Atomics present the same issue with locking: release and acquire
variants need to be strengthened to meet the constraints defined
by the Linux-kernel memory consistency model [1].
Atomics present a further issue: implementations of atomics such
as atomic_cmpxchg() and atomic_add_unless() rely on LR/SC pairs,
which do not give full-ordering with .aqrl; for example, current
implementations allow the "lr-sc-aqrl-pair-vs-full-barrier" test
below to end up with the state indicated in the "exists" clause.
In order to "synchronize" LKMM and RISC-V's implementation, this
commit strengthens the implementations of the atomics operations
by replacing .rl and .aq with the use of ("lightweigth") fences,
and by replacing .aqrl LR/SC pairs in sequences such as:
0: lr.w.aqrl %0, %addr
bne %0, %old, 1f
...
sc.w.aqrl %1, %new, %addr
bnez %1, 0b
1:
with sequences of the form:
0: lr.w %0, %addr
bne %0, %old, 1f
...
sc.w.rl %1, %new, %addr /* SC-release */
bnez %1, 0b
fence rw, rw /* "full" fence */
1:
following Daniel's suggestion.
These modifications were validated with simulation of the RISC-V
memory consistency model.
C lr-sc-aqrl-pair-vs-full-barrier
{}
P0(int *x, int *y, atomic_t *u)
{
int r0;
int r1;
WRITE_ONCE(*x, 1);
r0 = atomic_cmpxchg(u, 0, 1);
r1 = READ_ONCE(*y);
}
P1(int *x, int *y, atomic_t *v)
{
int r0;
int r1;
WRITE_ONCE(*y, 1);
r0 = atomic_cmpxchg(v, 0, 1);
r1 = READ_ONCE(*x);
}
exists (u=1 /\ v=1 /\ 0:r1=0 /\ 1:r1=0)
[1] https://marc.info/?l=linux-kernel&m=151930201102853&w=2https://groups.google.com/a/groups.riscv.org/forum/#!topic/isa-dev/hKywNHBkAXMhttps://marc.info/?l=linux-kernel&m=151633436614259&w=2
Suggested-by: Daniel Lustig <dlustig@nvidia.com>
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Albert Ou <albert@sifive.com>
Cc: Daniel Lustig <dlustig@nvidia.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-riscv@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
This contains all the code that directly interfaces with the RISC-V
memory model. While this code corforms to the current RISC-V ISA
specifications (user 2.2 and priv 1.10), the memory model is somewhat
underspecified in those documents. There is a working group that hopes
to produce a formal memory model by the end of the year, but my
understanding is that the basic definitions we're relying on here won't
change significantly.
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Palmer Dabbelt <palmer@dabbelt.com>