accesses data with wrong offset.
Signed-off-by: Yauheni Kaliuta <ykaliuta@redhat.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230801075222.7717-1-ykaliuta@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Skip searching the software IO TLB if a device has never used it, making
sure these devices are not affected by the introduction of multiple IO TLB
memory pools.
Additional memory barrier is required to ensure that the new value of the
flag is visible to other CPUs after mapping a new bounce buffer. For
efficiency, the flag check should be inlined, and then the memory barrier
must be moved to is_swiotlb_buffer(). However, it can replace the existing
barrier in swiotlb_find_pool(), because all callers use is_swiotlb_buffer()
first to verify that the buffer address belongs to the software IO TLB.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
When swiotlb_find_slots() cannot find suitable slots, schedule the
allocation of a new memory pool. It is not possible to allocate the pool
immediately, because this code may run in interrupt context, which is not
suitable for large memory allocations. This means that the memory pool will
be available too late for the currently requested mapping, but the stress
on the software IO TLB allocator is likely to continue, and subsequent
allocations will benefit from the additional pool eventually.
Keep all memory pools for an allocator in an RCU list to avoid locking on
the read side. For modifications, add a new spinlock to struct io_tlb_mem.
The spinlock also protects updates to the total number of slabs (nslabs in
struct io_tlb_mem), but not reads of the value. Readers may therefore
encounter a stale value, but this is not an issue:
- swiotlb_tbl_map_single() and is_swiotlb_active() only check for non-zero
value. This is ensured by the existence of the default memory pool,
allocated at boot.
- The exact value is used only for non-critical purposes (debugfs, kernel
messages).
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
The value returned by default_swiotlb_limit() should be constant, because
it is used to decide whether DMA can be used. To allow allocating memory
pools on the fly, use the maximum possible physical address rather than the
highest address used by the default pool.
For swiotlb_init_remap(), this is either an arch-specific limit used by
memblock_alloc_low(), or the highest directly mapped physical address if
the initialization flags include SWIOTLB_ANY. For swiotlb_init_late(), the
highest address is determined by the GFP flags.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Try to allocate a transient memory pool if no suitable slots can be found
and the respective SWIOTLB is allowed to grow. The transient pool is just
enough big for this one bounce buffer. It is inserted into a per-device
list of transient memory pools, and it is freed again when the bounce
buffer is unmapped.
Transient memory pools are kept in an RCU list. A memory barrier is
required after adding a new entry, because any address within a transient
buffer must be immediately recognized as belonging to the SWIOTLB, even if
it is passed to another CPU.
Deletion does not require any synchronization beyond RCU ordering
guarantees. After a buffer is unmapped, its physical addresses may no
longer be passed to the DMA API, so the memory range of the corresponding
stale entry in the RCU list never matches. If the memory range gets
allocated again, then it happens only after a RCU quiescent state.
Since bounce buffers can now be allocated from different pools, add a
parameter to swiotlb_alloc_pool() to let the caller know which memory pool
is used. Add swiotlb_find_pool() to find the memory pool corresponding to
an address. This function is now also used by is_swiotlb_buffer(), because
a simple boundary check is no longer sufficient.
The logic in swiotlb_alloc_tlb() is taken from __dma_direct_alloc_pages(),
simplified and enhanced to use coherent memory pools if needed.
Note that this is not the most efficient way to provide a bounce buffer,
but when a DMA buffer can't be mapped, something may (and will) actually
break. At that point it is better to make an allocation, even if it may be
an expensive operation.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Add a config option (CONFIG_SWIOTLB_DYNAMIC) to enable or disable dynamic
allocation of additional bounce buffers.
If this option is set, mark the default SWIOTLB as able to grow and
restricted DMA pools as unable.
However, if the address of the default memory pool is explicitly queried,
make the default SWIOTLB also unable to grow. This is currently used to set
up PCI BAR movable regions on some Octeon MIPS boards which may not be able
to use a SWIOTLB pool elsewhere in physical memory. See octeon_pci_setup()
for more details.
If a remap function is specified, it must be also called on any dynamically
allocated pools, but there are some issues:
- The remap function may block, so it should not be called from an atomic
context.
- There is no corresponding unremap() function if the memory pool is
freed.
- The only in-tree implementation (xen_swiotlb_fixup) requires that the
number of slots in the memory pool is a multiple of SWIOTLB_SEGSIZE.
Keep it simple for now and disable growing the SWIOTLB if a remap function
was specified.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Carve out memory pool specific fields from struct io_tlb_mem. The original
struct now contains shared data for the whole allocator, while the new
struct io_tlb_pool contains data that is specific to one memory pool of
(potentially) many.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Add some kernel-doc comments and move the existing documentation of struct
io_tlb_slot to its correct location. The latter was forgotten in commit
942a8186eb ("swiotlb: move struct io_tlb_slot to swiotlb.c").
Use the opportunity to give swiotlb_do_find_slots() a more descriptive name
and make it clear how it differs from swiotlb_find_slots().
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
SWIOTLB implementation details should not be exposed to the rest of the
kernel. This will allow to make changes to the implementation without
modifying non-swiotlb code.
To avoid breaking existing users, provide helper functions for the few
required fields.
As a bonus, using a helper function to initialize struct device allows to
get rid of an #ifdef in driver core.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
If swiotlb is allocated, immediately return 0, so callers do not have to
check io_tlb_default_mem.nslabs explicitly.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Commit 96360004b8 ("xdp: Make devmap flush_list common for all map
instances") removes the use of bpf_dtab_netdev::dtab in bq_enqueue(),
so just remove dtab from bpf_dtab_netdev.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/20230728014942.892272-3-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Since commit cdfafe98ca ("xdp: Make cpumap flush_list common for all
map instances"), cmap is no longer used, so just remove it.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230728014942.892272-2-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
syzbot reported an array-index-out-of-bounds when printing out bpf
insns. Further investigation shows the insn is illegal but
is printed out due to log level 1 or 2 before actual insn verification
in do_check().
This particular illegal insn is a MOVSX insn with offset value 2.
The legal offset value for MOVSX should be 8, 16 and 32.
The disasm sign-extension-size array index is calculated as
(insn->off / 8) - 1
and offset value 2 gives an out-of-bound index -1.
Tighten the checking for MOVSX insn in disasm.c to avoid
array-index-out-of-bounds issue.
Reported-by: syzbot+3758842a6c01012aa73b@syzkaller.appspotmail.com
Fixes: f835bb6222 ("bpf: Add kernel/bpftool asm support for new instructions")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230731204534.1975311-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, cblist_init_generic() holds a raw spinlock when invoking
INIT_WORK(). This fails in kernels built with CONFIG_DEBUG_OBJECTS=y
due to memory allocation being forbidden while holding a raw spinlock.
But the only reason for holding the raw spinlock is to synchronize
with early boot calls to call_rcu_tasks(), call_rcu_tasks_rude, and,
last but not least, call_rcu_tasks_trace(). These calls also invoke
cblist_init_generic() in order to support early boot queueing of
callbacks.
Except that there are no early boot calls to either of these three
functions, and the BPF guys confirm that they have no plans to add any
such calls.
This commit therefore removes the synchronization and adds a
WARN_ON_ONCE() to catch the case of now-prohibited early boot RCU Tasks
callback queueing.
If early boot queueing is needed, an "initialized" flag may be added to
the rcu_tasks structure. Then queueing a callback before this flag is set
would initialize the callback list (if needed) and queue the callback.
The decision as to where to queue the callback given the possibility of
non-zero boot CPUs is left as an exercise for the reader.
Reported-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The following warning was reported when running xdp_redirect_cpu with
both skb-mode and stress-mode enabled:
------------[ cut here ]------------
Incorrect XDP memory type (-2128176192) usage
WARNING: CPU: 7 PID: 1442 at net/core/xdp.c:405
Modules linked in:
CPU: 7 PID: 1442 Comm: kworker/7:0 Tainted: G 6.5.0-rc2+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Workqueue: events __cpu_map_entry_free
RIP: 0010:__xdp_return+0x1e4/0x4a0
......
Call Trace:
<TASK>
? show_regs+0x65/0x70
? __warn+0xa5/0x240
? __xdp_return+0x1e4/0x4a0
......
xdp_return_frame+0x4d/0x150
__cpu_map_entry_free+0xf9/0x230
process_one_work+0x6b0/0xb80
worker_thread+0x96/0x720
kthread+0x1a5/0x1f0
ret_from_fork+0x3a/0x70
ret_from_fork_asm+0x1b/0x30
</TASK>
The reason for the warning is twofold. One is due to the kthread
cpu_map_kthread_run() is stopped prematurely. Another one is
__cpu_map_ring_cleanup() doesn't handle skb mode and treats skbs in
ptr_ring as XDP frames.
Prematurely-stopped kthread will be fixed by the preceding patch and
ptr_ring will be empty when __cpu_map_ring_cleanup() is called. But
as the comments in __cpu_map_ring_cleanup() said, handling and freeing
skbs in ptr_ring as well to "catch any broken behaviour gracefully".
Fixes: 11941f8a85 ("bpf: cpumap: Implement generic cpumap")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/20230729095107.1722450-3-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
The following warning was reported when running stress-mode enabled
xdp_redirect_cpu with some RT threads:
------------[ cut here ]------------
WARNING: CPU: 4 PID: 65 at kernel/bpf/cpumap.c:135
CPU: 4 PID: 65 Comm: kworker/4:1 Not tainted 6.5.0-rc2+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Workqueue: events cpu_map_kthread_stop
RIP: 0010:put_cpu_map_entry+0xda/0x220
......
Call Trace:
<TASK>
? show_regs+0x65/0x70
? __warn+0xa5/0x240
......
? put_cpu_map_entry+0xda/0x220
cpu_map_kthread_stop+0x41/0x60
process_one_work+0x6b0/0xb80
worker_thread+0x96/0x720
kthread+0x1a5/0x1f0
ret_from_fork+0x3a/0x70
ret_from_fork_asm+0x1b/0x30
</TASK>
The root cause is the same as commit 4369016497 ("bpf: cpumap: Fix memory
leak in cpu_map_update_elem"). The kthread is stopped prematurely by
kthread_stop() in cpu_map_kthread_stop(), and kthread() doesn't call
cpu_map_kthread_run() at all but XDP program has already queued some
frames or skbs into ptr_ring. So when __cpu_map_ring_cleanup() checks
the ptr_ring, it will find it was not emptied and report a warning.
An alternative fix is to use __cpu_map_ring_cleanup() to drop these
pending frames or skbs when kthread_stop() returns -EINTR, but it may
confuse the user, because these frames or skbs have been handled
correctly by XDP program. So instead of dropping these frames or skbs,
just make sure the per-cpu kthread is running before
__cpu_map_entry_alloc() returns.
After apply the fix, the error handle for kthread_stop() will be
unnecessary because it will always return 0, so just remove it.
Fixes: 6710e11269 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Reviewed-by: Pu Lehui <pulehui@huawei.com>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/20230729095107.1722450-2-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
During unregister_netdevice_many_notify(), the ordering of our concerned
function calls is like this:
unregister_netdevice_many_notify
dev_shutdown
qdisc_put
clsact_destroy
tcx_uninstall
The syzbot reproducer triggered a case that the qdisc refcnt is not
zero during dev_shutdown().
tcx_uninstall() will then WARN_ON_ONCE(tcx_entry(entry)->miniq_active)
because the miniq is still active and the entry should not be freed.
The latter assumed that qdisc destruction happens before tcx teardown.
This fix is to avoid tcx_uninstall() doing tcx_entry_free() when the
miniq is still alive and let the clsact_destroy() do the free later, so
that we do not assume any specific ordering for either of them.
If still active, tcx_uninstall() does clear the entry when flushing out
the prog/link. clsact_destroy() will then notice the "!tcx_entry_is_active()"
and then does the tcx_entry_free() eventually.
Fixes: e420bed025 ("bpf: Add fd-based tcx multi-prog infra with link support")
Reported-by: syzbot+376a289e86a0fd02b9ba@syzkaller.appspotmail.com
Reported-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: syzbot+376a289e86a0fd02b9ba@syzkaller.appspotmail.com
Tested-by: Leon Romanovsky <leonro@nvidia.com>
Link: https://lore.kernel.org/r/222255fe07cb58f15ee662e7ee78328af5b438e4.1690549248.git.daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Up until now, /sys/kernel/tracing/events was no different than any other
part of tracefs. The files and directories within the events directory was
created when the tracefs was mounted, and also created for the instances in
/sys/kernel/tracing/instances/<instance>/events. Most of these files and
directories will never be referenced. Since there are thousands of these
files and directories they spend their time wasting precious memory
resources.
Move the "events" directory to the new eventfs. The eventfs will take the
meta data of the events that they represent and store that. When the files
in the events directory are referenced, the dentry and inodes to represent
them are then created. When the files are no longer referenced, they are
freed. This saves the precious memory resources that were wasted on these
seldom referenced dentries and inodes.
Running the following:
~# cat /proc/meminfo /proc/slabinfo > before.out
~# mkdir /sys/kernel/tracing/instances/foo
~# cat /proc/meminfo /proc/slabinfo > after.out
to test the changes produces the following deltas:
Before this change:
Before after deltas for meminfo:
MemFree: -32260
MemAvailable: -21496
KReclaimable: 21528
Slab: 22440
SReclaimable: 21528
SUnreclaim: 912
VmallocUsed: 16
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
tracefs_inode_cache: 14472 [* 1184 = 17134848]
buffer_head: 24 [* 168 = 4032]
hmem_inode_cache: 28 [* 1480 = 41440]
dentry: 14450 [* 312 = 4508400]
lsm_inode_cache: 14453 [* 32 = 462496]
vma_lock: 11 [* 152 = 1672]
vm_area_struct: 2 [* 184 = 368]
trace_event_file: 1748 [* 88 = 153824]
kmalloc-256: 1072 [* 256 = 274432]
kmalloc-64: 2842 [* 64 = 181888]
Total slab additions in size: 22,763,400 bytes
With this change:
Before after deltas for meminfo:
MemFree: -12600
MemAvailable: -12580
Cached: 24
Active: 12
Inactive: 68
Inactive(anon): 48
Active(file): 12
Inactive(file): 20
Dirty: -4
AnonPages: 68
KReclaimable: 12
Slab: 1856
SReclaimable: 12
SUnreclaim: 1844
KernelStack: 16
PageTables: 36
VmallocUsed: 16
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
tracefs_inode_cache: 108 [* 1184 = 127872]
buffer_head: 24 [* 168 = 4032]
hmem_inode_cache: 18 [* 1480 = 26640]
dentry: 127 [* 312 = 39624]
lsm_inode_cache: 152 [* 32 = 4864]
vma_lock: 67 [* 152 = 10184]
vm_area_struct: -12 [* 184 = -2208]
trace_event_file: 1764 [* 96 = 169344]
kmalloc-96: 14322 [* 96 = 1374912]
kmalloc-64: 2814 [* 64 = 180096]
kmalloc-32: 1103 [* 32 = 35296]
kmalloc-16: 2308 [* 16 = 36928]
kmalloc-8: 12800 [* 8 = 102400]
Total slab additions in size: 2,109,984 bytes
Which is a savings of 20,653,416 bytes (20 MB) per tracing instance.
Link: https://lkml.kernel.org/r/1690568452-46553-10-git-send-email-akaher@vmware.com
Signed-off-by: Ajay Kaher <akaher@vmware.com>
Co-developed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Tested-by: Ching-lin Yu <chinglinyu@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In the process of parsing the DTS, check whether the memory region
specified by the DTS CMA node area overlaps with the kernel text
memory space reserved by memblock before calling
early_init_fdt_scan_reserved_mem.
Signed-off-by: Binglei Wang <l3b2w1@gmail.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
The kernel parameter 'cma_pernuma=' only supports reserving the same
size of CMA area for each node. We need to reserve different sizes of
CMA area for specified nodes if these devices belong to different nodes.
Adding another kernel parameter 'numa_cma=' to reserve CMA area for
the specified node. If we want to use one of these parameters, we need to
enable DMA_NUMA_CMA.
At the same time, print the node id in cma_declare_contiguous_nid() if
CONFIG_NUMA is enabled.
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Signed-off-by: Christoph Hellwig <hch@lst.de>
In the commit b7176c261c ("dma-contiguous: provide the ability to
reserve per-numa CMA"), Barry adds DMA_PERNUMA_CMA for ARM64.
But this feature is architecture independent, so support per-numa CMA
for all architectures, and enable it by default if NUMA.
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Tested-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
This function has a __weak definition and an override that is only used on
freescale powerpc chips. The powerpc definition however does not see the
declaration that is in a .c file:
arch/powerpc/kernel/dma-mask.c:7:6: error: no previous prototype for 'arch_dma_set_mask' [-Werror=missing-prototypes]
Move it into the linux/dma-map-ops.h header where the other arch_dma_* functions
are declared.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Drivers have no business looking at dma-mapping or swiotlb internals.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Commit e1572f1d08 ("cpu/SMT: create and export cpu_smt_possible()")
introduces cpu_smt_possible() to represent if SMT is theoretically
possible. It returns true when SMT is supported and not forcefully
disabled ('nosmt=force'). But the comment of it says "Returns true if
SMT is not supported of forcefully (irreversibly) disabled", which is
wrong. Fix that comment accordingly.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20230728155313.44170-1-rui.zhang@intel.com
There is a possibility of deadlock if synchronize_hardirq() is called
when the nested threaded interrupt is active. The following scenario
was observed on a uniprocessor PREEMPT_NONE system:
Thread 1 Thread 2
handle_nested_thread()
Set INPROGRESS
Call ->thread_fn()
thread_fn goes to sleep
free_irq()
__synchronize_hardirq()
Busy-loop forever waiting for INPROGRESS
to be cleared
The INPROGRESS flag is only supposed to be used for hard interrupt
handlers. Remove the incorrect usage in the nested threaded interrupt
case and instead re-use the threads_active / wait_for_threads mechanism
to wait for nested threaded interrupts to complete.
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613-genirq-nested-v3-1-ae58221143eb@axis.com
Revert commit 7aa55f2a59 ("sched/fair: Move unused stub functions to
header"), for while it has the right Changelog, the actual patch
content a revert of the previous 4 patches:
f7df852ad6 ("sched: Make task_vruntime_update() prototype visible")
c0bdfd72fb ("sched/fair: Hide unused init_cfs_bandwidth() stub")
378be384e0 ("sched: Add schedule_user() declaration")
d55ebae3f3 ("sched: Hide unused sched_update_scaling()")
So in effect this is a revert of a revert and re-applies those
patches.
Fixes: 7aa55f2a59 ("sched/fair: Move unused stub functions to header")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
The creation of the trace event directory requires that a TRACE_SYSTEM is
defined that the trace event directory is added within the system it was
defined in.
The code handled the case where a TRACE_SYSTEM was not added, and would
then add the event at the events directory. But nothing should be doing
this. This code also prevents the implementation of creating dynamic
dentrys for the eventfs system.
As this path has never been hit on correct code, remove it. If it does get
hit, issues a WARN_ON_ONCE() and return ENODEV.
Link: https://lkml.kernel.org/r/1690568452-46553-2-git-send-email-akaher@vmware.com
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Currently we can resize trace ringbuffer by writing a value into file
'buffer_size_kb', then by reading the file, we get the value that is
usually what we wrote. However, this value may be not actual size of
trace ring buffer because of the round up when doing resize in kernel,
and the actual size would be more useful.
Link: https://lore.kernel.org/linux-trace-kernel/20230705002705.576633-1-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
As the trace iterator is created and used by various interfaces, the clean
up of it needs to be consistent. Create a free_trace_iter_content() helper
function that frees the content of the iterator and use that to clean it
up in all places that it is used.
Link: https://lkml.kernel.org/r/20230715141348.341887497@goodmis.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The iterator allocated a descriptor to copy the current_trace. This was done
with the assumption that the function pointers might change. But this was a
false assuption, as it does not change. There's no reason to make a copy of the
current_trace and just use the pointer it points to. This removes needing to
manage freeing the descriptor. Worse yet, there's locations that the iterator
is used but does make a copy and just uses the pointer. This could cause the
actual pointer to the trace descriptor to be freed and not the allocated copy.
This is more of a clean up than a fix.
Link: https://lkml.kernel.org/r/20230715141348.135792275@goodmis.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: d7350c3f45 ("tracing/core: make the read callbacks reentrants")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Use try_cmpxchg instead of cmpxchg (*ptr, old, new) == old in
ring_buffer.c. x86 CMPXCHG instruction returns success in ZF flag,
so this change saves a compare after cmpxchg (and related move
instruction in front of cmpxchg).
No functional change intended.
Link: https://lore.kernel.org/linux-trace-kernel/20230714154418.8884-1-ubizjak@gmail.com
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
For backward compatibility, older tooling expects to see the kernel_stack
event with a "caller" field that is a fixed size array of 8 addresses. The
code now supports more than 8 with an added "size" field that states the
real number of entries. But the "caller" field still just looks like a
fixed size to user space.
Since the tracing macros that create the user space format files also
creates the structures that those files represent, the kernel_stack event
structure had its "caller" field a fixed size of 8, but in reality, when
it is allocated on the ring buffer, it can hold more if the stack trace is
bigger that 8 functions. The copying of these entries was simply done with
a memcpy():
size = nr_entries * sizeof(unsigned long);
memcpy(entry->caller, fstack->calls, size);
The FORTIFY_SOURCE logic noticed at runtime that when the nr_entries was
larger than 8, that the memcpy() was writing more than what the structure
stated it can hold and it complained about it. This is because the
FORTIFY_SOURCE code is unaware that the amount allocated is actually
enough to hold the size. It does not expect that a fixed size field will
hold more than the fixed size.
This was originally solved by hiding the caller assignment with some
pointer arithmetic.
ptr = ring_buffer_data();
entry = ptr;
ptr += offsetof(typeof(*entry), caller);
memcpy(ptr, fstack->calls, size);
But it is considered bad form to hide from kernel hardening. Instead, make
it work nicely with FORTIFY_SOURCE by adding a new __stack_array() macro
that is specific for this one special use case. The macro will take 4
arguments: type, item, len, field (whereas the __array() macro takes just
the first three). This macro will act just like the __array() macro when
creating the code to deal with the format file that is exposed to user
space. But for the kernel, it will turn the caller field into:
type item[] __counted_by(field);
or for this instance:
unsigned long caller[] __counted_by(size);
Now the kernel code can expose the assignment of the caller to the
FORTIFY_SOURCE and everyone is happy!
Link: https://lore.kernel.org/linux-trace-kernel/20230712105235.5fc441aa@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20230713092605.2ddb9788@rorschach.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
- probe-events: Fix to add NULL check for some BTF API calls which can
return error code and NULL.
- ftrace selftests: Fix to check fprobe and kprobe event correctly. This
fixes a miss condition of the test command.
- kprobes: Prohibit probing on the function which starts from "__cfi_"
and "__pfx_" since those are auto generated for kernel CFI and not
executed.
-----BEGIN PGP SIGNATURE-----
iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmTGdH4bHG1hc2FtaS5o
aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bmMAH/0qTHII0KYQDvrNJ40tT
SDM8+4zOJEtnjVYq87+4EWBhpVEL3VbLRJaprjXh40lZJrCP3MglCF152p4bOhgb
ZrjWuTAgE0N+rBhdeUJlzy3iLzl0G9dzfA+sn1XMcW+/HSPstJcjAG6wD7ROeZzL
XCxzE+NY6Y6mYbB52DaS8Hv7g7WccaTV+KeRjokhMPt+u7/KItJ4hQb/RXtAL31S
n4thCeVllaPBuc7m2CmKwJ9jzOg7/0qpAIUGx1Z+Khy/3YfRhG1nT93GxP8hLmad
SH9kGps09WXF5f8FbjYglOmq7ioDbIUz3oXPQRZYPymV8A0EU+b+/8IsRog1ySd1
BVk=
=qKWS
-----END PGP SIGNATURE-----
Merge tag 'probes-fixes-v6.5-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull probe fixes from Masami Hiramatsu:
- probe-events: add NULL check for some BTF API calls which can return
error code and NULL.
- ftrace selftests: check fprobe and kprobe event correctly. This fixes
a miss condition of the test command.
- kprobes: do not allow probing functions that start with "__cfi_" or
"__pfx_" since those are auto generated for kernel CFI and not
executed.
* tag 'probes-fixes-v6.5-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
kprobes: Prohibit probing on CFI preamble symbol
selftests/ftrace: Fix to check fprobe event eneblement
tracing/probes: Fix to add NULL check for BTF APIs
between the lock waiters and the PI chain tree (->pi_waiters) of
a task by giving each tree their own sort key
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmTGMGAACgkQEsHwGGHe
VUrqNw/9F7p+/eDXP9TURup3Ms87lOlqCJg2CClTRiPF/FZcVzVbmltWewLDOWC6
GBEa7l++lpKwIGCuzg99tDScutdlCw8mQe4knrFvrJc04zzPV3O4N0Tiw1eD8wIw
/i6mzRaEuB5R8nxd9YK24gEsijerxhgVwKFvsCjbTV71LrY1geCJRqaqnooVnNm7
kvy+UIuckFJL8GDsPBJNsZdTyBrs7lC+m4su5QHr7FkQmF+4iEbDkwlYqPzafhVL
e4/FRjWHC5HRKd69j8fqyYZP8ryUlrmHFxkeAE08CxiqwdOELNHrp+i/x2GN9FTl
wL8psVl9oVt2KT79Py0e40ZOoUWHDOugx2IGzWl13C0XFKY+QH2HR6C+gJdedPMQ
tBtNyf8Ivukp+SSjyUXu8q9dGLJfdxtIKmbNHOuZDU121Fqg5+b04vQkzdgkMwJh
OoYj0fDUMBa6Zfv1PQkkSRU2wMQlgGTjMiCEvUjAs3vGBFQcu+flAm2UOr8NDLaF
0r3wNRVzk53k85R0L49oS8aU2FOcaHlpYXOevh0NYAt68EbmZctns85SJRfrwNGE
QuykN8yDID/zjGsjSSF6L1IaQSjM1ieozPVgqP4RLIxqaM7n/BJfZqiLTn0gBrbc
tEaoSIay6/zybKPCDeVgMsTSlX8EOoRKD/1Daog+zfYkUt19U/w=
=97eo
-----END PGP SIGNATURE-----
Merge tag 'locking_urgent_for_v6.5_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fix from Borislav Petkov:
- Fix a rtmutex race condition resulting from sharing of the sort key
between the lock waiters and the PI chain tree (->pi_waiters) of a
task by giving each tree their own sort key
* tag 'locking_urgent_for_v6.5_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/rtmutex: Fix task->pi_waiters integrity
- Fix to /sys/kernel/tracing/per_cpu/cpu*/stats read and entries.
If a resize shrinks the buffer it clears the read count to notify
readers that they need to reset. But the read count is also used for
accounting and this causes the numbers to be off. Instead, create a
separate variable to use to notify readers to reset.
- Fix the ref counts of the "soft disable" mode. The wrong value was
used for testing if soft disable mode should be enabled or disable,
but instead, just change the logic to do the enable and disable
in place when the SOFT_MODE is set or cleared.
- Several kernel-doc fixes
- Removal of unused external declarations
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZMVd3xQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qgzwAQCBHA3gf30GChf0EZUdIVueA31/1n2Z
2ZW1VeKUHQufpAEAuzbkeTdaj6bbpsT5T1Pf3zUIvpHs7kOYJWQq+75GBAI=
=9o02
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.5-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Fix to /sys/kernel/tracing/per_cpu/cpu*/stats read and entries.
If a resize shrinks the buffer it clears the read count to notify
readers that they need to reset. But the read count is also used for
accounting and this causes the numbers to be off. Instead, create a
separate variable to use to notify readers to reset.
- Fix the ref counts of the "soft disable" mode. The wrong value was
used for testing if soft disable mode should be enabled or disable,
but instead, just change the logic to do the enable and disable in
place when the SOFT_MODE is set or cleared.
- Several kernel-doc fixes
- Removal of unused external declarations
* tag 'trace-v6.5-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Fix warning in trace_buffered_event_disable()
ftrace: Remove unused extern declarations
tracing: Fix kernel-doc warnings in trace_seq.c
tracing: Fix kernel-doc warnings in trace_events_trigger.c
tracing/synthetic: Fix kernel-doc warnings in trace_events_synth.c
ring-buffer: Fix kernel-doc warnings in ring_buffer.c
ring-buffer: Fix wrong stat of cpu_buffer->read
Do not allow to probe on "__cfi_" or "__pfx_" started symbol, because those
are used for CFI and not executed. Probing it will break the CFI.
Link: https://lore.kernel.org/all/168904024679.116016.18089228029322008512.stgit@devnote2/
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Warning happened in trace_buffered_event_disable() at
WARN_ON_ONCE(!trace_buffered_event_ref)
Call Trace:
? __warn+0xa5/0x1b0
? trace_buffered_event_disable+0x189/0x1b0
__ftrace_event_enable_disable+0x19e/0x3e0
free_probe_data+0x3b/0xa0
unregister_ftrace_function_probe_func+0x6b8/0x800
event_enable_func+0x2f0/0x3d0
ftrace_process_regex.isra.0+0x12d/0x1b0
ftrace_filter_write+0xe6/0x140
vfs_write+0x1c9/0x6f0
[...]
The cause of the warning is in __ftrace_event_enable_disable(),
trace_buffered_event_enable() was called once while
trace_buffered_event_disable() was called twice.
Reproduction script show as below, for analysis, see the comments:
```
#!/bin/bash
cd /sys/kernel/tracing/
# 1. Register a 'disable_event' command, then:
# 1) SOFT_DISABLED_BIT was set;
# 2) trace_buffered_event_enable() was called first time;
echo 'cmdline_proc_show:disable_event:initcall:initcall_finish' > \
set_ftrace_filter
# 2. Enable the event registered, then:
# 1) SOFT_DISABLED_BIT was cleared;
# 2) trace_buffered_event_disable() was called first time;
echo 1 > events/initcall/initcall_finish/enable
# 3. Try to call into cmdline_proc_show(), then SOFT_DISABLED_BIT was
# set again!!!
cat /proc/cmdline
# 4. Unregister the 'disable_event' command, then:
# 1) SOFT_DISABLED_BIT was cleared again;
# 2) trace_buffered_event_disable() was called second time!!!
echo '!cmdline_proc_show:disable_event:initcall:initcall_finish' > \
set_ftrace_filter
```
To fix it, IIUC, we can change to call trace_buffered_event_enable() at
fist time soft-mode enabled, and call trace_buffered_event_disable() at
last time soft-mode disabled.
Link: https://lore.kernel.org/linux-trace-kernel/20230726095804.920457-1-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Fix kernel-doc warning:
kernel/trace/trace_seq.c:142: warning: Function parameter or member
'args' not described in 'trace_seq_vprintf'
Link: https://lkml.kernel.org/r/20230724140827.1023266-5-cuigaosheng1@huawei.com
Cc: <mhiramat@kernel.org>
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Fix kernel-doc warnings:
kernel/trace/trace_events_trigger.c:59: warning: Function parameter
or member 'buffer' not described in 'event_triggers_call'
kernel/trace/trace_events_trigger.c:59: warning: Function parameter
or member 'event' not described in 'event_triggers_call'
Link: https://lkml.kernel.org/r/20230724140827.1023266-4-cuigaosheng1@huawei.com
Cc: <mhiramat@kernel.org>
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Fix kernel-doc warning:
kernel/trace/trace_events_synth.c:1257: warning: Function parameter
or member 'mod' not described in 'synth_event_gen_cmd_array_start'
Link: https://lkml.kernel.org/r/20230724140827.1023266-3-cuigaosheng1@huawei.com
Cc: <mhiramat@kernel.org>
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Fix kernel-doc warnings:
kernel/trace/ring_buffer.c:954: warning: Function parameter or
member 'cpu' not described in 'ring_buffer_wake_waiters'
kernel/trace/ring_buffer.c:3383: warning: Excess function parameter
'event' description in 'ring_buffer_unlock_commit'
kernel/trace/ring_buffer.c:5359: warning: Excess function parameter
'cpu' description in 'ring_buffer_reset_online_cpus'
Link: https://lkml.kernel.org/r/20230724140827.1023266-2-cuigaosheng1@huawei.com
Cc: <mhiramat@kernel.org>
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
When pages are removed in rb_remove_pages(), 'cpu_buffer->read' is set
to 0 in order to make sure any read iterators reset themselves. However,
this will mess 'entries' stating, see following steps:
# cd /sys/kernel/tracing/
# 1. Enlarge ring buffer prepare for later reducing:
# echo 20 > per_cpu/cpu0/buffer_size_kb
# 2. Write a log into ring buffer of cpu0:
# taskset -c 0 echo "hello1" > trace_marker
# 3. Read the log:
# cat per_cpu/cpu0/trace_pipe
<...>-332 [000] ..... 62.406844: tracing_mark_write: hello1
# 4. Stop reading and see the stats, now 0 entries, and 1 event readed:
# cat per_cpu/cpu0/stats
entries: 0
[...]
read events: 1
# 5. Reduce the ring buffer
# echo 7 > per_cpu/cpu0/buffer_size_kb
# 6. Now entries became unexpected 1 because actually no entries!!!
# cat per_cpu/cpu0/stats
entries: 1
[...]
read events: 0
To fix it, introduce 'page_removed' field to count total removed pages
since last reset, then use it to let read iterators reset themselves
instead of changing the 'read' pointer.
Link: https://lore.kernel.org/linux-trace-kernel/20230724054040.3489499-1-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Cc: <vnagarnaik@google.com>
Fixes: 83f40318da ("ring-buffer: Make removal of ring buffer pages atomic")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In internal testing of test_maps, we sometimes observed failures like:
test_maps: test_maps.c:173: void test_hashmap_percpu(unsigned int, void *):
Assertion `bpf_map_update_elem(fd, &key, value, BPF_ANY) == 0' failed.
where the errno is ENOMEM. After some troubleshooting and enabling
the warnings, we saw:
[ 91.304708] percpu: allocation failed, size=8 align=8 atomic=1, atomic alloc failed, no space left
[ 91.304716] CPU: 51 PID: 24145 Comm: test_maps Kdump: loaded Tainted: G N 6.1.38-smp-DEV #7
[ 91.304719] Hardware name: Google Astoria/astoria, BIOS 0.20230627.0-0 06/27/2023
[ 91.304721] Call Trace:
[ 91.304724] <TASK>
[ 91.304730] [<ffffffffa7ef83b9>] dump_stack_lvl+0x59/0x88
[ 91.304737] [<ffffffffa7ef83f8>] dump_stack+0x10/0x18
[ 91.304738] [<ffffffffa75caa0c>] pcpu_alloc+0x6fc/0x870
[ 91.304741] [<ffffffffa75ca302>] __alloc_percpu_gfp+0x12/0x20
[ 91.304743] [<ffffffffa756785e>] alloc_bulk+0xde/0x1e0
[ 91.304746] [<ffffffffa7566c02>] bpf_mem_alloc_init+0xd2/0x2f0
[ 91.304747] [<ffffffffa7547c69>] htab_map_alloc+0x479/0x650
[ 91.304750] [<ffffffffa751d6e0>] map_create+0x140/0x2e0
[ 91.304752] [<ffffffffa751d413>] __sys_bpf+0x5a3/0x6c0
[ 91.304753] [<ffffffffa751c3ec>] __x64_sys_bpf+0x1c/0x30
[ 91.304754] [<ffffffffa7ef847a>] do_syscall_64+0x5a/0x80
[ 91.304756] [<ffffffffa800009b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
This makes sense, because in atomic context, percpu allocation would
not create new chunks; it would only create in non-atomic contexts.
And if during prefill all precpu chunks are full, -ENOMEM would
happen immediately upon next unit_alloc.
Prefill phase does not actually run in atomic context, so we can
use this fact to allocate non-atomically with GFP_KERNEL instead
of GFP_NOWAIT. This avoids the immediate -ENOMEM.
GFP_NOWAIT has to be used in unit_alloc when bpf program runs
in atomic context. Even if bpf program runs in non-atomic context,
in most cases, rcu read lock is enabled for the program so
GFP_NOWAIT is still needed. This is often also the case for
BPF_MAP_UPDATE_ELEM syscalls.
Signed-off-by: YiFei Zhu <zhuyifei@google.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20230728043359.3324347-1-zhuyifei@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The kernel test robot reported compilation warnings when -Wparentheses is
added to KBUILD_CFLAGS with gcc compiler. The following is the error message:
.../bpf-next/kernel/bpf/verifier.c: In function ‘coerce_reg_to_size_sx’:
.../bpf-next/kernel/bpf/verifier.c:5901:14:
error: suggest parentheses around comparison in operand of ‘==’ [-Werror=parentheses]
if (s64_max >= 0 == s64_min >= 0) {
~~~~~~~~^~~~
.../bpf-next/kernel/bpf/verifier.c: In function ‘coerce_subreg_to_size_sx’:
.../bpf-next/kernel/bpf/verifier.c:5965:14:
error: suggest parentheses around comparison in operand of ‘==’ [-Werror=parentheses]
if (s32_min >= 0 == s32_max >= 0) {
~~~~~~~~^~~~
To fix the issue, add proper parentheses for the above '>=' condition
to silence the warning/error.
I tried a few clang compilers like clang16 and clang18 and they do not emit
such warnings with -Wparentheses.
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202307281133.wi0c4SqG-lkp@intel.com/
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230728055740.2284534-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add support to the /sys/devices/system/cpu/smt/control interface for
enabling a specified number of SMT threads per core, including partial
SMT states where not all threads are brought online.
The current interface accepts "on" and "off", to enable either 1 or all
SMT threads per core.
This commit allows writing an integer, between 1 and the number of SMT
threads supported by the machine. Writing 1 is a synonym for "off", 2 or
more enables SMT with the specified number of threads.
When reading the file, if all threads are online "on" is returned, to
avoid changing behaviour for existing users. If some other number of
threads is online then the integer value is returned.
Architectures like x86 only supporting 1 thread or all threads, should not
define CONFIG_SMT_NUM_THREADS_DYNAMIC. Architecture supporting partial SMT
states, like PowerPC, should define it.
[ ldufour: Slightly reword the commit's description ]
[ ldufour: Remove switch() in __store_smt_control() ]
[ ldufour: Rix build issue in control_show() ]
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230705145143.40545-8-ldufour@linux.ibm.com
Some architectures allows partial SMT states, i.e. when not all SMT threads
are brought online.
To support that, add an architecture helper which checks whether a given
CPU is allowed to be brought online depending on how many SMT threads are
currently enabled. Since this is only applicable to architecture supporting
partial SMT, only these architectures should select the new configuration
variable CONFIG_SMT_NUM_THREADS_DYNAMIC. For the other architectures, not
supporting the partial SMT states, there is no need to define
topology_cpu_smt_allowed(), the generic code assumed that all the threads
are allowed or only the primary ones.
Call the helper from cpu_smt_enable(), and cpu_smt_allowed() when SMT is
enabled, to check if the particular thread should be onlined. Notably,
also call it from cpu_smt_disable() if CPU_SMT_ENABLED, to allow
offlining some threads to move from a higher to lower number of threads
online.
[ ldufour: Slightly reword the commit's description ]
[ ldufour: Introduce CONFIG_SMT_NUM_THREADS_DYNAMIC ]
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230705145143.40545-7-ldufour@linux.ibm.com
Since the maximum number of threads is now passed to cpu_smt_set_num_threads(),
checking that value is enough to know whether SMT is supported.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230705145143.40545-6-ldufour@linux.ibm.com
Some architectures allow partial SMT states at boot time, ie. when not all
SMT threads are brought online.
To support that the SMT code needs to know the maximum number of SMT
threads, and also the currently configured number.
The architecture code knows the max number of threads, so have the
architecture code pass that value to cpu_smt_set_num_threads(). Note that
although topology_max_smt_threads() exists, it is not configured early
enough to be used here. As architecture, like PowerPC, allows the threads
number to be set through the kernel command line, also pass that value.
[ ldufour: Slightly reword the commit message ]
[ ldufour: Rename cpu_smt_check_topology and add a num_threads argument ]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230705145143.40545-5-ldufour@linux.ibm.com
Move the simple exit cases, i.e. those which don't depend on the value
written, earlier in the function. That makes it clearer that regardless of
the input those states cannot be transitioned out of.
That does have a user-visible effect, in that the error returned will
now always be EPERM/ENODEV for those states, regardless of the value
written. Previously writing an invalid value would return EINVAL even
when in those states.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230705145143.40545-4-ldufour@linux.ibm.com
In order to export the cpuhp_smt_control enum as part of the interface
between generic and architecture code, the architecture code needs to
include asm/topology.h.
But that leads to circular header dependencies. So split the enum and
related declarations into a separate header.
[ ldufour: Reworded the commit's description ]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230705145143.40545-3-ldufour@linux.ibm.com
The commit 18415f33e2 ("cpu/hotplug: Allow "parallel" bringup up to
CPUHP_BP_KICK_AP_STATE") introduce a dependancy against a global variable
cpu_primary_thread_mask exported by the X86 code. This variable is only
used when CONFIG_HOTPLUG_PARALLEL is set.
Since cpuhp_get_primary_thread_mask() and cpuhp_smt_aware() are only used
when CONFIG_HOTPLUG_PARALLEL is set, don't define them when it is not set.
No functional change.
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230705145143.40545-2-ldufour@linux.ibm.com
Add asm support for new instructions so kernel verifier and bpftool
xlated insn dumps can have proper asm syntax for new instructions.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Quentin Monnet <quentin@isovalent.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add interpreter/jit/verifier support for 32bit offset jmp instruction.
If a conditional jmp instruction needs more than 16bit offset,
it can be simulated with a conditional jmp + a 32bit jmp insn.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011231.3716103-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add interpreter/jit support for new signed div/mod insns.
The new signed div/mod instructions are encoded with
unsigned div/mod instructions plus insn->off == 1.
Also add basic verifier support to ensure new insns get
accepted.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011219.3714605-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The existing 'be' and 'le' insns will do conditional bswap
depends on host endianness. This patch implements
unconditional bswap insns.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011213.3712808-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, if user accesses a ctx member with signed types,
the compiler will generate an unsigned load followed by
necessary left and right shifts.
With the introduction of sign-extension load, compiler may
just emit a ldsx insn instead. Let us do a final movsx sign
extension to the final unsigned ctx load result to
satisfy original sign extension requirement.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011207.3712528-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add interpreter/jit support for new sign-extension mov insns.
The original 'MOV' insn is extended to support reg-to-reg
signed version for both ALU and ALU64 operations. For ALU mode,
the insn->off value of 8 or 16 indicates sign-extension
from 8- or 16-bit value to 32-bit value. For ALU64 mode,
the insn->off value of 8/16/32 indicates sign-extension
from 8-, 16- or 32-bit value to 64-bit value.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011202.3712300-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add interpreter/jit support for new sign-extension load insns
which adds a new mode (BPF_MEMSX).
Also add verifier support to recognize these insns and to
do proper verification with new insns. In verifier, besides
to deduce proper bounds for the dst_reg, probed memory access
is also properly handled.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011156.3711870-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Mark the time KUnit test, time64_to_tm_test_date_range, as slow using test
attributes.
This test ran relatively much slower than most other KUnit tests.
By marking this test as slow, the test can now be filtered using the KUnit
test attribute filtering feature. Example: --filter "speed>slow". This will
run only the tests that have speeds faster than slow. The slow attribute
will also be outputted in KTAP.
Reviewed-by: David Gow <davidgow@google.com>
Signed-off-by: Rae Moar <rmoar@google.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
Commit eda0047296 ("mm: make the page fault mmap locking killable")
intentionally made it much easier to trigger the "page fault fails
because a fatal signal is pending" situation, by having the mmap locking
fail early in that case.
We have long aborted page faults in other fatal cases when the actual IO
for a page is interrupted by SIGKILL - which is particularly useful for
the traditional case of NFS hanging due to network issues, but local
filesystems could cause it too if you happened to get the SIGKILL while
waiting for a page to be faulted in (eg lock_folio_maybe_drop_mmap()).
So aborting the page fault wasn't a new condition - but it now triggers
earlier, before we even get to 'handle_mm_fault()'. And as a result the
error doesn't go through our 'fault_signal_pending()' logic, and doesn't
get filtered away there.
Normally you'd never even notice, because if a fatal signal is pending,
the new SIGSEGV we send ends up being ignored anyway.
But it turns out that there is one very noticeable exception: if you
enable 'show_unhandled_signals', the aborted page fault will be logged
in the kernel messages, and you'll get a scary line looking something
like this in your logs:
pverados[2183248]: segfault at 55e5a00f9ae0 ip 000055e5a00f9ae0 sp 00007ffc0720bea8 error 14 in perl[55e5a00d4000+195000] likely on CPU 10 (core 4, socket 0)
which is rather misleading. It's not really a segfault at all, it's
just "the thread was killed before the page fault completed, so we
aborted the page fault".
Fix this by just making it clear that a pending fatal signal means that
any new signal coming in after that is implicitly handled. This will
avoid the misleading logging, since now the signal isn't 'unhandled' any
more.
Reported-and-tested-by: Fiona Ebner <f.ebner@proxmox.com>
Tested-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
Link: https://lore.kernel.org/lkml/8d063a26-43f5-0bb7-3203-c6a04dc159f8@proxmox.com/
Acked-by: Oleg Nesterov <oleg@redhat.com>
Fixes: eda0047296 ("mm: make the page fault mmap locking killable")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The flags of the child of a given scheduling domain are used to initialize
the flags of its scheduling groups. When the child of a scheduling domain
is degenerated, the flags of its local scheduling group need to be updated
to align with the flags of its new child domain.
The flag SD_SHARE_CPUCAPACITY was aligned in
Commit bf2dc42d6b ("sched/topology: Propagate SMT flags when removing degenerate domain").
Further generalize this alignment so other flags can be used later, such as
in cluster-based task wakeup. [1]
Reported-by: Yicong Yang <yangyicong@huawei.com>
Suggested-by: Ricardo Neri <ricardo.neri@intel.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Yicong Yang <yangyicong@hisilicon.com>
Link: https://lore.kernel.org/r/20230713013133.2314153-1-yu.c.chen@intel.com
There is no need to use runnable_avg when estimating util_est and that
even generates wrong behavior because one includes blocked tasks whereas
the other one doesn't. This can lead to accounting twice the waking task p,
once with the blocked runnable_avg and another one when adding its
util_est.
cpu's runnable_avg is already used when computing util_avg which is then
compared with util_est.
In some situation, feec will not select prev_cpu but another one on the
same performance domain because of higher max_util
Fixes: 7d0583cf9e ("sched/fair, cpufreq: Introduce 'runnable boosting'")
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20230706135144.324311-1-vincent.guittot@linaro.org
Since find_btf_func_param() abd btf_type_by_id() can return NULL,
the caller must check the return value correctly.
Link: https://lore.kernel.org/all/169024903951.395371.11361556840733470934.stgit@devnote2/
Fixes: b576e09701 ("tracing/probes: Support function parameters if BTF is available")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Splitting these out into separate helper functions means that we
actually pass an uninitialized variable into another function call
if dec_active() happens to not be inlined, and CONFIG_PREEMPT_RT
is disabled:
kernel/bpf/memalloc.c: In function 'add_obj_to_free_list':
kernel/bpf/memalloc.c:200:9: error: 'flags' is used uninitialized [-Werror=uninitialized]
200 | dec_active(c, flags);
Avoid this by passing the flags by reference, so they either get
initialized and dereferenced through a pointer, or the pointer never
gets accessed at all.
Fixes: 18e027b1c7 ("bpf: Factor out inc/dec of active flag into helpers.")
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20230725202653.2905259-1-arnd@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We received report [1] of kernel crash, which is caused by
using nesting protection without disabled preemption.
The bpf_event_output can be called by programs executed by
bpf_prog_run_array_cg function that disabled migration but
keeps preemption enabled.
This can cause task to be preempted by another one inside the
nesting protection and lead eventually to two tasks using same
perf_sample_data buffer and cause crashes like:
BUG: kernel NULL pointer dereference, address: 0000000000000001
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
...
? perf_output_sample+0x12a/0x9a0
? finish_task_switch.isra.0+0x81/0x280
? perf_event_output+0x66/0xa0
? bpf_event_output+0x13a/0x190
? bpf_event_output_data+0x22/0x40
? bpf_prog_dfc84bbde731b257_cil_sock4_connect+0x40a/0xacb
? xa_load+0x87/0xe0
? __cgroup_bpf_run_filter_sock_addr+0xc1/0x1a0
? release_sock+0x3e/0x90
? sk_setsockopt+0x1a1/0x12f0
? udp_pre_connect+0x36/0x50
? inet_dgram_connect+0x93/0xa0
? __sys_connect+0xb4/0xe0
? udp_setsockopt+0x27/0x40
? __pfx_udp_push_pending_frames+0x10/0x10
? __sys_setsockopt+0xdf/0x1a0
? __x64_sys_connect+0xf/0x20
? do_syscall_64+0x3a/0x90
? entry_SYSCALL_64_after_hwframe+0x72/0xdc
Fixing this by disabling preemption in bpf_event_output.
[1] https://github.com/cilium/cilium/issues/26756
Cc: stable@vger.kernel.org
Reported-by: Oleg "livelace" Popov <o.popov@livelace.ru>
Closes: https://github.com/cilium/cilium/issues/26756
Fixes: 2a916f2f54 ("bpf: Use migrate_disable/enable in array macros and cgroup/lirc code.")
Acked-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230725084206.580930-3-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The nesting protection in bpf_perf_event_output relies on disabled
preemption, which is guaranteed for kprobes and tracepoints.
However bpf_perf_event_output can be also called from uprobes context
through bpf_prog_run_array_sleepable function which disables migration,
but keeps preemption enabled.
This can cause task to be preempted by another one inside the nesting
protection and lead eventually to two tasks using same perf_sample_data
buffer and cause crashes like:
kernel tried to execute NX-protected page - exploit attempt? (uid: 0)
BUG: unable to handle page fault for address: ffffffff82be3eea
...
Call Trace:
? __die+0x1f/0x70
? page_fault_oops+0x176/0x4d0
? exc_page_fault+0x132/0x230
? asm_exc_page_fault+0x22/0x30
? perf_output_sample+0x12b/0x910
? perf_event_output+0xd0/0x1d0
? bpf_perf_event_output+0x162/0x1d0
? bpf_prog_c6271286d9a4c938_krava1+0x76/0x87
? __uprobe_perf_func+0x12b/0x540
? uprobe_dispatcher+0x2c4/0x430
? uprobe_notify_resume+0x2da/0xce0
? atomic_notifier_call_chain+0x7b/0x110
? exit_to_user_mode_prepare+0x13e/0x290
? irqentry_exit_to_user_mode+0x5/0x30
? asm_exc_int3+0x35/0x40
Fixing this by disabling preemption in bpf_perf_event_output.
Cc: stable@vger.kernel.org
Fixes: 8c7dcb84e3 ("bpf: implement sleepable uprobes by chaining gps")
Acked-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230725084206.580930-2-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
wq_cpu_intensive_thresh_us is used to detect CPU-hogging per-cpu work items.
Once detected, they're excluded from concurrency management to prevent them
from blocking other per-cpu work items. If CONFIG_WQ_CPU_INTENSIVE_REPORT is
enabled, repeat offenders are also reported so that the code can be updated.
The default threshold is 10ms which is long enough to do fair bit of work on
modern CPUs while short enough to be usually not noticeable. This
unfortunately leads to a lot of, arguable spurious, detections on very slow
CPUs. Using the same threshold across CPUs whose performance levels may be
apart by multiple levels of magnitude doesn't make whole lot of sense.
This patch scales up wq_cpu_intensive_thresh_us upto 1 second when BogoMIPS
is below 4000. This is obviously very inaccurate but it doesn't have to be
accurate to be useful. The mechanism is still useful when the threshold is
fully scaled up and the benefits of reports are usually shared with everyone
regardless of who's reporting, so as long as there are sufficient number of
fast machines reporting, we don't lose much.
Some (or is it all?) ARM CPUs systemtically report significantly lower
BogoMIPS. While this doesn't break anything, given how widespread ARM CPUs
are, it's at least a missed opportunity and it probably would be a good idea
to teach workqueue about it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
The passed parameter to sysrq handlers is a key (a character). So change
the type from 'int' to 'u8'. Let it specifically be 'u8' for two
reasons:
* unsigned: unsigned values come from the upper layers (devices) and the
tty layer assumes unsigned on most places, and
* 8-bit: as that what's supposed to be one day in all the layers built
on the top of tty. (Currently, we use mostly 'unsigned char' and
somewhere still only 'char'. (But that also translates to the former
thanks to -funsigned-char.))
Signed-off-by: Jiri Slaby (SUSE) <jirislaby@kernel.org>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Cc: David Airlie <airlied@gmail.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Douglas Anderson <dianders@chromium.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Zqiang <qiang.zhang1211@gmail.com>
Acked-by: Thomas Zimmermann <tzimmermann@suse.de> # DRM
Acked-by: WANG Xuerui <git@xen0n.name> # loongarch
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20230712081811.29004-3-jirislaby@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Trying to restrict the '$'-prefix change to RISC-V caused some fallout,
so let's just treat all those symbols as special.
Fixes: c05780ef3c ("module: Ignore RISC-V mapping symbols too")
Link: https://lore.kernel.org/all/20230712015747.77263-1-wangkefeng.wang@huawei.com/
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Reviewed-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
In later patches, we're going to change how the inode's ctime field is
used. Switch to using accessor functions instead of raw accesses of
inode->i_ctime.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Message-Id: <20230705190309.579783-84-jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
On ChromeOS we've observed a considerable number of in-use pages filled with
zeros. Today with hibernate it's entirely possible that saveable pages are just
zero filled. Since we're already copying pages word-by-word in do_copy_page it
becomes almost free to determine if a page was completely filled with zeros.
This change introduces a new bitmap which will track these zero pages. If a page
is zero it will not be included in the saved image, instead to track these zero
pages in the image file we will introduce a new flag which we will set on the
packed PFN list. When reading back in the image file we will detect these zero
page PFNs and rebuild the zero page bitmap.
When the image is being loaded through calls to write_next_page if we encounter
a zero page we will silently memset it to 0 and then continue on to the next
page. Given the implementation in snapshot_read_next/snapshot_write_next this
change will be transparent to non-compressed/compressed and swsusp modes of
operation.
To provide some concrete numbers from simple ad-hoc testing, on a device which
was lightly in use we saw that:
PM: hibernation: Image created (964408 pages copied, 548304 zero pages)
Of the approximately 6.2GB of saveable pages 2.2GB (36%) were just zero filled
and could be tracked entirely within the packed PFN list. The savings would
obviously be much lower for lzo compressed images, but even in the case of
compression not copying pages across to the compression threads will still
speed things up. It's also possible that we would see better overall compression
ratios as larger regions of "real data" would improve the compressibility.
Finally, such an approach could dramatically improve swsusp performance
as each one of those zero pages requires a write syscall to reload, by
handling it as part of the packed PFN list we're able to fully avoid
that.
Signed-off-by: Brian Geffon <bgeffon@google.com>
[ rjw: Whitespace adjustments, removal of redundant parentheses ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Swapping the ring buffer for snapshotting (for things like irqsoff)
can crash if the ring buffer is being resized. Disable swapping
when this happens. The missed swap will be reported to the tracer.
- Report error if the histogram fails to be created due to an error in
adding a histogram variable, in event_hist_trigger_parse().
- Remove unused declaration of tracing_map_set_field_descr().
Chen Lin (1):
ring-buffer: Do not swap cpu_buffer during resize process
Mohamed Khalfella (1):
tracing/histograms: Return an error if we fail to add histogram to hist_vars list
YueHaibing (1):
tracing: Remove unused extern declaration tracing_map_set_field_descr()
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZL2IixQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qsHAAQCS/VLpMOA5AS9JWvwuEnGAVymyJcGS
jmnWkuMmf5fPpQD/di/xY1clLNhz6P7PAZvR3N6qw3AsNjPW/ZapDkrRWQA=
=RoHL
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Swapping the ring buffer for snapshotting (for things like irqsoff)
can crash if the ring buffer is being resized. Disable swapping when
this happens. The missed swap will be reported to the tracer
- Report error if the histogram fails to be created due to an error in
adding a histogram variable, in event_hist_trigger_parse()
- Remove unused declaration of tracing_map_set_field_descr()
* tag 'trace-v6.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/histograms: Return an error if we fail to add histogram to hist_vars list
ring-buffer: Do not swap cpu_buffer during resize process
tracing: Remove unused extern declaration tracing_map_set_field_descr()
Commit 6018b585e8 ("tracing/histograms: Add histograms to hist_vars if
they have referenced variables") added a check to fail histogram creation
if save_hist_vars() failed to add histogram to hist_vars list. But the
commit failed to set ret to failed return code before jumping to
unregister histogram, fix it.
Link: https://lore.kernel.org/linux-trace-kernel/20230714203341.51396-1-mkhalfella@purestorage.com
Cc: stable@vger.kernel.org
Fixes: 6018b585e8 ("tracing/histograms: Add histograms to hist_vars if they have referenced variables")
Signed-off-by: Mohamed Khalfella <mkhalfella@purestorage.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Since commit 743210386c ("cgroup: use cgrp->kn->id as the cgroup ID"),
cgrp is associated with its kernfs_node. Update corresponding comment.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Change 'new_usage' type to u64 so it can be compared with unsigned 'max'
and 'capacity' properly even if the value crosses the signed boundary.
Signed-off-by: Haitao Huang <haitao.huang@linux.intel.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
After changes in commit 0590b9335a ("fixing audit rule ordering mess,
part 1"), audit_filter_inodes() returns void, so if CONFIG_AUDITSYSCALL
not defined, it should be do {} while(0).
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Current release - regressions:
- eth: r8169: multiple fixes for PCIe ASPM-related problems
- vrf: fix RCU lockdep splat in output path
Previous releases - regressions:
- gso: fall back to SW segmenting with GSO_UDP_L4 dodgy bit set
- dsa: mv88e6xxx: do a final check before timing out when polling
- nf_tables: fix sleep in atomic in nft_chain_validate
Previous releases - always broken:
- sched: fix undoing tcf_bind_filter() in multiple classifiers
- bpf, arm64: fix BTI type used for freplace attached functions
- can: gs_usb: fix time stamp counter initialization
- nft_set_pipapo: fix improper element removal (leading to UAF)
Misc:
- net: support STP on bridge in non-root netns, STP prevents
packet loops so not supporting it results in freezing systems
of unsuspecting users, and in turn very upset noises being made
- fix kdoc warnings
- annotate various bits of TCP state to prevent data races
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmS5pp0ACgkQMUZtbf5S
IrtudA/9Ep+URprI3tpv+VHOQMWtMd7lzz+wwEUDQSo2T6xdMcYbd1E4ZWWOPw/y
jTIIVF3qde4nuI/MZtzGhvCD8v4bzhw10uRm4f4vhC2i+CzXr/UdOQSMqeZmJZgN
vndixvRjHJKYxogOa+DjXgOiuQTQfuSfSnaai0kvw3zZzi4tev/Bdj6KZmFW+UK+
Q7uQZ5n8tdE4UvUdj8Jek23SZ4kL+HtQOIdAAqyduQnYnax5L5sbep0TjuCjjkpK
26rvmwYFJmEab4mC2T3Y7VDaXYM9M2f/EuFBMBVEohE3KPTTdT12WzLfJv7TTKTl
hymfXgfmCXiZElzoQTJ69bFGbhqFaCJwhCUHFwYqkqj0bW9cXYJD2achpi3nVgnn
CV8vfqJtkzdgh2bV2faG+1wmAm1wzHSURmT5NlnFaX6a6BYypaN7CERn7BnIdLM/
YA2wud39bL0EJsic5e3gtlyJdfhtx7iqCMzE7S5FiUZvgOmUhBZ4IWkMs6Aq5PpL
FLLgBSHGEIAdLVQGvXLjfQ/LeSrW8JsiSy6deztzR+ZflvvaBIP5y8sC3+KdxAvN
3ybMsMEE5OK3i808aV3l6/8DLeAJ+DWuMc96Ix7Yyt2LXFnnV79DX49zJAEUWrc7
54FnNzkgAO/Q9aEFmmQoFt5qZmoFHuNwcHBOmXARAatQqNCwDqk=
=Xifr
-----END PGP SIGNATURE-----
Merge tag 'net-6.5-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Jakub Kicinski:
"Including fixes from BPF, netfilter, bluetooth and CAN.
Current release - regressions:
- eth: r8169: multiple fixes for PCIe ASPM-related problems
- vrf: fix RCU lockdep splat in output path
Previous releases - regressions:
- gso: fall back to SW segmenting with GSO_UDP_L4 dodgy bit set
- dsa: mv88e6xxx: do a final check before timing out when polling
- nf_tables: fix sleep in atomic in nft_chain_validate
Previous releases - always broken:
- sched: fix undoing tcf_bind_filter() in multiple classifiers
- bpf, arm64: fix BTI type used for freplace attached functions
- can: gs_usb: fix time stamp counter initialization
- nft_set_pipapo: fix improper element removal (leading to UAF)
Misc:
- net: support STP on bridge in non-root netns, STP prevents packet
loops so not supporting it results in freezing systems of
unsuspecting users, and in turn very upset noises being made
- fix kdoc warnings
- annotate various bits of TCP state to prevent data races"
* tag 'net-6.5-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (95 commits)
net: phy: prevent stale pointer dereference in phy_init()
tcp: annotate data-races around fastopenq.max_qlen
tcp: annotate data-races around icsk->icsk_user_timeout
tcp: annotate data-races around tp->notsent_lowat
tcp: annotate data-races around rskq_defer_accept
tcp: annotate data-races around tp->linger2
tcp: annotate data-races around icsk->icsk_syn_retries
tcp: annotate data-races around tp->keepalive_probes
tcp: annotate data-races around tp->keepalive_intvl
tcp: annotate data-races around tp->keepalive_time
tcp: annotate data-races around tp->tsoffset
tcp: annotate data-races around tp->tcp_tx_delay
Bluetooth: MGMT: Use correct address for memcpy()
Bluetooth: btusb: Fix bluetooth on Intel Macbook 2014
Bluetooth: SCO: fix sco_conn related locking and validity issues
Bluetooth: hci_conn: return ERR_PTR instead of NULL when there is no link
Bluetooth: hci_sync: Avoid use-after-free in dbg for hci_remove_adv_monitor()
Bluetooth: coredump: fix building with coredump disabled
Bluetooth: ISO: fix iso_conn related locking and validity issues
Bluetooth: hci_event: call disconnect callback before deleting conn
...
The ifdef-else logic is already in the header file, so include it
unconditionally, no functional changes here.
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
[PM: fixed misspelling in the subject]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Currently abandon_console_lock_in_panic() is only used to determine if
the current CPU should immediately release the console lock because
another CPU is in panic. However, later this function will be used by
the CPU to immediately release other resources in this situation.
Rename the function to other_cpu_in_panic(), which is a better
description and does not assume it is related to the console lock.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230717194607.145135-8-john.ogness@linutronix.de
Currently the global @console_suspended is used to determine if
consoles are in a suspended state. Its primary purpose is to allow
usage of the console_lock when suspended without causing console
printing. It is synchronized by the console_lock.
Rather than relying on the console_lock to determine suspended
state, make it an official per-console state that is set within
console->flags. This allows the state to be queried via SRCU.
Remove @console_suspended. Console printing will still be avoided
when suspended because console_is_usable() returns false when
the new suspended flag is set for that console.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230717194607.145135-7-john.ogness@linutronix.de
Printing to consoles can be deferred for several reasons:
- explicitly with printk_deferred()
- printk() in NMI context
- recursive printk() calls
The current implementation is not consistent. For printk_deferred(),
irq work is scheduled twice. For NMI und recursive, panic CPU
suppression and caller delays are not properly enforced.
Correct these inconsistencies by consolidating the deferred printing
code so that vprintk_deferred() is the top-level function for
deferred printing and vprintk_emit() will perform whichever irq_work
queueing is appropriate.
Also add kerneldoc for wake_up_klogd() and defer_console_output() to
clarify their differences and appropriate usage.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230717194607.145135-6-john.ogness@linutronix.de
Currently console_flush_on_panic() will attempt to acquire the
console lock when flushing the buffer on panic. If it fails to
acquire the lock, it continues anyway because this is the last
chance to get any pending records printed.
The reason why the console lock was attempted at all was to
prevent any other CPUs from acquiring the console lock for
printing while the panic CPU was printing. But as of the
previous commit, non-panic CPUs will no longer attempt to
acquire the console lock in a panic situation. Therefore it is
no longer strictly necessary for a panic CPU to acquire the
console lock.
Avoiding taking the console lock when flushing in panic has
the additional benefit of avoiding possible deadlocks due to
semaphore usage in NMI context (semaphores are not NMI-safe)
and avoiding possible deadlocks if another CPU accesses the
semaphore and is stopped while holding one of the semaphore's
internal spinlocks.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230717194607.145135-5-john.ogness@linutronix.de
When in a panic situation, non-panic CPUs should avoid holding the
console lock so as not to contend with the panic CPU. This is already
implemented with abandon_console_lock_in_panic(), which is checked
after each printed line. However, non-panic CPUs should also avoid
trying to acquire the console lock during a panic.
Modify console_trylock() to fail and console_lock() to block() when
called from a non-panic CPU during a panic.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230717194607.145135-4-john.ogness@linutronix.de
A semaphore is not NMI-safe, even when using down_trylock(). Both
down_trylock() and up() are using internal spinlocks and up()
might even call wake_up_process().
In the panic() code path it gets even worse because the internal
spinlocks of the semaphore may have been taken by a CPU that has
been stopped.
To reduce the risk of deadlocks caused by the console semaphore in
the panic path, make the following changes:
- First check if any consoles have implemented the unblank()
callback. If not, then there is no reason to take the console
semaphore anyway. (This check is also useful for the non-panic
path since the locking/unlocking of the console lock can be
quite expensive due to console printing.)
- If the panic path is in NMI context, bail out without attempting
to take the console semaphore or calling any unblank() callbacks.
Bailing out is acceptable because console_unblank() would already
bail out if the console semaphore is contended. The alternative of
ignoring the console semaphore and calling the unblank() callbacks
anyway is a bad idea because these callbacks are also not NMI-safe.
If consoles with unblank() callbacks exist and console_unblank() is
called from a non-NMI panic context, it will still attempt a
down_trylock(). This could still result in a deadlock if one of the
stopped CPUs is holding the semaphore internal spinlock. But this
is a risk that the kernel has been (and continues to be) willing
to take.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230717194607.145135-3-john.ogness@linutronix.de
It is allowed for consoles to not provide a write() callback. For
example ttynull does this.
Check if a write() callback is available before using it.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Daniel Thompson <daniel.thompson@linaro.org>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230717194607.145135-2-john.ogness@linutronix.de
Make it clear that this function always returns either true or false
without other planned failure modes.
Reported-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
This work refactors and adds a lightweight extension ("tcx") to the tc BPF
ingress and egress data path side for allowing BPF program management based
on fds via bpf() syscall through the newly added generic multi-prog API.
The main goal behind this work which we also presented at LPC [0] last year
and a recent update at LSF/MM/BPF this year [3] is to support long-awaited
BPF link functionality for tc BPF programs, which allows for a model of safe
ownership and program detachment.
Given the rise in tc BPF users in cloud native environments, this becomes
necessary to avoid hard to debug incidents either through stale leftover
programs or 3rd party applications accidentally stepping on each others toes.
As a recap, a BPF link represents the attachment of a BPF program to a BPF
hook point. The BPF link holds a single reference to keep BPF program alive.
Moreover, hook points do not reference a BPF link, only the application's
fd or pinning does. A BPF link holds meta-data specific to attachment and
implements operations for link creation, (atomic) BPF program update,
detachment and introspection. The motivation for BPF links for tc BPF programs
is multi-fold, for example:
- From Meta: "It's especially important for applications that are deployed
fleet-wide and that don't "control" hosts they are deployed to. If such
application crashes and no one notices and does anything about that, BPF
program will keep running draining resources or even just, say, dropping
packets. We at FB had outages due to such permanent BPF attachment
semantics. With fd-based BPF link we are getting a framework, which allows
safe, auto-detachable behavior by default, unless application explicitly
opts in by pinning the BPF link." [1]
- From Cilium-side the tc BPF programs we attach to host-facing veth devices
and phys devices build the core datapath for Kubernetes Pods, and they
implement forwarding, load-balancing, policy, EDT-management, etc, within
BPF. Currently there is no concept of 'safe' ownership, e.g. we've recently
experienced hard-to-debug issues in a user's staging environment where
another Kubernetes application using tc BPF attached to the same prio/handle
of cls_bpf, accidentally wiping all Cilium-based BPF programs from underneath
it. The goal is to establish a clear/safe ownership model via links which
cannot accidentally be overridden. [0,2]
BPF links for tc can co-exist with non-link attachments, and the semantics are
in line also with XDP links: BPF links cannot replace other BPF links, BPF
links cannot replace non-BPF links, non-BPF links cannot replace BPF links and
lastly only non-BPF links can replace non-BPF links. In case of Cilium, this
would solve mentioned issue of safe ownership model as 3rd party applications
would not be able to accidentally wipe Cilium programs, even if they are not
BPF link aware.
Earlier attempts [4] have tried to integrate BPF links into core tc machinery
to solve cls_bpf, which has been intrusive to the generic tc kernel API with
extensions only specific to cls_bpf and suboptimal/complex since cls_bpf could
be wiped from the qdisc also. Locking a tc BPF program in place this way, is
getting into layering hacks given the two object models are vastly different.
We instead implemented the tcx (tc 'express') layer which is an fd-based tc BPF
attach API, so that the BPF link implementation blends in naturally similar to
other link types which are fd-based and without the need for changing core tc
internal APIs. BPF programs for tc can then be successively migrated from classic
cls_bpf to the new tc BPF link without needing to change the program's source
code, just the BPF loader mechanics for attaching is sufficient.
For the current tc framework, there is no change in behavior with this change
and neither does this change touch on tc core kernel APIs. The gist of this
patch is that the ingress and egress hook have a lightweight, qdisc-less
extension for BPF to attach its tc BPF programs, in other words, a minimal
entry point for tc BPF. The name tcx has been suggested from discussion of
earlier revisions of this work as a good fit, and to more easily differ between
the classic cls_bpf attachment and the fd-based one.
For the ingress and egress tcx points, the device holds a cache-friendly array
with program pointers which is separated from control plane (slow-path) data.
Earlier versions of this work used priority to determine ordering and expression
of dependencies similar as with classic tc, but it was challenged that for
something more future-proof a better user experience is required. Hence this
resulted in the design and development of the generic attach/detach/query API
for multi-progs. See prior patch with its discussion on the API design. tcx is
the first user and later we plan to integrate also others, for example, one
candidate is multi-prog support for XDP which would benefit and have the same
'look and feel' from API perspective.
The goal with tcx is to have maximum compatibility to existing tc BPF programs,
so they don't need to be rewritten specifically. Compatibility to call into
classic tcf_classify() is also provided in order to allow successive migration
or both to cleanly co-exist where needed given its all one logical tc layer and
the tcx plus classic tc cls/act build one logical overall processing pipeline.
tcx supports the simplified return codes TCX_NEXT which is non-terminating (go
to next program) and terminating ones with TCX_PASS, TCX_DROP, TCX_REDIRECT.
The fd-based API is behind a static key, so that when unused the code is also
not entered. The struct tcx_entry's program array is currently static, but
could be made dynamic if necessary at a point in future. The a/b pair swap
design has been chosen so that for detachment there are no allocations which
otherwise could fail.
The work has been tested with tc-testing selftest suite which all passes, as
well as the tc BPF tests from the BPF CI, and also with Cilium's L4LB.
Thanks also to Nikolay Aleksandrov and Martin Lau for in-depth early reviews
of this work.
[0] https://lpc.events/event/16/contributions/1353/
[1] https://lore.kernel.org/bpf/CAEf4BzbokCJN33Nw_kg82sO=xppXnKWEncGTWCTB9vGCmLB6pw@mail.gmail.com
[2] https://colocatedeventseu2023.sched.com/event/1Jo6O/tales-from-an-ebpf-programs-murder-mystery-hemanth-malla-guillaume-fournier-datadog
[3] http://vger.kernel.org/bpfconf2023_material/tcx_meta_netdev_borkmann.pdf
[4] https://lore.kernel.org/bpf/20210604063116.234316-1-memxor@gmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/r/20230719140858.13224-3-daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This adds a generic layer called bpf_mprog which can be reused by different
attachment layers to enable multi-program attachment and dependency resolution.
In-kernel users of the bpf_mprog don't need to care about the dependency
resolution internals, they can just consume it with few API calls.
The initial idea of having a generic API sparked out of discussion [0] from an
earlier revision of this work where tc's priority was reused and exposed via
BPF uapi as a way to coordinate dependencies among tc BPF programs, similar
as-is for classic tc BPF. The feedback was that priority provides a bad user
experience and is hard to use [1], e.g.:
I cannot help but feel that priority logic copy-paste from old tc, netfilter
and friends is done because "that's how things were done in the past". [...]
Priority gets exposed everywhere in uapi all the way to bpftool when it's
right there for users to understand. And that's the main problem with it.
The user don't want to and don't need to be aware of it, but uapi forces them
to pick the priority. [...] Your cover letter [0] example proves that in
real life different service pick the same priority. They simply don't know
any better. Priority is an unnecessary magic that apps _have_ to pick, so
they just copy-paste and everyone ends up using the same.
The course of the discussion showed more and more the need for a generic,
reusable API where the "same look and feel" can be applied for various other
program types beyond just tc BPF, for example XDP today does not have multi-
program support in kernel, but also there was interest around this API for
improving management of cgroup program types. Such common multi-program
management concept is useful for BPF management daemons or user space BPF
applications coordinating internally about their attachments.
Both from Cilium and Meta side [2], we've collected the following requirements
for a generic attach/detach/query API for multi-progs which has been implemented
as part of this work:
- Support prog-based attach/detach and link API
- Dependency directives (can also be combined):
- BPF_F_{BEFORE,AFTER} with relative_{fd,id} which can be {prog,link,none}
- BPF_F_ID flag as {fd,id} toggle; the rationale for id is so that user
space application does not need CAP_SYS_ADMIN to retrieve foreign fds
via bpf_*_get_fd_by_id()
- BPF_F_LINK flag as {prog,link} toggle
- If relative_{fd,id} is none, then BPF_F_BEFORE will just prepend, and
BPF_F_AFTER will just append for attaching
- Enforced only at attach time
- BPF_F_REPLACE with replace_bpf_fd which can be prog, links have their
own infra for replacing their internal prog
- If no flags are set, then it's default append behavior for attaching
- Internal revision counter and optionally being able to pass expected_revision
- User space application can query current state with revision, and pass it
along for attachment to assert current state before doing updates
- Query also gets extension for link_ids array and link_attach_flags:
- prog_ids are always filled with program IDs
- link_ids are filled with link IDs when link was used, otherwise 0
- {prog,link}_attach_flags for holding {prog,link}-specific flags
- Must be easy to integrate/reuse for in-kernel users
The uapi-side changes needed for supporting bpf_mprog are rather minimal,
consisting of the additions of the attachment flags, revision counter, and
expanding existing union with relative_{fd,id} member.
The bpf_mprog framework consists of an bpf_mprog_entry object which holds
an array of bpf_mprog_fp (fast-path structure). The bpf_mprog_cp (control-path
structure) is part of bpf_mprog_bundle. Both have been separated, so that
fast-path gets efficient packing of bpf_prog pointers for maximum cache
efficiency. Also, array has been chosen instead of linked list or other
structures to remove unnecessary indirections for a fast point-to-entry in
tc for BPF.
The bpf_mprog_entry comes as a pair via bpf_mprog_bundle so that in case of
updates the peer bpf_mprog_entry is populated and then just swapped which
avoids additional allocations that could otherwise fail, for example, in
detach case. bpf_mprog_{fp,cp} arrays are currently static, but they could
be converted to dynamic allocation if necessary at a point in future.
Locking is deferred to the in-kernel user of bpf_mprog, for example, in case
of tcx which uses this API in the next patch, it piggybacks on rtnl.
An extensive test suite for checking all aspects of this API for prog-based
attach/detach and link API comes as BPF selftests in this series.
Thanks also to Andrii Nakryiko for early API discussions wrt Meta's BPF prog
management.
[0] https://lore.kernel.org/bpf/20221004231143.19190-1-daniel@iogearbox.net
[1] https://lore.kernel.org/bpf/CAADnVQ+gEY3FjCR=+DmjDR4gp5bOYZUFJQXj4agKFHT9CQPZBw@mail.gmail.com
[2] http://vger.kernel.org/bpfconf2023_material/tcx_meta_netdev_borkmann.pdf
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/r/20230719140858.13224-2-daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Register the bpf_map_sum_elem_count func for all programs, and update the
map_ptr subtest of the test_progs test to test the new functionality.
The usage is allowed as long as the pointer to the map is trusted (when
using tracing programs) or is a const pointer to map, as in the following
example:
struct {
__uint(type, BPF_MAP_TYPE_HASH);
...
} hash SEC(".maps");
...
static inline int some_bpf_prog(void)
{
struct bpf_map *map = (struct bpf_map *)&hash;
__s64 count;
count = bpf_map_sum_elem_count(map);
...
}
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Link: https://lore.kernel.org/r/20230719092952.41202-5-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We use the map pointer only to read the counter values, no locking
involved, so mark the argument as const.
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Link: https://lore.kernel.org/r/20230719092952.41202-4-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add the BTF id of struct bpf_map to the reg2btf_ids array. This makes the
values of the CONST_PTR_TO_MAP type to be considered as trusted by kfuncs.
This, in turn, allows users to execute trusted kfuncs which accept `struct
bpf_map *` arguments from non-tracing programs.
While exporting the btf_bpf_map_id variable, save some bytes by defining
it as BTF_ID_LIST_GLOBAL_SINGLE (which is u32[1]) and not as BTF_ID_LIST
(which is u32[64]).
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Link: https://lore.kernel.org/r/20230719092952.41202-3-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The reg2btf_ids array contains a list of types for which we can (and need)
to find a corresponding static BTF id. All the types in the list can be
considered as trusted for purposes of kfuncs.
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Link: https://lore.kernel.org/r/20230719092952.41202-2-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
EEVDF uses this tunable as the base request/slice -- make sure the
name reflects this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.205287511@infradead.org
EEVDF is a better defined scheduling policy, as a result it has less
heuristics/tunables. There is no compelling reason to keep CFS around.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.137187212@infradead.org
Using lag is both more correct and simpler when moving between
runqueues.
Notable, min_vruntime() was invented as a cheap approximation of
avg_vruntime() for this very purpose (SMP migration). Since we now
have the real thing; use it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.068911180@infradead.org
Removes the FAIR_SLEEPERS code in favour of the new LAG based
placement.
Specifically, the whole FAIR_SLEEPER thing was a very crude
approximation to make up for the lack of lag based placement,
specifically the 'service owed' part. This is important for things
like 'starve' and 'hackbench'.
One side effect of FAIR_SLEEPER is that it caused 'small' unfairness,
specifically, by always ignoring up-to 'thresh' sleeptime it would
have a 50%/50% time distribution for a 50% sleeper vs a 100% runner,
while strictly speaking this should (of course) result in a 33%/67%
split (as CFS will also do if the sleep period exceeds 'thresh').
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.000198861@infradead.org
Where CFS is currently a WFQ based scheduler with only a single knob,
the weight. The addition of a second, latency oriented parameter,
makes something like WF2Q or EEVDF based a much better fit.
Specifically, EEVDF does EDF like scheduling in the left half of the
tree -- those entities that are owed service. Except because this is a
virtual time scheduler, the deadlines are in virtual time as well,
which is what allows over-subscription.
EEVDF has two parameters:
- weight, or time-slope: which is mapped to nice just as before
- request size, or slice length: which is used to compute
the virtual deadline as: vd_i = ve_i + r_i/w_i
Basically, by setting a smaller slice, the deadline will be earlier
and the task will be more eligible and ran earlier.
Tick driven preemption is driven by request/slice completion; while
wakeup preemption is driven by the deadline.
Because the tree is now effectively an interval tree, and the
selection is no longer 'leftmost', over-scheduling is less of a
problem.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.931005524@infradead.org
With the introduction of avg_vruntime, it is possible to approximate
lag (the entire purpose of introducing it in fact). Use this to do lag
based placement over sleep+wake.
Specifically, the FAIR_SLEEPERS thing places things too far to the
left and messes up the deadline aspect of EEVDF.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.794929315@infradead.org
With the introduction of avg_vruntime() there is no need to use worse
approximations. Take the 0-lag point as starting point for inserting
new tasks.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.722361178@infradead.org
In order to move to an eligibility based scheduling policy, we need
to have a better approximation of the ideal scheduler.
Specifically, for a virtual time weighted fair queueing based
scheduler the ideal scheduler will be the weighted average of the
individual virtual runtimes (math in the comment).
As such, compute the weighted average to approximate the ideal
scheduler -- note that the approximation is in the individual task
behaviour, which isn't strictly conformant.
Specifically consider adding a task with a vruntime left of center, in
this case the average will move backwards in time -- something the
ideal scheduler would of course never do.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.654144274@infradead.org
As described by Kumar in [0], in shared ownership scenarios it is
necessary to do runtime tracking of {rb,list} node ownership - and
synchronize updates using this ownership information - in order to
prevent races. This patch adds an 'owner' field to struct bpf_list_node
and bpf_rb_node to implement such runtime tracking.
The owner field is a void * that describes the ownership state of a
node. It can have the following values:
NULL - the node is not owned by any data structure
BPF_PTR_POISON - the node is in the process of being added to a data
structure
ptr_to_root - the pointee is a data structure 'root'
(bpf_rb_root / bpf_list_head) which owns this node
The field is initially NULL (set by bpf_obj_init_field default behavior)
and transitions states in the following sequence:
Insertion: NULL -> BPF_PTR_POISON -> ptr_to_root
Removal: ptr_to_root -> NULL
Before a node has been successfully inserted, it is not protected by any
root's lock, and therefore two programs can attempt to add the same node
to different roots simultaneously. For this reason the intermediate
BPF_PTR_POISON state is necessary. For removal, the node is protected
by some root's lock so this intermediate hop isn't necessary.
Note that bpf_list_pop_{front,back} helpers don't need to check owner
before removing as the node-to-be-removed is not passed in as input and
is instead taken directly from the list. Do the check anyways and
WARN_ON_ONCE in this unexpected scenario.
Selftest changes in this patch are entirely mechanical: some BTF
tests have hardcoded struct sizes for structs that contain
bpf_{list,rb}_node fields, those were adjusted to account for the new
sizes. Selftest additions to validate the owner field are added in a
further patch in the series.
[0]: https://lore.kernel.org/bpf/d7hyspcow5wtjcmw4fugdgyp3fwhljwuscp3xyut5qnwivyeru@ysdq543otzv2
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Suggested-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230718083813.3416104-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Structs bpf_rb_node and bpf_list_node are opaquely defined in
uapi/linux/bpf.h, as BPF program writers are not expected to touch their
fields - nor does the verifier allow them to do so.
Currently these structs are simple wrappers around structs rb_node and
list_head and linked_list / rbtree implementation just casts and passes
to library functions for those data structures. Later patches in this
series, though, will add an "owner" field to bpf_{rb,list}_node, such
that they're not just wrapping an underlying node type. Moreover, the
bpf linked_list and rbtree implementations will deal with these owner
pointers directly in a few different places.
To avoid having to do
void *owner = (void*)bpf_list_node + sizeof(struct list_head)
with opaque UAPI node types, add bpf_{list,rb}_node_kern struct
definitions to internal headers and modify linked_list and rbtree to use
the internal types where appropriate.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230718083813.3416104-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
While the check_max_stack_depth function explores call chains emanating
from the main prog, which is typically enough to cover all possible call
chains, it doesn't explore those rooted at async callbacks unless the
async callback will have been directly called, since unlike non-async
callbacks it skips their instruction exploration as they don't
contribute to stack depth.
It could be the case that the async callback leads to a callchain which
exceeds the stack depth, but this is never reachable while only
exploring the entry point from main subprog. Hence, repeat the check for
the main subprog *and* all async callbacks marked by the symbolic
execution pass of the verifier, as execution of the program may begin at
any of them.
Consider functions with following stack depths:
main: 256
async: 256
foo: 256
main:
rX = async
bpf_timer_set_callback(...)
async:
foo()
Here, async is not descended as it does not contribute to stack depth of
main (since it is referenced using bpf_pseudo_func and not
bpf_pseudo_call). However, when async is invoked asynchronously, it will
end up breaching the MAX_BPF_STACK limit by calling foo.
Hence, in addition to main, we also need to explore call chains
beginning at all async callback subprogs in a program.
Fixes: 7ddc80a476 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230717161530.1238-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The assignment to idx in check_max_stack_depth happens once we see a
bpf_pseudo_call or bpf_pseudo_func. This is not an issue as the rest of
the code performs a few checks and then pushes the frame to the frame
stack, except the case of async callbacks. If the async callback case
causes the loop iteration to be skipped, the idx assignment will be
incorrect on the next iteration of the loop. The value stored in the
frame stack (as the subprogno of the current subprog) will be incorrect.
This leads to incorrect checks and incorrect tail_call_reachable
marking. Save the target subprog in a new variable and only assign to
idx once we are done with the is_async_cb check which may skip pushing
of frame to the frame stack and subsequent stack depth checks and tail
call markings.
Fixes: 7ddc80a476 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230717161530.1238-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
So the variables can account for resources of huge quantities even on
32-bit machines.
Signed-off-by: Haitao Huang <haitao.huang@linux.intel.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
post-6.5 issue.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZLboHQAKCRDdBJ7gKXxA
jqwtAP4m3MQNcYzQk8qbV+EQat/csTnrefytyD0ogFRoxcMAFAD/XT784sZzn4SU
s/mL1HLk1BsubT/yQmY3lISXHDPuPAo=
=5W3V
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2023-07-18-12-28' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull hotfixes from Andrew Morton:
"Seven hotfixes, six of which are cc:stable and one of which addresses
a post-6.5 issue"
* tag 'mm-hotfixes-stable-2023-07-18-12-28' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
maple_tree: fix node allocation testing on 32 bit
maple_tree: fix 32 bit mas_next testing
selftests/mm: mkdirty: fix incorrect position of #endif
maple_tree: set the node limit when creating a new root node
mm/mlock: fix vma iterator conversion of apply_vma_lock_flags()
prctl: move PR_GET_AUXV out of PR_MCE_KILL
selftests/mm: give scripts execute permission
seccomp_unotify allows more privileged processes do actions on behalf
of less privileged processes.
In many cases, the workflow is fully synchronous. It means a target
process triggers a system call and passes controls to a supervisor
process that handles the system call and returns controls to the target
process. In this context, "synchronous" means that only one process is
running and another one is waiting.
There is the WF_CURRENT_CPU flag that is used to advise the scheduler to
move the wakee to the current CPU. For such synchronous workflows, it
makes context switches a few times faster.
Right now, each interaction takes 12µs. With this patch, it takes about
3µs.
This change introduce the SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP flag that
it used to enable the sync mode.
Signed-off-by: Andrei Vagin <avagin@google.com>
Acked-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230308073201.3102738-5-avagin@google.com
Signed-off-by: Kees Cook <keescook@chromium.org>
Add complete_on_current_cpu, wake_up_poll_on_current_cpu helpers to wake
up tasks on the current CPU.
These two helpers are useful when the task needs to make a synchronous context
switch to another task. In this context, synchronous means it wakes up the
target task and falls asleep right after that.
One example of such workloads is seccomp user notifies. This mechanism allows
the supervisor process handles system calls on behalf of a target process.
While the supervisor is handling an intercepted system call, the target process
will be blocked in the kernel, waiting for a response to come back.
On-CPU context switches are much faster than regular ones.
Signed-off-by: Andrei Vagin <avagin@google.com>
Acked-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230308073201.3102738-4-avagin@google.com
Signed-off-by: Kees Cook <keescook@chromium.org>
Add WF_CURRENT_CPU wake flag that advices the scheduler to
move the wakee to the current CPU. This is useful for fast on-CPU
context switching use cases.
In addition, make ttwu external rather than static so that
the flag could be passed to it from outside of sched/core.c.
Signed-off-by: Peter Oskolkov <posk@google.com>
Signed-off-by: Andrei Vagin <avagin@google.com>
Acked-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230308073201.3102738-3-avagin@google.com
Signed-off-by: Kees Cook <keescook@chromium.org>
The main reason is to use new wake_up helpers that will be added in the
following patches. But here are a few other reasons:
* if we use two different ways, we always need to call them both. This
patch fixes seccomp_notify_recv where we forgot to call wake_up_poll
in the error path.
* If we use one primitive, we can control how many waiters are woken up
for each request. Our goal is to wake up just one that will handle a
request. Right now, wake_up_poll can wake up one waiter and
up(&match->notif->request) can wake up one more.
Signed-off-by: Andrei Vagin <avagin@google.com>
Acked-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230308073201.3102738-2-avagin@google.com
Signed-off-by: Kees Cook <keescook@chromium.org>
Somehow PR_GET_AUXV got added into PR_MCE_KILL's switch when the patch was
applied [1].
Thus move it out of the switch, to the place the patch added it.
In the recently released v6.4 kernel some user could, in principle, be
already using this feature by mapping the right page and passing the
PR_GET_AUXV constant as a pointer:
prctl(PR_MCE_KILL, PR_GET_AUXV, ...)
So this does change the behavior for users. We could keep the bug since
the other subcases in PR_MCE_KILL (PR_MCE_KILL_CLEAR and PR_MCE_KILL_SET)
do not overlap.
However, v6.4 may be recent enough (2 weeks old) that moving the lines
(rather than just adding a new case) does not break anybody? Moreover,
the documentation in man-pages was just committed today [2].
Link: https://lkml.kernel.org/r/20230708233344.361854-1-ojeda@kernel.org
Fixes: ddc65971bb ("prctl: add PR_GET_AUXV to copy auxv to userspace")
Link: https://lore.kernel.org/all/d81864a7f7f43bca6afa2a09fc2e850e4050ab42.1680611394.git.josh@joshtriplett.org/ [1]
Link: https://git.kernel.org/pub/scm/docs/man-pages/man-pages.git/commit/?id=8cf0c06bfd3c2b219b044d4151c96f0da50af9ad [2]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
cgroup_create() creates cgrp and assigns the kernfs_node to cgrp->kn,
then cgroup_mkdir() populates base and csses cft file by calling
css_populate_dir() and cgroup_apply_control_enable() with a valid
cgrp->kn. Check for NULL cgrp->kn, will always be false, remove it.
Signed-off-by: Kamalesh Babulal <kamalesh.babulal@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup_taskset_migrate() has been renamed to cgroup_migrate_execute() since
commit e595cd7069 ("cgroup: track migration context in cgroup_mgctx").
Update the corresponding comment.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Use local variable parent to initialize iter tcgrp in for loop so the size
of cgroup.o can be reduced by 64 bytes. No functional change intended.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Henry reported that rt_mutex_adjust_prio_check() has an ordering
problem and puts the lie to the comment in [7]. Sharing the sort key
between lock->waiters and owner->pi_waiters *does* create problems,
since unlike what the comment claims, holding [L] is insufficient.
Notably, consider:
A
/ \
M1 M2
| |
B C
That is, task A owns both M1 and M2, B and C block on them. In this
case a concurrent chain walk (B & C) will modify their resp. sort keys
in [7] while holding M1->wait_lock and M2->wait_lock. So holding [L]
is meaningless, they're different Ls.
This then gives rise to a race condition between [7] and [11], where
the requeue of pi_waiters will observe an inconsistent tree order.
B C
(holds M1->wait_lock, (holds M2->wait_lock,
holds B->pi_lock) holds A->pi_lock)
[7]
waiter_update_prio();
...
[8]
raw_spin_unlock(B->pi_lock);
...
[10]
raw_spin_lock(A->pi_lock);
[11]
rt_mutex_enqueue_pi();
// observes inconsistent A->pi_waiters
// tree order
Fixing this means either extending the range of the owner lock from
[10-13] to [6-13], with the immediate problem that this means [6-8]
hold both blocked and owner locks, or duplicating the sort key.
Since the locking in chain walk is horrible enough without having to
consider pi_lock nesting rules, duplicate the sort key instead.
By giving each tree their own sort key, the above race becomes
harmless, if C sees B at the old location, then B will correct things
(if they need correcting) when it walks up the chain and reaches A.
Fixes: fb00aca474 ("rtmutex: Turn the plist into an rb-tree")
Reported-by: Henry Wu <triangletrap12@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Henry Wu <triangletrap12@gmail.com>
Link: https://lkml.kernel.org/r/20230707161052.GF2883469%40hirez.programming.kicks-ass.net
- Fix the idle sibling selection
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmS0N8AACgkQEsHwGGHe
VUq4qhAAhLlRz7V0txbvj65xrQAuF7RiqWQlIm6NYX+eWb5wpqasy8mTpVr37Lhg
JJIdSlI0sw3vIgnjgmuLU6e6MKO2pDWCqppv7CB4YjTT6/ifyIWvFotHTtfOBDjy
eTV/wEpfDKOKHJDdWHRdUjiDgktZs1gJVV8e65/ViuWoCEV3ARy7tS4liORiwNpr
RTuG6C3lDAfw6RKWCvBxDV15XhMDNYYQzN1bwedTAryP8jAFFUKce2de6HK6qyUF
pNqzX0eGkN+6TG13uKLJIsAfdydWHWvkXWqFzVZsS7Upu4lyAyjslHK5UEF/MgCy
4c4/xaqcDTKn8dtQycQ3FMwujbamHdnct9or4aDsEa9PIIAcab/gKxojNPlBSkCt
0FpBjJUP2X/DBGpMaNX02fwQhhXwj0dN/4OWI5kXrL2sctqzueMSfTUKpjsLZMAx
VTngoXVcVlLxqB2LqIzjhsWG+awlw/IKEKotjhX4vyra9L50CRbMLJo7hJdHD16J
dmGQmsJRlGyQYEOgoyI7BU/Bqs/+iE1r5fAcVgjWWUPotl7XKDgcwTpELTPj5xzO
b7ALkUXRcHf2NdfaLDZeyJzT/Z1mq1znPTsDqi94f1ASbmAd0iXLFNHtyJxXJabZ
/aTLUj/GmmaCw2R02S4l67uC/BHChToloNVCGsq2KfBYcUunod0=
=bSNb
-----END PGP SIGNATURE-----
Merge tag 'sched_urgent_for_v6.5_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Borislav Petkov:
- Remove a cgroup from under a polling process properly
- Fix the idle sibling selection
* tag 'sched_urgent_for_v6.5_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/psi: use kernfs polling functions for PSI trigger polling
sched/fair: Use recent_used_cpu to test p->cpus_ptr
- fprobe: Add a comment why fprobe will be skipped if another kprobe is
running in fprobe_kprobe_handler().
- probe-events: Fix some issues related to fetch-argument
. Fix double counting of the string length for user-string and symstr.
This will require longer buffer in the array case.
. Fix not to count error code (minus value) for the total used length
in array argument. This makes the total used length shorter.
. Fix to update dynamic used data size counter only if fetcharg uses
the dynamic size data. This may mis-count the used dynamic data
size and corrupt data.
. Revert "tracing: Add "(fault)" name injection to kernel probes"
because that did not work correctly with a bug, and we agreed the
current '(fault)' output (instead of '"(fault)"' like a string)
explains what happened more clearly.
. Fix to record 0-length (means fault access) data_loc data in fetch
function itself, instead of store_trace_args(). If we record an
array of string, this will fix to save fault access data on each
entry of the array correctly.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmSxSlYACgkQ2/sHvwUr
PxupyAgApFDi9YGsmrVbXmIN5y+yGMyio2H6xR7XkX+L02nvDY6uVqL/jgT8pHfI
AeGZEA+EqwxIfWpYBfztsFej+Gl3Elfvu14OSxwaafUlW3mgZFQqw1ZR0HvzXoKJ
8Iw6WOXjhLe3/QLy43UY8JQGOKI07i3gh71wa0W0huOyiwwHuuVwPSY9QJJ2ulSg
OWFSuMFO8IxYimp0BpFu/vrfa8CdgWLc24tgJ5EpZtzu6L0A2I/FMZjnBukxnP9s
rjAXv0uRuSFvvF7/RGCqrLza12525qyHx7d5IWUq5shd3bCnaUOnAieF//MoJaR3
q8McDJK//EPbUvCWgESuuyPS05smyQ==
=iumA
-----END PGP SIGNATURE-----
Merge tag 'probes-fixes-v6.5-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull probe fixes from Masami Hiramatsu:
- fprobe: Add a comment why fprobe will be skipped if another kprobe is
running in fprobe_kprobe_handler().
- probe-events: Fix some issues related to fetch-arguments:
- Fix double counting of the string length for user-string and
symstr. This will require longer buffer in the array case.
- Fix not to count error code (minus value) for the total used
length in array argument. This makes the total used length
shorter.
- Fix to update dynamic used data size counter only if fetcharg uses
the dynamic size data. This may mis-count the used dynamic data
size and corrupt data.
- Revert "tracing: Add "(fault)" name injection to kernel probes"
because that did not work correctly with a bug, and we agreed the
current '(fault)' output (instead of '"(fault)"' like a string)
explains what happened more clearly.
- Fix to record 0-length (means fault access) data_loc data in fetch
function itself, instead of store_trace_args(). If we record an
array of string, this will fix to save fault access data on each
entry of the array correctly.
* tag 'probes-fixes-v6.5-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/probes: Fix to record 0-length data_loc in fetch_store_string*() if fails
Revert "tracing: Add "(fault)" name injection to kernel probes"
tracing/probes: Fix to update dynamic data counter if fetcharg uses it
tracing/probes: Fix not to count error code to total length
tracing/probes: Fix to avoid double count of the string length on the array
fprobes: Add a comment why fprobe_kprobe_handler exits if kprobe is running
The nanosecond-to-millisecond skew computation uses unsigned arithmetic,
which produces user-unfriendly large positive numbers for negative skews.
Therefore, use signed arithmetic for this computation in order to preserve
the negativity.
Reported-by: Chris Bainbridge <chris.bainbridge@gmail.com>
Reported-by: Feng Tang <feng.tang@intel.com>
Fixes: dd02926994 ("clocksource: Improve "skew is too large" messages")
Reviewed-by: Feng Tang <feng.tang@intel.com>
Tested-by: Chris Bainbridge <chris.bainbridge@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently shuffling sets the same cpu affinities for all tasks,
which makes us less likely to hit paths involving migrating
blocked tasks onto a cpu where they can't run.
This patch adds an element of randomness to allow affinities of
different writer tasks to diverge.
This has helped uncover issues in testing with Proxy Execution
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: kernel-team@android.com
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rtort_pipe_count WARN() indicates that grace periods were unable
to invoke all callbacks during a stutter_wait() interval. But it is
sometimes helpful to have a bit more information as to why. This commit
therefore invokes show_rcu_gp_kthreads() immediately before that WARN()
in order to dump out some relevant information.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The scftorture test can quickly execute a large number of calls to no-wait
smp_call_function(), each of which holds a block of memory until the
corresponding handler is invoked. Especially when the longwait module
parameter is specified, this can chew up an arbitrarily large amount
of memory. This commit therefore blocks after each memory-allocation
failure, with the duration a function of longwait.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Kernels built with CONFIG_KASAN=y quarantine newly freed memory in order
to better detect use-after-free errors. However, this can exhaust memory
more quickly in allocator-heavy tests, which can result in spurious
scftorture failure. This commit therefore forgives memory-allocation
failure in kernels built with CONFIG_KASAN=y, but continues counting
the errors for use in detailed test-result analyses.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Both the CONFIG_TASKS_RCU and CONFIG_TASKS_RUDE_RCU options
are broken when RCU_TINY is enabled as well, as some functions
are missing a declaration.
In file included from kernel/rcu/update.c:649:
kernel/rcu/tasks.h:1271:21: error: no previous prototype for 'get_rcu_tasks_rude_gp_kthread' [-Werror=missing-prototypes]
1271 | struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
kernel/rcu/rcuscale.c:330:27: error: 'get_rcu_tasks_rude_gp_kthread' undeclared here (not in a function); did you mean 'get_rcu_tasks_trace_gp_kthread'?
330 | .rso_gp_kthread = get_rcu_tasks_rude_gp_kthread,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| get_rcu_tasks_trace_gp_kthread
In file included from /home/arnd/arm-soc/kernel/rcu/update.c:649:
kernel/rcu/tasks.h:1113:21: error: no previous prototype for 'get_rcu_tasks_gp_kthread' [-Werror=missing-prototypes]
1113 | struct task_struct *get_rcu_tasks_gp_kthread(void)
| ^~~~~~~~~~~~~~~~~~~~~~~~
Also, building with CONFIG_TASKS_RUDE_RCU but not CONFIG_TASKS_RCU is
broken because of some missing stub functions:
kernel/rcu/rcuscale.c:322:27: error: 'tasks_scale_read_lock' undeclared here (not in a function); did you mean 'srcu_scale_read_lock'?
322 | .readlock = tasks_scale_read_lock,
| ^~~~~~~~~~~~~~~~~~~~~
| srcu_scale_read_lock
kernel/rcu/rcuscale.c:323:27: error: 'tasks_scale_read_unlock' undeclared here (not in a function); did you mean 'srcu_scale_read_unlock'?
323 | .readunlock = tasks_scale_read_unlock,
| ^~~~~~~~~~~~~~~~~~~~~~~
| srcu_scale_read_unlock
Move the declarations outside of the RCU_TINY #ifdef and duplicate the
shared stub functions to address all of the above.
Fixes: 88d7ff818f0ce ("rcuscale: Add RCU Tasks Rude testing")
Fixes: 755f1c5eb416b ("rcuscale: Measure RCU Tasks Trace grace-period kthread CPU time")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit causes RCU Tasks Trace to output the CPU time consumed by
its grace-period kthread. The CPU time is whatever is in the designated
task's current->stime field, and thus is controlled by whatever CPU-time
accounting scheme is in effect.
This output appears in microseconds as follows on the console:
rcu_scale: Grace-period kthread CPU time: 42367.037
[ paulmck: Apply Willy Tarreau feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds the ability to output the CPU time consumed by the
grace-period kthread for the RCU variant under test. The CPU time is
whatever is in the designated task's current->stime field, and thus is
controlled by whatever CPU-time accounting scheme is in effect.
This output appears in microseconds as follows on the console:
rcu_scale: Grace-period kthread CPU time: 42367.037
[ paulmck: Apply feedback from Stephen Rothwell and kernel test robot. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Yujie Liu <yujie.liu@intel.com>
By default, rcuscale collects only 100 points of data per writer, but
arranging for all kthreads to be actively collecting (if not recording)
data during the time that any kthread might be recording. This works
well, but does not allow much time to bring external performance tools
to bear. This commit therefore adds a minruntime module parameter
that specifies a minimum data-collection interval in seconds.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Some workloads do isolated RCU work, and this can affect operation
latencies. This commit therefore adds a writer_holdoff_jiffies module
parameter that causes writers to block for the specified number of
jiffies between each pair of consecutive write-side operations.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds a "jiffies" test to refscale, allowing use of jiffies
to be compared to ktime_get_real_fast_ns(). On my x86 laptop, jiffies
is more than 20x faster. (Though for many uses, the tens-of-nanoseconds
overhead of ktime_get_real_fast_ns() will be just fine.)
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Running the refscale test occasionally crashes the kernel with the
following error:
[ 8569.952896] BUG: unable to handle page fault for address: ffffffffffffffe8
[ 8569.952900] #PF: supervisor read access in kernel mode
[ 8569.952902] #PF: error_code(0x0000) - not-present page
[ 8569.952904] PGD c4b048067 P4D c4b049067 PUD c4b04b067 PMD 0
[ 8569.952910] Oops: 0000 [#1] PREEMPT_RT SMP NOPTI
[ 8569.952916] Hardware name: Dell Inc. PowerEdge R750/0WMWCR, BIOS 1.2.4 05/28/2021
[ 8569.952917] RIP: 0010:prepare_to_wait_event+0x101/0x190
:
[ 8569.952940] Call Trace:
[ 8569.952941] <TASK>
[ 8569.952944] ref_scale_reader+0x380/0x4a0 [refscale]
[ 8569.952959] kthread+0x10e/0x130
[ 8569.952966] ret_from_fork+0x1f/0x30
[ 8569.952973] </TASK>
The likely cause is that init_waitqueue_head() is called after the call to
the torture_create_kthread() function that creates the ref_scale_reader
kthread. Although this init_waitqueue_head() call will very likely
complete before this kthread is created and starts running, it is
possible that the calling kthread will be delayed between the calls to
torture_create_kthread() and init_waitqueue_head(). In this case, the
new kthread will use the waitqueue head before it is properly initialized,
which is not good for the kernel's health and well-being.
The above crash happened here:
static inline void __add_wait_queue(...)
{
:
if (!(wq->flags & WQ_FLAG_PRIORITY)) <=== Crash here
The offset of flags from list_head entry in wait_queue_entry is
-0x18. If reader_tasks[i].wq.head.next is NULL as allocated reader_task
structure is zero initialized, the instruction will try to access address
0xffffffffffffffe8, which is exactly the fault address listed above.
This commit therefore invokes init_waitqueue_head() before creating
the kthread.
Fixes: 653ed64b01 ("refperf: Add a test to measure performance of read-side synchronization")
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The various RCU Tasks flavors now do lazy grace periods when there are
only asynchronous grace period requests. By default, the system will let
250 milliseconds elapse after the first call_rcu_tasks*() callbacki is
queued before starting a grace period. In contrast, synchronous grace
period requests such as synchronize_rcu_tasks*() will start a grace
period immediately.
However, invoking one of the call_rcu_tasks*() functions in a too-tight
loop can result in a callback flood, which in turn can exhaust memory
if grace periods are delayed for too long.
This commit therefore sets a limit so that the grace-period kthread
will be awakened when any CPU's callback list expands to contain
rcupdate.rcu_task_lazy_lim callbacks elements (defaulting to 32, set to -1
to disable), the grace-period kthread will be awakened, thus cancelling
any ongoing laziness and getting out in front of the potential callback
flood.
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds kernel boot parameters for callback laziness, allowing
the RCU Tasks flavors to be individually adjusted.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The performance requirements on RCU Tasks, and in particular on RCU
Tasks Trace, have evolved over time as the workloads have evolved.
The current implementation is designed to provide low grace-period
latencies, and also to accommodate short-duration floods of callbacks.
However, current workloads can also provide a constant background
callback-queuing rate of a few hundred call_rcu_tasks_trace() invocations
per second. This results in continuous back-to-back RCU Tasks Trace
grace periods, which in turn can consume the better part of 10% of a CPU.
One could take the attitude that there are several tens of other CPUs on
the systems running such workloads, but energy efficiency is a thing.
On these systems, although asynchronous grace-period requests happen
every few milliseconds, synchronous grace-period requests are quite rare.
This commit therefore arrranges for grace periods to be initiated
immediately in response to calls to synchronize_rcu_tasks*() and
also to calls to synchronize_rcu_mult() that are passed one of the
call_rcu_tasks*() functions. These are recognized by the tell-tale
wakeme_after_rcu callback function.
In other cases, callbacks are gathered up for up to about 250 milliseconds
before a grace period is initiated. This results in more than an order of
magnitude reduction in RCU Tasks Trace grace periods, with corresponding
reduction in consumption of CPU time.
Reported-by: Alexei Starovoitov <ast@kernel.org>
Reported-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Add kernel-doc for all APIs that do not already have it.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: John Stultz <jstultz@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-doc@vger.kernel.org
Acked-by: John Stultz <jstultz@google.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/20230704052405.5089-3-rdunlap@infradead.org
- Unbreak the /sys/power/resume interface after recent changes (Azat
Khuzhin).
- Allow PM_QOS_DEFAULT_VALUE to be used with frequency QoS (Chungkai
Yang).
- Remove __init from cpufreq callbacks in the sparc driver, because
they may be called after initialization too (Viresh Kumar).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmSxhIcSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxfdQP/1+MxGLh2XVVKvB9QTI0/ofYPxPfoTuf
5Sf2lOa7rNeauc2xnQFM6EMOeme4ckTUbrO7AkZVACYVqbKJ92IUBJfo3R2Ar+1Z
9TogwG+YOX3OjR8QtiGHLwA5fvOgbt89JaDn2ZCWcS+gHARZ3VMgdbDt+C3MUldV
UVr/5kAkWefv39PIYHCwAJU7Xhn97B5nW58KgpkHuxOcHDKe0VfdxLcKBsyoc6QE
IGMVV2WtnoyEdM1aNfZ37+3NksiIdZMA6OvM5C/7HOs6IqJaFxVUxm4333sM5AW9
y5LPYSBbedVxICdLkUUq8W5MDRNCTPXgC3gexEu0XtWdAV9AG+9aNeZytT7KGrLO
xe4vbl6s1LnxC6YBw2bB+U/DbLtxQrAP1nYZj6yxhbHVsnTTZg7Qvevz7nAdPlOL
3FsutIT+9OQprWXxYBRv3AumF+hpG1bm8Zutyaqb2vwRwMbbXWTpzRry4ydp6bTj
VB2YWeQOxCKl+dC5jXM1wfPjbsqWQvvGZVh1VIzlcZgzqALWf+F5fTMUKuY963kd
V6fR1YmKg+Xxb+BU9mEjaUMfH5Yr8Mv9Gpf7D87MTsNTluFjAmRWk5a0ahVAXcwe
n1jFxBNUsuJuvz2KwWrVZExT2xqJ8kVfnOxNcevtaXK+uk8+jE94lwjJn0P9v8w8
e+0QABkgUYY2
=b/om
-----END PGP SIGNATURE-----
Merge tag 'pm-6.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management fixes from Rafael Wysocki:
"These fix hibernation (after recent changes), frequency QoS and the
sparc cpufreq driver.
Specifics:
- Unbreak the /sys/power/resume interface after recent changes (Azat
Khuzhin).
- Allow PM_QOS_DEFAULT_VALUE to be used with frequency QoS (Chungkai
Yang).
- Remove __init from cpufreq callbacks in the sparc driver, because
they may be called after initialization too (Viresh Kumar)"
* tag 'pm-6.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
cpufreq: sparc: Don't mark cpufreq callbacks with __init
PM: QoS: Restore support for default value on frequency QoS
PM: hibernate: Fix writing maj:min to /sys/power/resume
Merge a PM QoS fix and a hibernation fix for 6.5-rc2.
- Unbreak the /sys/power/resume interface after recent changes (Azat
Khuzhin).
- Allow PM_QOS_DEFAULT_VALUE to be used with frequency QoS (Chungkai
Yang).
* pm-sleep:
PM: hibernate: Fix writing maj:min to /sys/power/resume
* pm-qos:
PM: QoS: Restore support for default value on frequency QoS
Fix to record 0-length data to data_loc in fetch_store_string*() if it fails
to get the string data.
Currently those expect that the data_loc is updated by store_trace_args() if
it returns the error code. However, that does not work correctly if the
argument is an array of strings. In that case, store_trace_args() only clears
the first entry of the array (which may have no error) and leaves other
entries. So it should be cleared by fetch_store_string*() itself.
Also, 'dyndata' and 'maxlen' in store_trace_args() should be updated
only if it is used (ret > 0 and argument is a dynamic data.)
Link: https://lore.kernel.org/all/168908496683.123124.4761206188794205601.stgit@devnote2/
Fixes: 40b53b7718 ("tracing: probeevent: Add array type support")
Cc: stable@vger.kernel.org
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmSwqwoACgkQ6rmadz2v
bTqOHRAAn+fzTLqUqsveFQcxOkie5MPHxKoOTjG4+yFR7rzPkU6Mn5RX3w5yFzSn
RqutwykF9OgipAzC3QXv4pRJuq6Gia5nvwUSDP4CX273ljyeF54DK7HfopE1+YrK
HXyBWZvVvMZP6q7qQyQ3qtbHZSjs5XP/M6YBlJ5zo/BTLFCyvbSDP14YKEqcBkWG
ld72ElXFxlnr/zEfRjzBCfMlbmgeHLO0SiHS/9827zEmNP1AAH5/ETA7/rJ7yCJs
QNQUIoJWob8xm5FMJ6CU/+sOqXR1CY053meGJFFBX5pvVD/CLRhrwHn0IMCyQqmh
wKR5waeXhpl/CKNeFuxXVMNFiXbqBb/0LYJaJtrMysjMLTsQ9X7NkrDBa/+kYGyZ
+ghGlaMQvPqUGg0rLH2nl9JNB8Ne/8prLMsAKUWnPuOo+Q03j054gnqhGeNtDd5b
gpSk+7x93PlhGcegBV1Wk8dkiGC5V9nTVNxg40XQUCs4k9L/8Vjc35Tjqx7nBTNH
DiFD24DDKUZacw9L6nEqvLF/N2fiRjtUZnVPC0yn/annyBcfX1s+ZH2Tu1F6Qk38
QMfBCnt12exmsiDoxdzzGJtjHnS/k5fsaKjlR21mOyMrIH7ipltr5UHHrdr1hBP6
24uSeTImvQQKDi+9IuXN127jZDOupKqVS6csrA0ZXrlKWh2HR+U=
=GVUB
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says:
====================
pull-request: bpf-next 2023-07-13
We've added 67 non-merge commits during the last 15 day(s) which contain
a total of 106 files changed, 4444 insertions(+), 619 deletions(-).
The main changes are:
1) Fix bpftool build in presence of stale vmlinux.h,
from Alexander Lobakin.
2) Introduce bpf_me_mcache_free_rcu() and fix OOM under stress,
from Alexei Starovoitov.
3) Teach verifier actual bounds of bpf_get_smp_processor_id()
and fix perf+libbpf issue related to custom section handling,
from Andrii Nakryiko.
4) Introduce bpf map element count, from Anton Protopopov.
5) Check skb ownership against full socket, from Kui-Feng Lee.
6) Support for up to 12 arguments in BPF trampoline, from Menglong Dong.
7) Export rcu_request_urgent_qs_task, from Paul E. McKenney.
8) Fix BTF walking of unions, from Yafang Shao.
9) Extend link_info for kprobe_multi and perf_event links,
from Yafang Shao.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (67 commits)
selftests/bpf: Add selftest for PTR_UNTRUSTED
bpf: Fix an error in verifying a field in a union
selftests/bpf: Add selftests for nested_trust
bpf: Fix an error around PTR_UNTRUSTED
selftests/bpf: add testcase for TRACING with 6+ arguments
bpf, x86: allow function arguments up to 12 for TRACING
bpf, x86: save/restore regs with BPF_DW size
bpftool: Use "fallthrough;" keyword instead of comments
bpf: Add object leak check.
bpf: Convert bpf_cpumask to bpf_mem_cache_free_rcu.
bpf: Introduce bpf_mem_free_rcu() similar to kfree_rcu().
selftests/bpf: Improve test coverage of bpf_mem_alloc.
rcu: Export rcu_request_urgent_qs_task()
bpf: Allow reuse from waiting_for_gp_ttrace list.
bpf: Add a hint to allocated objects.
bpf: Change bpf_mem_cache draining process.
bpf: Further refactor alloc_bulk().
bpf: Factor out inc/dec of active flag into helpers.
bpf: Refactor alloc_bulk().
bpf: Let free_all() return the number of freed elements.
...
====================
Link: https://lore.kernel.org/r/20230714020910.80794-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
We are utilizing BPF LSM to monitor BPF operations within our container
environment. When we add support for raw_tracepoint, it hits below
error.
; (const void *)attr->raw_tracepoint.name);
27: (79) r3 = *(u64 *)(r2 +0)
access beyond the end of member map_type (mend:4) in struct (anon) with off 0 size 8
It can be reproduced with below BPF prog.
SEC("lsm/bpf")
int BPF_PROG(bpf_audit, int cmd, union bpf_attr *attr, unsigned int size)
{
switch (cmd) {
case BPF_RAW_TRACEPOINT_OPEN:
bpf_printk("raw_tracepoint is %s", attr->raw_tracepoint.name);
break;
default:
break;
}
return 0;
}
The reason is that when accessing a field in a union, such as bpf_attr,
if the field is located within a nested struct that is not the first
member of the union, it can result in incorrect field verification.
union bpf_attr {
struct {
__u32 map_type; <<<< Actually it will find that field.
__u32 key_size;
__u32 value_size;
...
};
...
struct {
__u64 name; <<<< We want to verify this field.
__u32 prog_fd;
} raw_tracepoint;
};
Considering the potential deep nesting levels, finding a perfect
solution to address this issue has proven challenging. Therefore, I
propose a solution where we simply skip the verification process if the
field in question is located within a union.
Fixes: 7e3617a72d ("bpf: Add array support to btf_struct_access")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230713025642.27477-4-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Per discussion with Alexei, the PTR_UNTRUSTED flag should not been
cleared when we start to walk a new struct, because the struct in
question may be a struct nested in a union. We should also check and set
this flag before we walk its each member, in case itself is a union.
We will clear this flag if the field is BTF_TYPE_SAFE_RCU_OR_NULL.
Fixes: 6fcd486b3a ("bpf: Refactor RCU enforcement in the verifier.")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230713025642.27477-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
- Fix some missing-prototype warnings
- Fix user events struct args (did not include size of struct)
When creating a user event, the "struct" keyword is to denote
that the size of the field will be passed in. But the parsing
failed to handle this case.
- Add selftest to struct sizes for user events
- Fix sample code for direct trampolines.
The sample code for direct trampolines attached to handle_mm_fault().
But the prototype changed and the direct trampoline sample code
was not updated. Direct trampolines needs to have the arguments correct
otherwise it can fail or crash the system.
- Remove unused ftrace_regs_caller_ret() prototype.
- Quiet false positive of FORTIFY_SOURCE
Due to backward compatibility, the structure used to save stack traces
in the kernel had a fixed size of 8. This structure is exported to
user space via the tracing format file. A change was made to allow
more than 8 functions to be recorded, and user space now uses the
size field to know how many functions are actually in the stack.
But the structure still has size of 8 (even though it points into
the ring buffer that has the required amount allocated to hold a
full stack. This was fine until the fortifier noticed that the
memcpy(&entry->caller, stack, size) was greater than the 8 functions
and would complain at runtime about it. Hide this by using a pointer
to the stack location on the ring buffer instead of using the address
of the entry structure caller field.
- Fix a deadloop in reading trace_pipe that was caused by a mismatch
between ring_buffer_empty() returning false which then asked to
read the data, but the read code uses rb_num_of_entries() that
returned zero, and causing a infinite "retry".
- Fix a warning caused by not using all pages allocated to store
ftrace functions, where this can happen if the linker inserts a bunch of
"NULL" entries, causing the accounting of how many pages needed
to be off.
- Fix histogram synthetic event crashing when the start event is
removed and the end event is still using a variable from it.
- Fix memory leak in freeing iter->temp in tracing_release_pipe()
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZLBF6hQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qkswAP4mhdoFFfNosM7+Sh/R4t31IxKZApm9
M2Hf9jgvJ7b65AD/VV1XfO6skw2+5Yn9S4UyNE2MQaYxPwWpONcNFUzZ3Q8=
=Nb+7
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.5-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Fix some missing-prototype warnings
- Fix user events struct args (did not include size of struct)
When creating a user event, the "struct" keyword is to denote that
the size of the field will be passed in. But the parsing failed to
handle this case.
- Add selftest to struct sizes for user events
- Fix sample code for direct trampolines.
The sample code for direct trampolines attached to handle_mm_fault().
But the prototype changed and the direct trampoline sample code was
not updated. Direct trampolines needs to have the arguments correct
otherwise it can fail or crash the system.
- Remove unused ftrace_regs_caller_ret() prototype.
- Quiet false positive of FORTIFY_SOURCE
Due to backward compatibility, the structure used to save stack
traces in the kernel had a fixed size of 8. This structure is
exported to user space via the tracing format file. A change was made
to allow more than 8 functions to be recorded, and user space now
uses the size field to know how many functions are actually in the
stack.
But the structure still has size of 8 (even though it points into the
ring buffer that has the required amount allocated to hold a full
stack.
This was fine until the fortifier noticed that the
memcpy(&entry->caller, stack, size) was greater than the 8 functions
and would complain at runtime about it.
Hide this by using a pointer to the stack location on the ring buffer
instead of using the address of the entry structure caller field.
- Fix a deadloop in reading trace_pipe that was caused by a mismatch
between ring_buffer_empty() returning false which then asked to read
the data, but the read code uses rb_num_of_entries() that returned
zero, and causing a infinite "retry".
- Fix a warning caused by not using all pages allocated to store ftrace
functions, where this can happen if the linker inserts a bunch of
"NULL" entries, causing the accounting of how many pages needed to be
off.
- Fix histogram synthetic event crashing when the start event is
removed and the end event is still using a variable from it
- Fix memory leak in freeing iter->temp in tracing_release_pipe()
* tag 'trace-v6.5-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Fix memory leak of iter->temp when reading trace_pipe
tracing/histograms: Add histograms to hist_vars if they have referenced variables
tracing: Stop FORTIFY_SOURCE complaining about stack trace caller
ftrace: Fix possible warning on checking all pages used in ftrace_process_locs()
ring-buffer: Fix deadloop issue on reading trace_pipe
tracing: arm64: Avoid missing-prototype warnings
selftests/user_events: Test struct size match cases
tracing/user_events: Fix struct arg size match check
x86/ftrace: Remove unsued extern declaration ftrace_regs_caller_ret()
arm64: ftrace: Add direct call trampoline samples support
samples: ftrace: Save required argument registers in sample trampolines
This reverts commit 2e9906f84f.
It was turned out that commit 2e9906f84f ("tracing: Add "(fault)"
name injection to kernel probes") did not work correctly and probe
events still show just '(fault)' (instead of '"(fault)"'). Also,
current '(fault)' is more explicit that it faulted.
This also moves FAULT_STRING macro to trace.h so that synthetic
event can keep using it, and uses it in trace_probe.c too.
Link: https://lore.kernel.org/all/168908495772.123124.1250788051922100079.stgit@devnote2/
Link: https://lore.kernel.org/all/20230706230642.3793a593@rorschach.local.home/
Cc: stable@vger.kernel.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
select_idle_capacity() not only looks for an idle cpu that fits for the
waking task but also for cpu with highest bandwidth when no cpu fits.
Start the loop with target cpu so it will be selected 1st when no cpu fits
but several cpus shared the same bandwidth. Starting with target cpu
prevents the task to migrate between cpus with same bandwidth at every
wakeup when no cpu fits.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230711081359.868862-1-vincent.guittot@linaro.org
There have been a case where the SD_SHARE_CPUCAPACITY sched group flag
in a parent domain were not set and propagated properly when a degenerate
domain is removed.
Add dump of domain sched group flags of a CPU to make debug easier
in the future.
Usage:
cat /debug/sched/domains/cpu0/domain1/groups_flags
to dump cpu0 domain1's sched group flags.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/ed1749262d94d95a8296c86a415999eda90bcfe3.1688770494.git.tim.c.chen@linux.intel.com
should_we_balance() traverses the group_balance_mask (AND'ed with lb_env::
cpus) starting from lower numbered CPUs looking for the first idle CPU.
In hybrid x86 systems, the siblings of SMT cores get CPU numbers, before
non-SMT cores:
[0, 1] [2, 3] [4, 5] 6 7 8 9
b i b i b i b i i i
In the figure above, CPUs in brackets are siblings of an SMT core. The
rest are non-SMT cores. 'b' indicates a busy CPU, 'i' indicates an
idle CPU.
We should let a CPU on a fully idle core get the first chance to idle
load balance as it has more CPU capacity than a CPU on an idle SMT
CPU with busy sibling. So for the figure above, if we are running
should_we_balance() to CPU 1, we should return false to let CPU 7 on
idle core to have a chance first to idle load balance.
A partially busy (i.e., of type group_has_spare) local group with SMT
cores will often have only one SMT sibling busy. If the destination CPU
is a non-SMT core, partially busy, lower-numbered, SMT cores should not
be considered when finding the first idle CPU.
However, in should_we_balance(), when we encounter idle SMT first in partially
busy core, we prematurely break the search for the first idle CPU.
Higher-numbered, non-SMT cores is not given the chance to have
idle balance done on their behalf. Those CPUs will only be considered
for idle balancing by chance via CPU_NEWLY_IDLE.
Instead, consider the idle state of the whole SMT core.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Co-developed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/807bdd05331378ea3bf5956bda87ded1036ba769.1688770494.git.tim.c.chen@linux.intel.com
In the current prefer sibling load balancing code, there is an implicit
assumption that the busiest sched group and local sched group are
equivalent, hence the tasks to be moved is simply the difference in
number of tasks between the two groups (i.e. imbalance) divided by two.
However, we may have different number of cores between the cluster groups,
say when we take CPU offline or we have hybrid groups. In that case,
we should balance between the two groups such that #tasks/#cores ratio
is the same between the same between both groups. Hence the imbalance
computed will need to reflect this.
Adjust the sibling imbalance computation to take into account of the
above considerations.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/4eacbaa236e680687dae2958378a6173654113df.1688770494.git.tim.c.chen@linux.intel.com
When balancing sibling domains that have different number of cores,
tasks in respective sibling domain should be proportional to the
number of cores in each domain. In preparation of implementing such a
policy, record the number of cores in a scheduling group.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/04641eeb0e95c21224352f5743ecb93dfac44654.1688770494.git.tim.c.chen@linux.intel.com
On hybrid CPUs with scheduling cluster enabled, we will need to
consider balancing between SMT CPU cluster, and Atom core cluster.
Below shows such a hybrid x86 CPU with 4 big cores and 8 atom cores.
Each scheduling cluster span a L2 cache.
--L2-- --L2-- --L2-- --L2-- ----L2---- -----L2------
[0, 1] [2, 3] [4, 5] [5, 6] [7 8 9 10] [11 12 13 14]
Big Big Big Big Atom Atom
core core core core Module Module
If the busiest group is a big core with both SMT CPUs busy, we should
active load balance if destination group has idle CPU cores. Such
condition is considered by asym_active_balance() in load balancing but not
considered when looking for busiest group and computing load imbalance.
Add this consideration in find_busiest_group() and calculate_imbalance().
In addition, update the logic determining the busier group when one group
is SMT and the other group is non SMT but both groups are partially busy
with idle CPU. The busier group should be the group with idle cores rather
than the group with one busy SMT CPU. We do not want to make the SMT group
the busiest one to pull the only task off SMT CPU and causing the whole core to
go empty.
Otherwise suppose in the search for the busiest group, we first encounter
an SMT group with 1 task and set it as the busiest. The destination
group is an atom cluster with 1 task and we next encounter an atom
cluster group with 3 tasks, we will not pick this atom cluster over the
SMT group, even though we should. As a result, we do not load balance
the busier Atom cluster (with 3 tasks) towards the local atom cluster
(with 1 task). And it doesn't make sense to pick the 1 task SMT group
as the busier group as we also should not pull task off the SMT towards
the 1 task atom cluster and make the SMT core completely empty.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/e24f35d142308790f69be65930b82794ef6658a2.1688770494.git.tim.c.chen@linux.intel.com
The static key psi_cgroups_enabled is only used inside file psi.c.
Make it static.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Link: https://lore.kernel.org/r/20230525103428.49712-1-linmiaohe@huawei.com
As core scheduling introduced, a new state of idle is defined as
force idle, running idle task but nr_running greater than zero.
If a cpu is in force idle state, idle_cpu() will return zero. This
result makes sense in some scenarios, e.g., load balance,
showacpu when dumping, and judge the RCU boost kthread is starving.
But this will cause error in other scenarios, e.g., tick_irq_exit():
When force idle, rq->curr == rq->idle but rq->nr_running > 0, results
that idle_cpu() returns 0. In function tick_irq_exit(), if idle_cpu()
is 0, tick_nohz_irq_exit() will not be called, and ts->idle_active will
not become 1, which became 0 in tick_nohz_irq_enter().
ts->idle_sleeptime won't update in function update_ts_time_stats(), if
ts->idle_active is 0, which should be 1. And this bug will result that
ts->idle_sleeptime is less than the actual value, and finally will
result that the idle time in /proc/stat is less than the actual value.
To solve this problem, we introduce sched_core_idle_cpu(), which
returns 1 when force idle. We audit all users of idle_cpu(), and
change idle_cpu() into sched_core_idle_cpu() in function
tick_irq_exit().
v2-->v3: Only replace idle_cpu() with sched_core_idle_cpu() in
function tick_irq_exit(). And modify the corresponding commit log.
Signed-off-by: Cruz Zhao <CruzZhao@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Joel Fernandes <joel@joelfernandes.org>
Link: https://lore.kernel.org/r/1688011324-42406-1-git-send-email-CruzZhao@linux.alibaba.com
We currently export the total throttled time for cgroups that are given
a bandwidth limit. This patch extends this accounting to also account
the total time that each children cgroup has been throttled.
This is useful to understand the degree to which children have been
affected by the throttling control. Children which are not runnable
during the entire throttled period, for example, will not show any
self-throttling time during this period.
Expose this in a new interface, 'cpu.stat.local', which is similar to
how non-hierarchical events are accounted in 'memory.events.local'.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20230620183247.737942-2-joshdon@google.com
It is easy for a cfs_rq to become throttled even when it has no enqueued
entities (for example, if we have just put_prev()'d the last runnable
task of the cfs_rq, and the cfs_rq is out of quota).
Avoid accounting this time towards total throttle time, since it
otherwise falsely inflates the stats.
Note that the dequeue path is special, since we normally disallow
migrations when a task is in a throttled hierarchy (see
throttled_lb_pair()).
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230620183247.737942-1-joshdon@google.com
Under PREEMPT_RT, __put_task_struct() indirectly acquires sleeping
locks. Therefore, it can't be called from an non-preemptible context.
One practical example is splat inside inactive_task_timer(), which is
called in a interrupt context:
CPU: 1 PID: 2848 Comm: life Kdump: loaded Tainted: G W ---------
Hardware name: HP ProLiant DL388p Gen8, BIOS P70 07/15/2012
Call Trace:
dump_stack_lvl+0x57/0x7d
mark_lock_irq.cold+0x33/0xba
mark_lock+0x1e7/0x400
mark_usage+0x11d/0x140
__lock_acquire+0x30d/0x930
lock_acquire.part.0+0x9c/0x210
rt_spin_lock+0x27/0xe0
refill_obj_stock+0x3d/0x3a0
kmem_cache_free+0x357/0x560
inactive_task_timer+0x1ad/0x340
__run_hrtimer+0x8a/0x1a0
__hrtimer_run_queues+0x91/0x130
hrtimer_interrupt+0x10f/0x220
__sysvec_apic_timer_interrupt+0x7b/0xd0
sysvec_apic_timer_interrupt+0x4f/0xd0
asm_sysvec_apic_timer_interrupt+0x12/0x20
RIP: 0033:0x7fff196bf6f5
Instead of calling __put_task_struct() directly, we defer it using
call_rcu(). A more natural approach would use a workqueue, but since
in PREEMPT_RT, we can't allocate dynamic memory from atomic context,
the code would become more complex because we would need to put the
work_struct instance in the task_struct and initialize it when we
allocate a new task_struct.
The issue is reproducible with stress-ng:
while true; do
stress-ng --sched deadline --sched-period 1000000000 \
--sched-runtime 800000000 --sched-deadline \
1000000000 --mmapfork 23 -t 20
done
Reported-by: Hu Chunyu <chuhu@redhat.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Suggested-by: Valentin Schneider <vschneid@redhat.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wander Lairson Costa <wander@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230614122323.37957-2-wander@redhat.com
Hist triggers can have referenced variables without having direct
variables fields. This can be the case if referenced variables are added
for trigger actions. In this case the newly added references will not
have field variables. Not taking such referenced variables into
consideration can result in a bug where it would be possible to remove
hist trigger with variables being refenced. This will result in a bug
that is easily reproducable like so
$ cd /sys/kernel/tracing
$ echo 'synthetic_sys_enter char[] comm; long id' >> synthetic_events
$ echo 'hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger
$ echo 'hist:keys=common_pid.execname,id.syscall:onmatch(raw_syscalls.sys_enter).synthetic_sys_enter($comm, id)' >> events/raw_syscalls/sys_enter/trigger
$ echo '!hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger
[ 100.263533] ==================================================================
[ 100.264634] BUG: KASAN: slab-use-after-free in resolve_var_refs+0xc7/0x180
[ 100.265520] Read of size 8 at addr ffff88810375d0f0 by task bash/439
[ 100.266320]
[ 100.266533] CPU: 2 PID: 439 Comm: bash Not tainted 6.5.0-rc1 #4
[ 100.267277] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-20220807_005459-localhost 04/01/2014
[ 100.268561] Call Trace:
[ 100.268902] <TASK>
[ 100.269189] dump_stack_lvl+0x4c/0x70
[ 100.269680] print_report+0xc5/0x600
[ 100.270165] ? resolve_var_refs+0xc7/0x180
[ 100.270697] ? kasan_complete_mode_report_info+0x80/0x1f0
[ 100.271389] ? resolve_var_refs+0xc7/0x180
[ 100.271913] kasan_report+0xbd/0x100
[ 100.272380] ? resolve_var_refs+0xc7/0x180
[ 100.272920] __asan_load8+0x71/0xa0
[ 100.273377] resolve_var_refs+0xc7/0x180
[ 100.273888] event_hist_trigger+0x749/0x860
[ 100.274505] ? kasan_save_stack+0x2a/0x50
[ 100.275024] ? kasan_set_track+0x29/0x40
[ 100.275536] ? __pfx_event_hist_trigger+0x10/0x10
[ 100.276138] ? ksys_write+0xd1/0x170
[ 100.276607] ? do_syscall_64+0x3c/0x90
[ 100.277099] ? entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 100.277771] ? destroy_hist_data+0x446/0x470
[ 100.278324] ? event_hist_trigger_parse+0xa6c/0x3860
[ 100.278962] ? __pfx_event_hist_trigger_parse+0x10/0x10
[ 100.279627] ? __kasan_check_write+0x18/0x20
[ 100.280177] ? mutex_unlock+0x85/0xd0
[ 100.280660] ? __pfx_mutex_unlock+0x10/0x10
[ 100.281200] ? kfree+0x7b/0x120
[ 100.281619] ? ____kasan_slab_free+0x15d/0x1d0
[ 100.282197] ? event_trigger_write+0xac/0x100
[ 100.282764] ? __kasan_slab_free+0x16/0x20
[ 100.283293] ? __kmem_cache_free+0x153/0x2f0
[ 100.283844] ? sched_mm_cid_remote_clear+0xb1/0x250
[ 100.284550] ? __pfx_sched_mm_cid_remote_clear+0x10/0x10
[ 100.285221] ? event_trigger_write+0xbc/0x100
[ 100.285781] ? __kasan_check_read+0x15/0x20
[ 100.286321] ? __bitmap_weight+0x66/0xa0
[ 100.286833] ? _find_next_bit+0x46/0xe0
[ 100.287334] ? task_mm_cid_work+0x37f/0x450
[ 100.287872] event_triggers_call+0x84/0x150
[ 100.288408] trace_event_buffer_commit+0x339/0x430
[ 100.289073] ? ring_buffer_event_data+0x3f/0x60
[ 100.292189] trace_event_raw_event_sys_enter+0x8b/0xe0
[ 100.295434] syscall_trace_enter.constprop.0+0x18f/0x1b0
[ 100.298653] syscall_enter_from_user_mode+0x32/0x40
[ 100.301808] do_syscall_64+0x1a/0x90
[ 100.304748] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 100.307775] RIP: 0033:0x7f686c75c1cb
[ 100.310617] Code: 73 01 c3 48 8b 0d 65 3c 10 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 21 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 35 3c 10 00 f7 d8 64 89 01 48
[ 100.317847] RSP: 002b:00007ffc60137a38 EFLAGS: 00000246 ORIG_RAX: 0000000000000021
[ 100.321200] RAX: ffffffffffffffda RBX: 000055f566469ea0 RCX: 00007f686c75c1cb
[ 100.324631] RDX: 0000000000000001 RSI: 0000000000000001 RDI: 000000000000000a
[ 100.328104] RBP: 00007ffc60137ac0 R08: 00007f686c818460 R09: 000000000000000a
[ 100.331509] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000009
[ 100.334992] R13: 0000000000000007 R14: 000000000000000a R15: 0000000000000007
[ 100.338381] </TASK>
We hit the bug because when second hist trigger has was created
has_hist_vars() returned false because hist trigger did not have
variables. As a result of that save_hist_vars() was not called to add
the trigger to trace_array->hist_vars. Later on when we attempted to
remove the first histogram find_any_var_ref() failed to detect it is
being used because it did not find the second trigger in hist_vars list.
With this change we wait until trigger actions are created so we can take
into consideration if hist trigger has variable references. Also, now we
check the return value of save_hist_vars() and fail trigger creation if
save_hist_vars() fails.
Link: https://lore.kernel.org/linux-trace-kernel/20230712223021.636335-1-mkhalfella@purestorage.com
Cc: stable@vger.kernel.org
Fixes: 067fe038e7 ("tracing: Add variable reference handling to hist triggers")
Signed-off-by: Mohamed Khalfella <mkhalfella@purestorage.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Commit 6eb4bd92c1 ("kallsyms: strip LTO suffixes from static functions")
stripped all function/variable suffixes started with '.' regardless
of whether those suffixes are generated at LTO mode or not. In fact,
as far as I know, in LTO mode, when a static function/variable is
promoted to the global scope, '.llvm.<...>' suffix is added.
The existing mechanism breaks live patch for a LTO kernel even if
no <symbol>.llvm.<...> symbols are involved. For example, for the following
kernel symbols:
$ grep bpf_verifier_vlog /proc/kallsyms
ffffffff81549f60 t bpf_verifier_vlog
ffffffff8268b430 d bpf_verifier_vlog._entry
ffffffff8282a958 d bpf_verifier_vlog._entry_ptr
ffffffff82e12a1f d bpf_verifier_vlog.__already_done
'bpf_verifier_vlog' is a static function. '_entry', '_entry_ptr' and
'__already_done' are static variables used inside 'bpf_verifier_vlog',
so llvm promotes them to file-level static with prefix 'bpf_verifier_vlog.'.
Note that the func-level to file-level static function promotion also
happens without LTO.
Given a symbol name 'bpf_verifier_vlog', with LTO kernel, current mechanism will
return 4 symbols to live patch subsystem which current live patching
subsystem cannot handle it. With non-LTO kernel, only one symbol
is returned.
In [1], we have a lengthy discussion, the suggestion is to separate two
cases:
(1). new symbols with suffix which are generated regardless of whether
LTO is enabled or not, and
(2). new symbols with suffix generated only when LTO is enabled.
The cleanup_symbol_name() should only remove suffixes for case (2).
Case (1) should not be changed so it can work uniformly with or without LTO.
This patch removed LTO-only suffix '.llvm.<...>' so live patching and
tracing should work the same way for non-LTO kernel.
The cleanup_symbol_name() in scripts/kallsyms.c is also changed to have the same
filtering pattern so both kernel and kallsyms tool have the same
expectation on the order of symbols.
[1] https://lore.kernel.org/live-patching/20230615170048.2382735-1-song@kernel.org/T/#u
Fixes: 6eb4bd92c1 ("kallsyms: strip LTO suffixes from static functions")
Reported-by: Song Liu <song@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Reviewed-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/r/20230628181926.4102448-1-yhs@fb.com
Signed-off-by: Kees Cook <keescook@chromium.org>
The stack_trace event is an event created by the tracing subsystem to
store stack traces. It originally just contained a hard coded array of 8
words to hold the stack, and a "size" to know how many entries are there.
This is exported to user space as:
name: kernel_stack
ID: 4
format:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:int size; offset:8; size:4; signed:1;
field:unsigned long caller[8]; offset:16; size:64; signed:0;
print fmt: "\t=> %ps\n\t=> %ps\n\t=> %ps\n" "\t=> %ps\n\t=> %ps\n\t=> %ps\n" "\t=> %ps\n\t=> %ps\n",i
(void *)REC->caller[0], (void *)REC->caller[1], (void *)REC->caller[2],
(void *)REC->caller[3], (void *)REC->caller[4], (void *)REC->caller[5],
(void *)REC->caller[6], (void *)REC->caller[7]
Where the user space tracers could parse the stack. The library was
updated for this specific event to only look at the size, and not the
array. But some older users still look at the array (note, the older code
still checks to make sure the array fits inside the event that it read.
That is, if only 4 words were saved, the parser would not read the fifth
word because it will see that it was outside of the event size).
This event was changed a while ago to be more dynamic, and would save a
full stack even if it was greater than 8 words. It does this by simply
allocating more ring buffer to hold the extra words. Then it copies in the
stack via:
memcpy(&entry->caller, fstack->calls, size);
As the entry is struct stack_entry, that is created by a macro to both
create the structure and export this to user space, it still had the caller
field of entry defined as: unsigned long caller[8].
When the stack is greater than 8, the FORTIFY_SOURCE code notices that the
amount being copied is greater than the source array and complains about
it. It has no idea that the source is pointing to the ring buffer with the
required allocation.
To hide this from the FORTIFY_SOURCE logic, pointer arithmetic is used:
ptr = ring_buffer_event_data(event);
entry = ptr;
ptr += offsetof(typeof(*entry), caller);
memcpy(ptr, fstack->calls, size);
Link: https://lore.kernel.org/all/20230612160748.4082850-1-svens@linux.ibm.com/
Link: https://lore.kernel.org/linux-trace-kernel/20230712105235.5fc441aa@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Reported-by: Sven Schnelle <svens@linux.ibm.com>
Tested-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
As comments in ftrace_process_locs(), there may be NULL pointers in
mcount_loc section:
> Some architecture linkers will pad between
> the different mcount_loc sections of different
> object files to satisfy alignments.
> Skip any NULL pointers.
After commit 20e5227e9f ("ftrace: allow NULL pointers in mcount_loc"),
NULL pointers will be accounted when allocating ftrace pages but skipped
before adding into ftrace pages, this may result in some pages not being
used. Then after commit 706c81f87f ("ftrace: Remove extra helper
functions"), warning may occur at:
WARN_ON(pg->next);
To fix it, only warn for case that no pointers skipped but pages not used
up, then free those unused pages after releasing ftrace_lock.
Link: https://lore.kernel.org/linux-trace-kernel/20230712060452.3175675-1-zhengyejian1@huawei.com
Cc: stable@vger.kernel.org
Fixes: 706c81f87f ("ftrace: Remove extra helper functions")
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The object leak check is cheap. Do it unconditionally to spot difficult races
in bpf_mem_alloc.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230706033447.54696-15-alexei.starovoitov@gmail.com
Convert bpf_cpumask to bpf_mem_cache_free_rcu.
Note that migrate_disable() in bpf_cpumask_release() is still necessary, since
bpf_cpumask_release() is a dtor. bpf_obj_free_fields() can be converted to do
migrate_disable() there in a follow up.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230706033447.54696-14-alexei.starovoitov@gmail.com
Introduce bpf_mem_[cache_]free_rcu() similar to kfree_rcu().
Unlike bpf_mem_[cache_]free() that links objects for immediate reuse into
per-cpu free list the _rcu() flavor waits for RCU grace period and then moves
objects into free_by_rcu_ttrace list where they are waiting for RCU
task trace grace period to be freed into slab.
The life cycle of objects:
alloc: dequeue free_llist
free: enqeueu free_llist
free_rcu: enqueue free_by_rcu -> waiting_for_gp
free_llist above high watermark -> free_by_rcu_ttrace
after RCU GP waiting_for_gp -> free_by_rcu_ttrace
free_by_rcu_ttrace -> waiting_for_gp_ttrace -> slab
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/bpf/20230706033447.54696-13-alexei.starovoitov@gmail.com
If a CPU is executing a long series of non-sleeping system calls,
RCU grace periods can be delayed for on the order of a couple hundred
milliseconds. This is normally not a problem, but if each system call
does a call_rcu(), those callbacks can stack up. RCU will eventually
notice this callback storm, but use of rcu_request_urgent_qs_task()
allows the code invoking call_rcu() to give RCU a heads up.
This function is not for general use, not yet, anyway.
Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230706033447.54696-11-alexei.starovoitov@gmail.com
alloc_bulk() can reuse elements from free_by_rcu_ttrace.
Let it reuse from waiting_for_gp_ttrace as well to avoid unnecessary kmalloc().
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230706033447.54696-10-alexei.starovoitov@gmail.com
To address OOM issue when one cpu is allocating and another cpu is freeing add
a target bpf_mem_cache hint to allocated objects and when local cpu free_llist
overflows free to that bpf_mem_cache. The hint addresses the OOM while
maintaining the same performance for common case when alloc/free are done on the
same cpu.
Note that do_call_rcu_ttrace() now has to check 'draining' flag in one more case,
since do_call_rcu_ttrace() is called not only for current cpu.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/bpf/20230706033447.54696-9-alexei.starovoitov@gmail.com
The next patch will introduce cross-cpu llist access and existing
irq_work_sync() + drain_mem_cache() + rcu_barrier_tasks_trace() mechanism will
not be enough, since irq_work_sync() + drain_mem_cache() on cpu A won't
guarantee that llist on cpu A are empty. The free_bulk() on cpu B might add
objects back to llist of cpu A. Add 'bool draining' flag.
The modified sequence looks like:
for_each_cpu:
WRITE_ONCE(c->draining, true); // do_call_rcu_ttrace() won't be doing call_rcu() any more
irq_work_sync(); // wait for irq_work callback (free_bulk) to finish
drain_mem_cache(); // free all objects
rcu_barrier_tasks_trace(); // wait for RCU callbacks to execute
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/bpf/20230706033447.54696-8-alexei.starovoitov@gmail.com
In certain scenarios alloc_bulk() might be taking free objects mainly from
free_by_rcu_ttrace list. In such case get_memcg() and set_active_memcg() are
redundant, but they show up in perf profile. Split the loop and only set memcg
when allocating from slab. No performance difference in this patch alone, but
it helps in combination with further patches.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/bpf/20230706033447.54696-7-alexei.starovoitov@gmail.com