mirror of
https://github.com/torvalds/linux.git
synced 2024-12-28 22:02:28 +00:00
0b11553ec5
1703 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Darrick J. Wong
|
0b11553ec5 |
xfs: pass refcount intent directly through the log intent code
Pass the incore refcount intent through the CUI logging code instead of repeatedly boxing and unboxing parameters. Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Darrick J. Wong
|
1534328bb4 |
xfs: pass rmap space mapping directly through the log intent code
Pass the incore rmap space mapping through the RUI logging code instead of repeatedly boxing and unboxing parameters. Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Darrick J. Wong
|
578c714b21 |
xfs: fix confusing xfs_extent_item variable names
Change the name of all pointers to xfs_extent_item structures to "xefi" to make the name consistent and because the current selections ("new" and "free") mean other things in C. Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Darrick J. Wong
|
ddccb81b26 |
xfs: pass the xfs_bmbt_irec directly through the log intent code
Instead of repeatedly boxing and unboxing the incore extent mapping structure as it passes through the BUI code, pass the pointer directly through. Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Darrick J. Wong
|
c0f399ff51 |
xfs: fix off-by-one error in xfs_btree_space_to_height
Lately I've been stress-testing extreme-sized rmap btrees by using the (new) xfs_db bmap_inflate command to clone bmbt mappings billions of times and then using xfs_repair to build new rmap and refcount btrees. This of course is /much/ faster than actually FICLONEing a file billions of times. Unfortunately, xfs_repair fails in xfs_btree_bload_compute_geometry with EOVERFLOW, which indicates that xfs_mount.m_rmap_maxlevels is not sufficiently large for the test scenario. For a 1TB filesystem (~67 million AG blocks, 4 AGs) the btheight command reports: $ xfs_db -c 'btheight -n 4400801200 -w min rmapbt' /dev/sda rmapbt: worst case per 4096-byte block: 84 records (leaf) / 45 keyptrs (node) level 0: 4400801200 records, 52390491 blocks level 1: 52390491 records, |
||
Linus Torvalds
|
87be949912 |
New XFS code for 6.2:
- Fix a race condition w.r.t. percpu inode free counters - Fix a broken error return in xfs_remove - Print FS UUID at mount/unmount time - Numerous fixes to the online fsck code - Fix inode locking inconsistency problems when dealing with realtime metadata files - Actually merge pull requests so that we capture the cover letter contents - Fix a race between rebuilding VFS inode state and the AIL flushing inodes that could cause corrupt inodes to be written to the filesystem - Fix a data corruption problem resulting from a write() to an unwritten extent racing with writeback started on behalf of memory reclaim changing the extent state - Add debugging knobs so that we can test iomap invalidation - Fix the blockdev pagecache contents being stale after unmounting the filesystem, leading to spurious xfs_db errors and corrupt metadumps - Fix a file mapping corruption bug due to ilock cycling when attaching dquots to a file during delalloc reservation - Fix a refcount btree corruption problem due to the refcount adjustment code not handling MAXREFCOUNT correctly, resulting in unnecessary record splits - Fix COW staging extent alloctions not being classified as USERDATA, which results in filestreams being ignored and possible data corruption if the allocation was filled from the AGFL and the block buffer is still being tracked in the AIL - Fix new duplicated includes - Fix a race between the dquot shrinker and dquot freeing that could cause a UAF Signed-off-by: Darrick J. Wong <djwong@kernel.org> -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmOSEWsACgkQ+H93GTRK tOvpsg//Y8pgue8GFwyXq0LYEYb1yjueGIxDGz9SwkfMP9vADsdDpXxquHmes5M+ Q9vMyFnfaizZs2oXD6Nw/+RJMyOa3ZQtNqjxJET5pTIBcWvdjsP9UGW+K+1uN7LT NsM7lgpxy8RfQFHjvFHpOysxGIpT70n3lz98qlwy1yIGF/EFE52pkKcArGjpIu4A wBdyL0hIBwXc27zLRahLxfwFaW/I40ka3D40EUYpNnAjE5Sy0YgLlsOCzrxN0UvY a9dlq+WFJjWDsLp6vr11ruewXAmzYG2m/3RdP2aLbmDHDvo06UkesKkPNhexlClM kRE/ZImmakqKlAqgtUbkxT06NbIKOxYslbcoOOLDneqb1grTcgk79J7jsMlLLU1s s1WyPMWR3wb0jjclgGBxd3c1nprdkvJSkBpyEOwIYLhwdPNuwqTwEVsq7TvasRLI dgals5/J6fBnIeTR7x2YObonQRd4FlkXFv+AVYpGVUJEI02eRgY3i7NJBZWyBKAS +Gcd1Bq1F387b0FRqq1iVhGD+NpoHHiP84bOQED9R9t0jP1AHj9t47f+Uuvjj2hN ByT7MpA0nZdbYGKU+rFyKsIvONyLdxyjL+jm6FkmrW+G25fJ1af2yhrVhZQhw7dm zLb1ntSnXvNTj4OopfKSDD2MPGf+2C/o2XJvAAS501pmsQefKOM= =plES -----END PGP SIGNATURE----- Merge tag 'xfs-6.2-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux Pull XFS updates from Darrick Wong: "The highlight of this is a batch of fixes for the online metadata checking code as we start the loooong march towards merging online repair. I aim to merge that in time for the 2023 LTS. There are also a large number of data corruption and race condition fixes in this patchset. Most notably fixed are write() calls to unwritten extents racing with writeback, which required some late(r than I prefer) code changes to iomap to support the necessary revalidations. I don't really like iomap changes going in past -rc4, but Dave and I have been working on it long enough that I chose to push it for 6.2 anyway. There are also a number of other subtle problems fixed, including the log racing with inode writeback to write inodes with incorrect link count to disk; file data mapping corruptions as a result of incorrect lock cycling when attaching dquots; refcount metadata corruption if one actually manages to share a block 2^32 times; and the log clobbering cow staging extents if they were formerly metadata blocks. Summary: - Fix a race condition w.r.t. percpu inode free counters - Fix a broken error return in xfs_remove - Print FS UUID at mount/unmount time - Numerous fixes to the online fsck code - Fix inode locking inconsistency problems when dealing with realtime metadata files - Actually merge pull requests so that we capture the cover letter contents - Fix a race between rebuilding VFS inode state and the AIL flushing inodes that could cause corrupt inodes to be written to the filesystem - Fix a data corruption problem resulting from a write() to an unwritten extent racing with writeback started on behalf of memory reclaim changing the extent state - Add debugging knobs so that we can test iomap invalidation - Fix the blockdev pagecache contents being stale after unmounting the filesystem, leading to spurious xfs_db errors and corrupt metadumps - Fix a file mapping corruption bug due to ilock cycling when attaching dquots to a file during delalloc reservation - Fix a refcount btree corruption problem due to the refcount adjustment code not handling MAXREFCOUNT correctly, resulting in unnecessary record splits - Fix COW staging extent alloctions not being classified as USERDATA, which results in filestreams being ignored and possible data corruption if the allocation was filled from the AGFL and the block buffer is still being tracked in the AIL - Fix new duplicated includes - Fix a race between the dquot shrinker and dquot freeing that could cause a UAF" * tag 'xfs-6.2-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (50 commits) xfs: dquot shrinker doesn't check for XFS_DQFLAG_FREEING xfs: Remove duplicated include in xfs_iomap.c xfs: invalidate xfs_bufs when allocating cow extents xfs: get rid of assert from xfs_btree_islastblock xfs: estimate post-merge refcounts correctly xfs: hoist refcount record merge predicates xfs: fix super block buf log item UAF during force shutdown xfs: wait iclog complete before tearing down AIL xfs: attach dquots to inode before reading data/cow fork mappings xfs: shut up -Wuninitialized in xfsaild_push xfs: use memcpy, not strncpy, to format the attr prefix during listxattr xfs: invalidate block device page cache during unmount xfs: add debug knob to slow down write for fun xfs: add debug knob to slow down writeback for fun xfs: drop write error injection is unfixable, remove it xfs: use iomap_valid method to detect stale cached iomaps iomap: write iomap validity checks xfs: xfs_bmap_punch_delalloc_range() should take a byte range iomap: buffered write failure should not truncate the page cache xfs,iomap: move delalloc punching to iomap ... |
||
Darrick J. Wong
|
ddfdd530e4 |
xfs: invalidate xfs_bufs when allocating cow extents
While investigating test failures in xfs/17[1-3] in alwayscow mode, I noticed through code inspection that xfs_bmap_alloc_userdata isn't setting XFS_ALLOC_USERDATA when allocating extents for a file's CoW fork. COW staging extents should be flagged as USERDATA, since user data are persisted to these blocks before being remapped into a file. This mis-classification has a few impacts on the behavior of the system. First, the filestreams allocator is supposed to keep allocating from a chosen AG until it runs out of space in that AG. However, it only does that for USERDATA allocations, which means that COW allocations aren't tied to the filestreams AG. Fortunately, few people use filestreams, so nobody's noticed. A more serious problem is that xfs_alloc_ag_vextent_small looks for a buffer to invalidate *if* the USERDATA flag is set and the AG is so full that the allocation had to come from the AGFL because the cntbt is empty. The consequences of not invalidating the buffer are severe -- if the AIL incorrectly checkpoints a buffer that is now being used to store user data, that action will clobber the user's written data. Fix filestreams and yet another data corruption vector by flagging COW allocations as USERDATA. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Guo Xuenan
|
8c25febf23 |
xfs: get rid of assert from xfs_btree_islastblock
xfs_btree_check_block contains debugging knobs. With XFS_DEBUG setting up, turn on the debugging knob can trigger the assert of xfs_btree_islastblock, test script as follows: while true do mount $disk $mountpoint fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null echo 1 > /sys/fs/xfs/sda/errortag/btree_chk_sblk sleep 10 umount $mountpoint done Kick off fsstress and only *then* turn on the debugging knob. If it happens that the knob gets turned on after the cntbt lookup succeeds but before the call to xfs_btree_islastblock, then we *can* end up in the situation where a previously checked btree block suddenly starts returning EFSCORRUPTED from xfs_btree_check_block. Kaboom. Darrick give a very detailed explanation as follows: Looking back at commit |
||
Darrick J. Wong
|
b25d1984aa |
xfs: estimate post-merge refcounts correctly
Upon enabling fsdax + reflink for XFS, xfs/179 began to report refcount
metadata corruptions after being run. Specifically, xfs_repair noticed
single-block refcount records that could be combined but had not been.
The root cause of this is improper MAXREFCOUNT edge case handling in
xfs_refcount_merge_extents. When we're trying to find candidates for a
refcount btree record merge, we compute the refcount attribute of the
merged record, but we fail to account for the fact that once a record
hits rc_refcount == MAXREFCOUNT, it is pinned that way forever. Hence
the computed refcount is wrong, and we fail to merge the extents.
Fix this by adjusting the merge predicates to compute the adjusted
refcount correctly.
Fixes:
|
||
Darrick J. Wong
|
9d720a5a65 |
xfs: hoist refcount record merge predicates
Hoist these multiline conditionals into separate static inline helpers to improve readability and set the stage for corruption fixes that will be introduced in the next patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Xiao Yang <yangx.jy@fujitsu.com> |
||
Darrick J. Wong
|
254e345928 |
xfs: add debug knob to slow down write for fun
Add a new error injection knob so that we can arbitrarily slow down
pagecache writes to test for race conditions and aberrant reclaim
behavior if the writeback mechanisms are slow to issue writeback. This
will enable functional testing for the ifork sequence counters
introduced in commit
|
||
Darrick J. Wong
|
c2beff99eb |
xfs: add debug knob to slow down writeback for fun
Add a new error injection knob so that we can arbitrarily slow down
writeback to test for race conditions and aberrant reclaim behavior if
the writeback mechanisms are slow to issue writeback. This will enable
functional testing for the ifork sequence counters introduced in commit
|
||
Darrick J. Wong
|
7dd73802f9 |
xfs, iomap: fix data corruption due to stale cached iomaps
This patch series fixes a data corruption that occurs in a specific multi-threaded write workload. The workload combined racing unaligned adjacent buffered writes with low memory conditions that caused both writeback and memory reclaim to race with the writes. The result of this was random partial blocks containing zeroes instead of the correct data. The underlying problem is that iomap caches the write iomap for the duration of the write() operation, but it fails to take into account that the extent underlying the iomap can change whilst the write is in progress. The short story is that an iomap can span mutliple folios, and so under low memory writeback can be cleaning folios the write() overlaps. Whilst the overlapping data is cached in memory, this isn't a problem, but because the folios are now clean they can be reclaimed. Once reclaimed, the write() does the wrong thing when re-instantiating partial folios because the iomap no longer reflects the underlying state of the extent. e.g. it thinks the extent is unwritten, so it zeroes the partial range, when in fact the underlying extent is now written and so it should have read the data from disk. This is how we get random zero ranges in the file instead of the correct data. The gory details of the race condition can be found here: https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/ Fixing the problem has two aspects. The first aspect of the problem is ensuring that iomap can detect a stale cached iomap during a write in a race-free manner. We already do this stale iomap detection in the writeback path, so we have a mechanism for detecting that the iomap backing the data range may have changed and needs to be remapped. In the case of the write() path, we have to ensure that the iomap is validated at a point in time when the page cache is stable and cannot be reclaimed from under us. We also need to validate the extent before we start performing any modifications to the folio state or contents. Combine these two requirements together, and the only "safe" place to validate the iomap is after we have looked up and locked the folio we are going to copy the data into, but before we've performed any initialisation operations on that folio. If the iomap fails validation, we then mark it stale, unlock the folio and end the write. This effectively means a stale iomap results in a short write. Filesystems should already be able to handle this, as write operations can end short for many reasons and need to iterate through another mapping cycle to be completed. Hence the iomap changes needed to detect and handle stale iomaps during write() operations is relatively simple... However, the assumption is that filesystems should already be able to handle write failures safely, and that's where the second (first?) part of the problem exists. That is, handling a partial write is harder than just "punching out the unused delayed allocation extent". This is because mmap() based faults can race with writes, and if they land in the delalloc region that the write allocated, then punching out the delalloc region can cause data corruption. This data corruption problem is exposed by generic/346 when iomap is converted to detect stale iomaps during write() operations. Hence write failure in the filesytems needs to handle the fact that the write() in progress doesn't necessarily own the data in the page cache over the range of the delalloc extent it just allocated. As a result, we can't just truncate the page cache over the range the write() didn't reach and punch all the delalloc extent. We have to walk the page cache over the untouched range and skip over any dirty data region in the cache in that range. Which is .... non-trivial. That is, iterating the page cache has to handle partially populated folios (i.e. block size < page size) that contain data. The data might be discontiguous within a folio. Indeed, there might be *multiple* discontiguous data regions within a single folio. And to make matters more complex, multi-page folios mean we just don't know how many sub-folio regions we might have to iterate to find all these regions. All the corner cases between the conversions and rounding between filesystem block size, folio size and multi-page folio size combined with unaligned write offsets kept breaking my brain. However, if we convert the code to track the processed write regions by byte ranges instead of fileystem block or page cache index, we could simply use mapping_seek_hole_data() to find the start and end of each discrete data region within the range we needed to scan. SEEK_DATA finds the start of the cached data region, SEEK_HOLE finds the end of the region. These are byte based interfaces that understand partially uptodate folio regions, and so can iterate discrete sub-folio data regions directly. This largely solved the problem of discovering the dirty regions we need to keep the delalloc extent over. However, to use mapping_seek_hole_data() without needing to export it, we have to move all the delalloc extent cleanup to the iomap core and so now the iomap core can clean up delayed allocation extents in a safe, sane and filesystem neutral manner. With all this done, the original data corruption never occurs anymore, and we now have a generic mechanism for ensuring that page cache writes do not do the wrong thing when writeback and reclaim change the state of the physical extent and/or page cache contents whilst the write is in progress. Signed-off-by: Dave Chinner <dchinner@redhat.com> -----BEGIN PGP SIGNATURE----- iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmOFSzwUHGRhdmlkQGZy b21vcmJpdC5jb20ACgkQregpR/R1+h3djhAAwOf9VeLO7TW/0B1XfE3ktWGiDmEG ekB8mkB7CAHB9SBq7TZMHjktJIJxY81q5+Iq9qHGiW3asoVbmWvkeRSJgXljhTby D2KsUIT1NK/X6DhC9FhNjv/Q2GJ0nY6s65RLudUEkelYBFhGMM0kdXX+fZmtZ4yT T/lRYk/KBFpeQCaGRcFXK55TnB/B9muOI9FyKvh2DNWe6r0Xu3Obb3a9k+snZA9R EeUpAosDSrXzP4c2w2ovpU2eutUdo4eYTHIzXKGkhktbRhmCRLn4NlxvFCanoe8h eSS85sb8DHUh2iyaaB8yrJ6LL3MuBytOi24rNBeyd1KAyEtT21+cTUK/QAahzble pL8l6TA7ZXbhYcbk5uQvFEIAInR+0ffjde61uE14N55awq0Vdrym7C7D2ri60iw6 ts45AVYKYeF61coAbwvmaJyvqvQ0tUlmVZXI4lQzN2O17Lr6004gJFMjDRsXXU7H eHLUt496Geq39rglw85y8G0vmxxGZ9iIGkeC1kUSSCmlvx/JfuJlbWBgyMGtNRBI qzv0jmk67Ft1seQSMWQJttxCZs4uOF2gwERYGAF7iUR8F4PGob/N1e2/hpg75G8q 0S8u1N1p8Cv5u/jwybqy8FnSC2MlUZl6SQURaVQDy2DLMKHb4T1diu0jrCbiSPiF JKfQ7aNQxaEZIJw= =cv9i -----END PGP SIGNATURE----- Merge tag 'xfs-iomap-stale-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-6.2-mergeB xfs, iomap: fix data corruption due to stale cached iomaps This patch series fixes a data corruption that occurs in a specific multi-threaded write workload. The workload combined racing unaligned adjacent buffered writes with low memory conditions that caused both writeback and memory reclaim to race with the writes. The result of this was random partial blocks containing zeroes instead of the correct data. The underlying problem is that iomap caches the write iomap for the duration of the write() operation, but it fails to take into account that the extent underlying the iomap can change whilst the write is in progress. The short story is that an iomap can span mutliple folios, and so under low memory writeback can be cleaning folios the write() overlaps. Whilst the overlapping data is cached in memory, this isn't a problem, but because the folios are now clean they can be reclaimed. Once reclaimed, the write() does the wrong thing when re-instantiating partial folios because the iomap no longer reflects the underlying state of the extent. e.g. it thinks the extent is unwritten, so it zeroes the partial range, when in fact the underlying extent is now written and so it should have read the data from disk. This is how we get random zero ranges in the file instead of the correct data. The gory details of the race condition can be found here: https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/ Fixing the problem has two aspects. The first aspect of the problem is ensuring that iomap can detect a stale cached iomap during a write in a race-free manner. We already do this stale iomap detection in the writeback path, so we have a mechanism for detecting that the iomap backing the data range may have changed and needs to be remapped. In the case of the write() path, we have to ensure that the iomap is validated at a point in time when the page cache is stable and cannot be reclaimed from under us. We also need to validate the extent before we start performing any modifications to the folio state or contents. Combine these two requirements together, and the only "safe" place to validate the iomap is after we have looked up and locked the folio we are going to copy the data into, but before we've performed any initialisation operations on that folio. If the iomap fails validation, we then mark it stale, unlock the folio and end the write. This effectively means a stale iomap results in a short write. Filesystems should already be able to handle this, as write operations can end short for many reasons and need to iterate through another mapping cycle to be completed. Hence the iomap changes needed to detect and handle stale iomaps during write() operations is relatively simple... However, the assumption is that filesystems should already be able to handle write failures safely, and that's where the second (first?) part of the problem exists. That is, handling a partial write is harder than just "punching out the unused delayed allocation extent". This is because mmap() based faults can race with writes, and if they land in the delalloc region that the write allocated, then punching out the delalloc region can cause data corruption. This data corruption problem is exposed by generic/346 when iomap is converted to detect stale iomaps during write() operations. Hence write failure in the filesytems needs to handle the fact that the write() in progress doesn't necessarily own the data in the page cache over the range of the delalloc extent it just allocated. As a result, we can't just truncate the page cache over the range the write() didn't reach and punch all the delalloc extent. We have to walk the page cache over the untouched range and skip over any dirty data region in the cache in that range. Which is .... non-trivial. That is, iterating the page cache has to handle partially populated folios (i.e. block size < page size) that contain data. The data might be discontiguous within a folio. Indeed, there might be *multiple* discontiguous data regions within a single folio. And to make matters more complex, multi-page folios mean we just don't know how many sub-folio regions we might have to iterate to find all these regions. All the corner cases between the conversions and rounding between filesystem block size, folio size and multi-page folio size combined with unaligned write offsets kept breaking my brain. However, if we convert the code to track the processed write regions by byte ranges instead of fileystem block or page cache index, we could simply use mapping_seek_hole_data() to find the start and end of each discrete data region within the range we needed to scan. SEEK_DATA finds the start of the cached data region, SEEK_HOLE finds the end of the region. These are byte based interfaces that understand partially uptodate folio regions, and so can iterate discrete sub-folio data regions directly. This largely solved the problem of discovering the dirty regions we need to keep the delalloc extent over. However, to use mapping_seek_hole_data() without needing to export it, we have to move all the delalloc extent cleanup to the iomap core and so now the iomap core can clean up delayed allocation extents in a safe, sane and filesystem neutral manner. With all this done, the original data corruption never occurs anymore, and we now have a generic mechanism for ensuring that page cache writes do not do the wrong thing when writeback and reclaim change the state of the physical extent and/or page cache contents whilst the write is in progress. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org> * tag 'xfs-iomap-stale-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: xfs: drop write error injection is unfixable, remove it xfs: use iomap_valid method to detect stale cached iomaps iomap: write iomap validity checks xfs: xfs_bmap_punch_delalloc_range() should take a byte range iomap: buffered write failure should not truncate the page cache xfs,iomap: move delalloc punching to iomap xfs: use byte ranges for write cleanup ranges xfs: punching delalloc extents on write failure is racy xfs: write page faults in iomap are not buffered writes |
||
Dave Chinner
|
6e8af15ccd |
xfs: drop write error injection is unfixable, remove it
With the changes to scan the page cache for dirty data to avoid data corruptions from partial write cleanup racing with other page cache operations, the drop writes error injection no longer works the same way it used to and causes xfs/196 to fail. This is because xfs/196 writes to the file and populates the page cache before it turns on the error injection and starts failing -overwrites-. The result is that the original drop-writes code failed writes only -after- overwriting the data in the cache, followed by invalidates the cached data, then punching out the delalloc extent from under that data. On the surface, this looks fine. The problem is that page cache invalidation *doesn't guarantee that it removes anything from the page cache* and it doesn't change the dirty state of the folio. When block size == page size and we do page aligned IO (as xfs/196 does) everything happens to align perfectly and page cache invalidation removes the single page folios that span the written data. Hence the followup delalloc punch pass does not find cached data over that range and it can punch the extent out. IOWs, xfs/196 "works" for block size == page size with the new code. I say "works", because it actually only works for the case where IO is page aligned, and no data was read from disk before writes occur. Because the moment we actually read data first, the readahead code allocates multipage folios and suddenly the invalidate code goes back to zeroing subfolio ranges without changing dirty state. Hence, with multipage folios in play, block size == page size is functionally identical to block size < page size behaviour, and drop-writes is manifestly broken w.r.t to this case. Invalidation of a subfolio range doesn't result in the folio being removed from the cache, just the range gets zeroed. Hence after we've sequentially walked over a folio that we've dirtied (via write data) and then invalidated, we end up with a dirty folio full of zeroed data. And because the new code skips punching ranges that have dirty folios covering them, we end up leaving the delalloc range intact after failing all the writes. Hence failed writes now end up writing zeroes to disk in the cases where invalidation zeroes folios rather than removing them from cache. This is a fundamental change of behaviour that is needed to avoid the data corruption vectors that exist in the old write fail path, and it renders the drop-writes injection non-functional and unworkable as it stands. As it is, I think the error injection is also now unnecessary, as partial writes that need delalloc extent are going to be a lot more common with stale iomap detection in place. Hence this patch removes the drop-writes error injection completely. xfs/196 can remain for testing kernels that don't have this data corruption fix, but those that do will report: xfs/196 3s ... [not run] XFS error injection drop_writes unknown on this kernel. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> |
||
Dave Chinner
|
304a68b9c6 |
xfs: use iomap_valid method to detect stale cached iomaps
Now that iomap supports a mechanism to validate cached iomaps for buffered write operations, hook it up to the XFS buffered write ops so that we can avoid data corruptions that result from stale cached iomaps. See: https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/ or the ->iomap_valid() introduction commit for exact details of the corruption vector. The validity cookie we store in the iomap is based on the type of iomap we return. It is expected that the iomap->flags we set in xfs_bmbt_to_iomap() is not perturbed by the iomap core and are returned to us in the iomap passed via the .iomap_valid() callback. This ensures that the validity cookie is always checking the correct inode fork sequence numbers to detect potential changes that affect the extent cached by the iomap. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> |
||
Jason A. Donenfeld
|
8032bf1233 |
treewide: use get_random_u32_below() instead of deprecated function
This is a simple mechanical transformation done by: @@ expression E; @@ - prandom_u32_max + get_random_u32_below (E) Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs Reviewed-by: SeongJae Park <sj@kernel.org> # for damon Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> # for arm Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> |
||
Long Li
|
59f6ab40fd |
xfs: fix sb write verify for lazysbcount
When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:
XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed
This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.
#!/bin/bash
device=/dev/sda
testdir=/mnt/test
round=0
function fail()
{
echo "$*"
exit 1
}
mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done
With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:
CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)
After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.
When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.
Fixes:
|
||
Darrick J. Wong
|
8b972158af |
xfs: rename XFS_REFC_COW_START to _COWFLAG
We've been (ab)using XFS_REFC_COW_START as both an integer quantity and a bit flag, even though it's *only* a bit flag. Rename the variable to reflect its nature and update the cast target since we're not supposed to be comparing it to xfs_agblock_t now. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
c1ccf967bf |
xfs: fix uninitialized list head in struct xfs_refcount_recovery
We're supposed to initialize the list head of an object before adding it
to another list. Fix that, and stop using the kmem_{alloc,free} calls
from the Irix days.
Fixes:
|
||
Darrick J. Wong
|
f1fdc82078 |
xfs: fix agblocks check in the cow leftover recovery function
As we've seen, refcount records use the upper bit of the rc_startblock field to ensure that all the refcount records are at the right side of the refcount btree. This works because an AG is never allowed to have more than (1U << 31) blocks in it. If we ever encounter a filesystem claiming to have that many blocks, we absolutely do not want reflink touching it at all. However, this test at the start of xfs_refcount_recover_cow_leftovers is slightly incorrect -- it /should/ be checking that agblocks isn't larger than the XFS_MAX_CRC_AG_BLOCKS constant, and it should check that the constant is never large enough to conflict with that CoW flag. Note that the V5 superblock verifier has not historically rejected filesystems where agblocks >= XFS_MAX_CRC_AG_BLOCKS, which is why this ended up in the COW recovery routine. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
f62ac3e0ac |
xfs: check record domain when accessing refcount records
Now that we've separated the startblock and CoW/shared extent domain in the incore refcount record structure, check the domain whenever we retrieve a record to ensure that it's still in the domain that we want. Depending on the circumstances, a change in domain either means we're done processing or that we've found a corruption and need to fail out. The refcount check in xchk_xref_is_cow_staging is redundant since _get_rec has done that for a long time now, so we can get rid of it. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
68d0f38917 |
xfs: remove XFS_FIND_RCEXT_SHARED and _COW
Now that we have an explicit enum for shared and CoW staging extents, we can get rid of the old FIND_RCEXT flags. Omit a couple of conversions that disappear in the next patches. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
f492135df0 |
xfs: refactor domain and refcount checking
Create a helper function to ensure that CoW staging extent records have a single refcount and that shared extent records have more than 1 refcount. We'll put this to more use in the next patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
571423a162 |
xfs: report refcount domain in tracepoints
Now that we've broken out the startblock and shared/cow domain in the incore refcount extent record structure, update the tracepoints to report the domain. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
9a50ee4f8d |
xfs: track cow/shared record domains explicitly in xfs_refcount_irec
Just prior to committing the reflink code into upstream, the xfs maintainer at the time requested that I find a way to shard the refcount records into two domains -- one for records tracking shared extents, and a second for tracking CoW staging extents. The idea here was to minimize mount time CoW reclamation by pushing all the CoW records to the right edge of the keyspace, and it was accomplished by setting the upper bit in rc_startblock. We don't allow AGs to have more than 2^31 blocks, so the bit was free. Unfortunately, this was a very late addition to the codebase, so most of the refcount record processing code still treats rc_startblock as a u32 and pays no attention to whether or not the upper bit (the cow flag) is set. This is a weakness is theoretically exploitable, since we're not fully validating the incoming metadata records. Fuzzing demonstrates practical exploits of this weakness. If the cow flag of a node block key record is corrupted, a lookup operation can go to the wrong record block and start returning records from the wrong cow/shared domain. This causes the math to go all wrong (since cow domain is still implicit in the upper bit of rc_startblock) and we can crash the kernel by tricking xfs into jumping into a nonexistent AG and tripping over xfs_perag_get(mp, <nonexistent AG>) returning NULL. To fix this, start tracking the domain as an explicit part of struct xfs_refcount_irec, adjust all refcount functions to check the domain of a returned record, and alter the function definitions to accept them where necessary. Found by fuzzing keys[2].cowflag = add in xfs/464. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
9e7e2436c1 |
xfs: move _irec structs to xfs_types.h
Structure definitions for incore objects do not belong in the ondisk format header. Move them to the incore types header where they belong. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
8edbe0cf8b |
xfs: check deferred refcount op continuation parameters
If we're in the middle of a deferred refcount operation and decide to roll the transaction to avoid overflowing the transaction space, we need to check the new agbno/aglen parameters that we're about to record in the new intent. Specifically, we need to check that the new extent is completely within the filesystem, and that continuation does not put us into a different AG. If the keys of a node block are wrong, the lookup to resume an xfs_refcount_adjust_extents operation can put us into the wrong record block. If this happens, we might not find that we run out of aglen at an exact record boundary, which will cause the loop control to do the wrong thing. The previous patch should take care of that problem, but let's add this extra sanity check to stop corruption problems sooner than later. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
b65e08f83b |
xfs: create a predicate to verify per-AG extents
Create a predicate function to verify that a given agbno/blockcount pair fit entirely within a single allocation group and don't suffer mathematical overflows. Refactor the existng open-coded logic; we're going to add more calls to this function in the next patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
f850995f60 |
xfs: make sure aglen never goes negative in xfs_refcount_adjust_extents
Prior to calling xfs_refcount_adjust_extents, we trimmed agbno/aglen such that the end of the range would not be in the middle of a refcount record. If this is no longer the case, something is seriously wrong with the btree. Bail out with a corruption error. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
3c5aaaced9 |
xfs: refactor all the EFI/EFD log item sizeof logic
Refactor all the open-coded sizeof logic for EFI/EFD log item and log format structures into common helper functions whose names reflect the struct names. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
03a7485cd7 |
xfs: fix memcpy fortify errors in EFI log format copying
Starting in 6.1, CONFIG_FORTIFY_SOURCE checks the length parameter of memcpy. Since we're already fixing problems with BUI item copying, we should fix it everything else. An extra difficulty here is that the ef[id]_extents arrays are declared as single-element arrays. This is not the convention for flex arrays in the modern kernel, and it causes all manner of problems with static checking tools, since they often cannot tell the difference between a single element array and a flex array. So for starters, change those array[1] declarations to array[] declarations to signal that they are proper flex arrays and adjust all the "size-1" expressions to fit the new declaration style. Next, refactor the xfs_efi_copy_format function to handle the copying of the head and the flex array members separately. While we're at it, fix a minor validation deficiency in the recovery function. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Allison Henderson
|
e07ee6fe21 |
xfs: increase rename inode reservation
xfs_rename can update up to 5 inodes: src_dp, target_dp, src_ip, target_ip and wip. So we need to increase the inode reservation to match. Signed-off-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Guo Xuenan
|
13cf24e006 |
xfs: fix exception caused by unexpected illegal bestcount in leaf dir
For leaf dir, In most cases, there should be as many bestfree slots as the dir data blocks that can fit under i_size (except for [1]). Root cause is we don't examin the number bestfree slots, when the slots number less than dir data blocks, if we need to allocate new dir data block and update the bestfree array, we will use the dir block number as index to assign bestfree array, while we did not check the leaf buf boundary which may cause UAF or other memory access problem. This issue can also triggered with test cases xfs/473 from fstests. According to Dave Chinner & Darrick's suggestion, adding buffer verifier to detect this abnormal situation in time. Simplify the testcase for fstest xfs/554 [1] The error log is shown as follows: ================================================================== BUG: KASAN: use-after-free in xfs_dir2_leaf_addname+0x1995/0x1ac0 Write of size 2 at addr ffff88810168b000 by task touch/1552 CPU: 5 PID: 1552 Comm: touch Not tainted 6.0.0-rc3+ #101 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x4d/0x66 print_report.cold+0xf6/0x691 kasan_report+0xa8/0x120 xfs_dir2_leaf_addname+0x1995/0x1ac0 xfs_dir_createname+0x58c/0x7f0 xfs_create+0x7af/0x1010 xfs_generic_create+0x270/0x5e0 path_openat+0x270b/0x3450 do_filp_open+0x1cf/0x2b0 do_sys_openat2+0x46b/0x7a0 do_sys_open+0xb7/0x130 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7fe4d9e9312b Code: 25 00 00 41 00 3d 00 00 41 00 74 4b 64 8b 04 25 18 00 00 00 85 c0 75 67 44 89 e2 48 89 ee bf 9c ff ff ff b8 01 01 00 00 0f 05 <48> 3d 00 f0 ff ff 0f 87 91 00 00 00 48 8b 4c 24 28 64 48 33 0c 25 RSP: 002b:00007ffda4c16c20 EFLAGS: 00000246 ORIG_RAX: 0000000000000101 RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007fe4d9e9312b RDX: 0000000000000941 RSI: 00007ffda4c17f33 RDI: 00000000ffffff9c RBP: 00007ffda4c17f33 R08: 0000000000000000 R09: 0000000000000000 R10: 00000000000001b6 R11: 0000000000000246 R12: 0000000000000941 R13: 00007fe4d9f631a4 R14: 00007ffda4c17f33 R15: 0000000000000000 </TASK> The buggy address belongs to the physical page: page:ffffea000405a2c0 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x10168b flags: 0x2fffff80000000(node=0|zone=2|lastcpupid=0x1fffff) raw: 002fffff80000000 ffffea0004057788 ffffea000402dbc8 0000000000000000 raw: 0000000000000000 0000000000170000 00000000ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88810168af00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff88810168af80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff88810168b000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff88810168b080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff88810168b100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ================================================================== Disabling lock debugging due to kernel taint 00000000: 58 44 44 33 5b 53 35 c2 00 00 00 00 00 00 00 78 XDD3[S5........x XFS (sdb): Internal error xfs_dir2_data_use_free at line 1200 of file fs/xfs/libxfs/xfs_dir2_data.c. Caller xfs_dir2_data_use_free+0x28a/0xeb0 CPU: 5 PID: 1552 Comm: touch Tainted: G B 6.0.0-rc3+ Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x4d/0x66 xfs_corruption_error+0x132/0x150 xfs_dir2_data_use_free+0x198/0xeb0 xfs_dir2_leaf_addname+0xa59/0x1ac0 xfs_dir_createname+0x58c/0x7f0 xfs_create+0x7af/0x1010 xfs_generic_create+0x270/0x5e0 path_openat+0x270b/0x3450 do_filp_open+0x1cf/0x2b0 do_sys_openat2+0x46b/0x7a0 do_sys_open+0xb7/0x130 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7fe4d9e9312b Code: 25 00 00 41 00 3d 00 00 41 00 74 4b 64 8b 04 25 18 00 00 00 85 c0 75 67 44 89 e2 48 89 ee bf 9c ff ff ff b8 01 01 00 00 0f 05 <48> 3d 00 f0 ff ff 0f 87 91 00 00 00 48 8b 4c 24 28 64 48 33 0c 25 RSP: 002b:00007ffda4c16c20 EFLAGS: 00000246 ORIG_RAX: 0000000000000101 RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007fe4d9e9312b RDX: 0000000000000941 RSI: 00007ffda4c17f46 RDI: 00000000ffffff9c RBP: 00007ffda4c17f46 R08: 0000000000000000 R09: 0000000000000001 R10: 00000000000001b6 R11: 0000000000000246 R12: 0000000000000941 R13: 00007fe4d9f631a4 R14: 00007ffda4c17f46 R15: 0000000000000000 </TASK> XFS (sdb): Corruption detected. Unmount and run xfs_repair [1] https://lore.kernel.org/all/20220928095355.2074025-1-guoxuenan@huawei.com/ Reviewed-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Guo Xuenan <guoxuenan@huawei.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Jason A. Donenfeld
|
a251c17aa5 |
treewide: use get_random_u32() when possible
The prandom_u32() function has been a deprecated inline wrapper around get_random_u32() for several releases now, and compiles down to the exact same code. Replace the deprecated wrapper with a direct call to the real function. The same also applies to get_random_int(), which is just a wrapper around get_random_u32(). This was done as a basic find and replace. Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Yury Norov <yury.norov@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake Acked-by: Chuck Lever <chuck.lever@oracle.com> # for nfsd Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com> # for thunderbolt Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs Acked-by: Helge Deller <deller@gmx.de> # for parisc Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390 Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> |
||
Jason A. Donenfeld
|
81895a65ec |
treewide: use prandom_u32_max() when possible, part 1
Rather than incurring a division or requesting too many random bytes for the given range, use the prandom_u32_max() function, which only takes the minimum required bytes from the RNG and avoids divisions. This was done mechanically with this coccinelle script: @basic@ expression E; type T; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u64; @@ ( - ((T)get_random_u32() % (E)) + prandom_u32_max(E) | - ((T)get_random_u32() & ((E) - 1)) + prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2) | - ((u64)(E) * get_random_u32() >> 32) + prandom_u32_max(E) | - ((T)get_random_u32() & ~PAGE_MASK) + prandom_u32_max(PAGE_SIZE) ) @multi_line@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; identifier RAND; expression E; @@ - RAND = get_random_u32(); ... when != RAND - RAND %= (E); + RAND = prandom_u32_max(E); // Find a potential literal @literal_mask@ expression LITERAL; type T; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; position p; @@ ((T)get_random_u32()@p & (LITERAL)) // Add one to the literal. @script:python add_one@ literal << literal_mask.LITERAL; RESULT; @@ value = None if literal.startswith('0x'): value = int(literal, 16) elif literal[0] in '123456789': value = int(literal, 10) if value is None: print("I don't know how to handle %s" % (literal)) cocci.include_match(False) elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1: print("Skipping 0x%x for cleanup elsewhere" % (value)) cocci.include_match(False) elif value & (value + 1) != 0: print("Skipping 0x%x because it's not a power of two minus one" % (value)) cocci.include_match(False) elif literal.startswith('0x'): coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1)) else: coccinelle.RESULT = cocci.make_expr("%d" % (value + 1)) // Replace the literal mask with the calculated result. @plus_one@ expression literal_mask.LITERAL; position literal_mask.p; expression add_one.RESULT; identifier FUNC; @@ - (FUNC()@p & (LITERAL)) + prandom_u32_max(RESULT) @collapse_ret@ type T; identifier VAR; expression E; @@ { - T VAR; - VAR = (E); - return VAR; + return E; } @drop_var@ type T; identifier VAR; @@ { - T VAR; ... when != VAR } Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Yury Norov <yury.norov@gmail.com> Reviewed-by: KP Singh <kpsingh@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 and sbitmap Reviewed-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> # for drbd Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390 Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> |
||
Shida Zhang
|
c098576f5f |
xfs: rearrange the logic and remove the broken comment for xfs_dir2_isxx
xfs_dir2_isleaf is used to see if the directory is a single-leaf form directory instead, as commented right above the function. Besides getting rid of the broken comment, we rearrange the logic by converting everything over to standard formatting and conventions, at the same time, to make it easier to understand and self documenting. Signed-off-by: Shida Zhang <zhangshida@kylinos.cn> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Dave Chinner <david@fromorbit.com> |
||
Shida Zhang
|
44159659df |
xfs: trim the mapp array accordingly in xfs_da_grow_inode_int
Take a look at the for-loop in xfs_da_grow_inode_int: ====== for(){ nmap = min(XFS_BMAP_MAX_NMAP, count); ... error = xfs_bmapi_write(...,&mapp[mapi], &nmap);//(..., $1, $2) ... mapi += nmap; } ===== where $1 stands for the start address of the array, while $2 is used to indicate the size of the array. The array $1 will advance by $nmap in each iteration after the allocation of extents. But the size $2 still remains unchanged, which is determined by min(XFS_BMAP_MAX_NMAP, count). It seems that it has forgotten to trim the mapp array after each iteration, so change it. Signed-off-by: Shida Zhang <zhangshida@kylinos.cn> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Dave Chinner <david@fromorbit.com> |
||
ye xingchen
|
abda5271f8 |
xfs: Remove the unneeded result variable
Return the value xfs_dir_cilookup_result() directly instead of storing it in another redundant variable. Reported-by: Zeal Robot <zealci@zte.com.cn> Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Dave Chinner <david@fromorbit.com> |
||
Zeng Heng
|
78b0f58bdf |
xfs: clean up "%Ld/%Lu" which doesn't meet C standard
The "%Ld" specifier, which represents long long unsigned, doesn't meet C language standard, and even more, it makes people easily mistake with "%ld", which represent long unsigned. So replace "%Ld" with "lld". Do the same with "%Lu". Signed-off-by: Zeng Heng <zengheng4@huawei.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com> |
||
hexiaole
|
031d166f96 |
xfs: fix inode reservation space for removing transaction
In 'fs/xfs/libxfs/xfs_trans_resv.c', the comment for transaction of removing a directory entry writes: /* fs/xfs/libxfs/xfs_trans_resv.c begin */ /* * For removing a directory entry we can modify: * the parent directory inode: inode size * the removed inode: inode size ... xfs_calc_remove_reservation( struct xfs_mount *mp) { return XFS_DQUOT_LOGRES(mp) + xfs_calc_iunlink_add_reservation(mp) + max((xfs_calc_inode_res(mp, 1) + ... /* fs/xfs/libxfs/xfs_trans_resv.c end */ There has 2 inode size of space to be reserverd, but the actual code for inode reservation space writes. There only count for 1 inode size to be reserved in 'xfs_calc_inode_res(mp, 1)', rather than 2. Signed-off-by: hexiaole <hexiaole@kylinos.cn> Reviewed-by: Darrick J. Wong <djwong@kernel.org> [djwong: remove redundant code citations] Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Slark Xiao
|
4869b6e84a |
xfs: Fix typo 'the the' in comment
Replace 'the the' with 'the' in the comment. Signed-off-by: Slark Xiao <slark_xiao@163.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Darrick J. Wong
|
c78c2d0903 |
xfs: don't leak memory when attr fork loading fails
I observed the following evidence of a memory leak while running xfs/399 from the xfs fsck test suite (edited for brevity): XFS (sde): Metadata corruption detected at xfs_attr_shortform_verify_struct.part.0+0x7b/0xb0 [xfs], inode 0x1172 attr fork XFS: Assertion failed: ip->i_af.if_u1.if_data == NULL, file: fs/xfs/libxfs/xfs_inode_fork.c, line: 315 ------------[ cut here ]------------ WARNING: CPU: 2 PID: 91635 at fs/xfs/xfs_message.c:104 assfail+0x46/0x4a [xfs] CPU: 2 PID: 91635 Comm: xfs_scrub Tainted: G W 5.19.0-rc7-xfsx #rc7 6e6475eb29fd9dda3181f81b7ca7ff961d277a40 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 RIP: 0010:assfail+0x46/0x4a [xfs] Call Trace: <TASK> xfs_ifork_zap_attr+0x7c/0xb0 xfs_iformat_attr_fork+0x86/0x110 xfs_inode_from_disk+0x41d/0x480 xfs_iget+0x389/0xd70 xfs_bulkstat_one_int+0x5b/0x540 xfs_bulkstat_iwalk+0x1e/0x30 xfs_iwalk_ag_recs+0xd1/0x160 xfs_iwalk_run_callbacks+0xb9/0x180 xfs_iwalk_ag+0x1d8/0x2e0 xfs_iwalk+0x141/0x220 xfs_bulkstat+0x105/0x180 xfs_ioc_bulkstat.constprop.0.isra.0+0xc5/0x130 xfs_file_ioctl+0xa5f/0xef0 __x64_sys_ioctl+0x82/0xa0 do_syscall_64+0x2b/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 This newly-added assertion checks that there aren't any incore data structures hanging off the incore fork when we're trying to reset its contents. From the call trace, it is evident that iget was trying to construct an incore inode from the ondisk inode, but the attr fork verifier failed and we were trying to undo all the memory allocations that we had done earlier. The three assertions in xfs_ifork_zap_attr check that the caller has already called xfs_idestroy_fork, which clearly has not been done here. As the zap function then zeroes the pointers, we've effectively leaked the memory. The shortest change would have been to insert an extra call to xfs_idestroy_fork, but it makes more sense to bundle the _idestroy_fork call into _zap_attr, since all other callsites call _idestroy_fork immediately prior to calling _zap_attr. IOWs, it eliminates one way to fail. Note: This change only applies cleanly to |
||
Dan Carpenter
|
3f52e016af |
xfs: delete unnecessary NULL checks
These NULL check are no long needed after commit
|
||
Xiaole He
|
fdbae121b4 |
xfs: fix comment for start time value of inode with bigtime enabled
The 'ctime', 'mtime', and 'atime' for inode is the type of 'xfs_timestamp_t', which is a 64-bit type: /* fs/xfs/libxfs/xfs_format.h begin */ typedef __be64 xfs_timestamp_t; /* fs/xfs/libxfs/xfs_format.h end */ When the 'bigtime' feature is disabled, this 64-bit type is splitted into two parts of 32-bit, one part is encoded for seconds since 1970-01-01 00:00:00 UTC, the other part is encoded for nanoseconds above the seconds, this two parts are the type of 'xfs_legacy_timestamp' and the min and max time value of this type are defined as macros 'XFS_LEGACY_TIME_MIN' and 'XFS_LEGACY_TIME_MAX': /* fs/xfs/libxfs/xfs_format.h begin */ struct xfs_legacy_timestamp { __be32 t_sec; /* timestamp seconds */ __be32 t_nsec; /* timestamp nanoseconds */ }; #define XFS_LEGACY_TIME_MIN ((int64_t)S32_MIN) #define XFS_LEGACY_TIME_MAX ((int64_t)S32_MAX) /* fs/xfs/libxfs/xfs_format.h end */ /* include/linux/limits.h begin */ #define U32_MAX ((u32)~0U) #define S32_MAX ((s32)(U32_MAX >> 1)) #define S32_MIN ((s32)(-S32_MAX - 1)) /* include/linux/limits.h end */ 'XFS_LEGACY_TIME_MIN' is the min time value of the 'xfs_legacy_timestamp', that is -(2^31) seconds relative to the 1970-01-01 00:00:00 UTC, it can be converted to human-friendly time value by 'date' command: /* command begin */ [root@~]# date --utc -d '@0' +'%Y-%m-%d %H:%M:%S' 1970-01-01 00:00:00 [root@~]# date --utc -d "@`echo '-(2^31)'|bc`" +'%Y-%m-%d %H:%M:%S' 1901-12-13 20:45:52 [root@~]# /* command end */ When 'bigtime' feature is enabled, this 64-bit type becomes a 64-bit nanoseconds counter, with the start time value is the min time value of 'xfs_legacy_timestamp'(start time means the value of 64-bit nanoseconds counter is 0). We have already caculated the min time value of 'xfs_legacy_timestamp', that is 1901-12-13 20:45:52 UTC, but the comment for the start time value of inode with 'bigtime' feature enabled writes the value is 1901-12-31 20:45:52 UTC: /* fs/xfs/libxfs/xfs_format.h begin */ /* * XFS Timestamps * ============== * When the bigtime feature is enabled, ondisk inode timestamps become an * unsigned 64-bit nanoseconds counter. This means that the bigtime inode * timestamp epoch is the start of the classic timestamp range, which is * Dec 31 20:45:52 UTC 1901. ... ... */ /* fs/xfs/libxfs/xfs_format.h end */ That is a typo, and this patch corrects the typo, from 'Dec 31' to 'Dec 13'. Suggested-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Xiaole He <hexiaole@kylinos.cn> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Darrick J. Wong
|
6d200bdc01 |
xfs: make attr forks permanent
This series fixes a use-after-free bug that syzbot uncovered. The UAF itself is a result of a race condition between getxattr and removexattr because callers to getxattr do not necessarily take any sort of locks before calling into the filesystem. Although the race condition itself can be fixed through clever use of a memory barrier, further consideration of the use cases of extended attributes shows that most files always have at least one attribute, so we might as well make them permanent. v2: Minor tweaks suggested by Dave, and convert some more macros to helper functions. Signed-off-by: Darrick J. Wong <djwong@kernel.org> -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmLQRsAACgkQ+H93GTRK tOseOw/+JdSH2MU2xx+XoE5M/fStzGpw0UsoOqDo8kUPKDt3z12NwuczlL4OAiuw XFrN/1IAnxBsTD9YxFYbqoCPNi/VR81ajfWV7JqD2B1Joj0aATsxGDdNUYJnxCdU HMlMqP5o77XvArwkxFbgxYi7UGdAeNwXxqUJcJ8FopQo2lb8+SG6XzpLgGKnyrKT FRNKXNObplhtzOs/Bv8qYAxJulmmjkktFJXhK2OAUJlIDjFwFY9Wo2T4QuOVe9w+ NXFOYyu0BqWLpDZQkYKWoCnF0GNsUavS8DP6zZYW3qJ6mX/f1jmtfbOLAkHNhlh8 uHy/3k3SeQhKztTqM28sPioe6mdj2xocorDCCVBgGXgWxVF6aWeM/PS4tMTWN/Bg TWd1egERpeVC0Ymkm0LTCIDNuLqxsknK1G6sxXhwrQ8cw/70Gl08ePwgdyZ6hpD9 Q61iJQofcI7MJX189a2VSbbHRzFnZIA+uVK4oyhmdEkQVKTHgmzwHVP660oAv9bD Y5hqkWEoyKTaaCsOWRAPVXG3k03lq+TNcaGggZgwFx11Gw4oMEx5hMUztoP54xX4 aEXb1HWcCmMxy8llnFY/82baW98ucwl8FwWF1qhNIPT40mYx9IobDmvkCtNrAoOC 41U7O8CxxPlt7XKxoRhafQOAhzp0ZzuhCdbaFIUENV7pTAJtq5Q= =W3Ad -----END PGP SIGNATURE----- Merge tag 'make-attr-fork-permanent-5.20_2022-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.20-mergeB xfs: make attr forks permanent This series fixes a use-after-free bug that syzbot uncovered. The UAF itself is a result of a race condition between getxattr and removexattr because callers to getxattr do not necessarily take any sort of locks before calling into the filesystem. Although the race condition itself can be fixed through clever use of a memory barrier, further consideration of the use cases of extended attributes shows that most files always have at least one attribute, so we might as well make them permanent. v2: Minor tweaks suggested by Dave, and convert some more macros to helper functions. Signed-off-by: Darrick J. Wong <djwong@kernel.org> * tag 'make-attr-fork-permanent-5.20_2022-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux: xfs: replace inode fork size macros with functions xfs: replace XFS_IFORK_Q with a proper predicate function xfs: use XFS_IFORK_Q to determine the presence of an xattr fork xfs: make inode attribute forks a permanent part of struct xfs_inode xfs: convert XFS_IFORK_PTR to a static inline helper |
||
Darrick J. Wong
|
35c5a09f53 |
xfs: lockless buffer cache lookups
Current work to merge the XFS inode life cycle with the VFS inode life cycle is finding some interesting issues. If we have a path that hits buffer trylocks fairly hard (e.g. a non-blocking background inode freeing function), we end up hitting massive contention on the buffer cache hash locks: - 92.71% 0.05% [kernel] [k] xfs_inodegc_worker - 92.67% xfs_inodegc_worker - 92.13% xfs_inode_unlink - 91.52% xfs_inactive_ifree - 85.63% xfs_read_agi - 85.61% xfs_trans_read_buf_map - 85.59% xfs_buf_read_map - xfs_buf_get_map - 85.55% xfs_buf_find - 72.87% _raw_spin_lock - do_raw_spin_lock 71.86% __pv_queued_spin_lock_slowpath - 8.74% xfs_buf_rele - 7.88% _raw_spin_lock - 7.88% do_raw_spin_lock 7.63% __pv_queued_spin_lock_slowpath - 1.70% xfs_buf_trylock - 1.68% down_trylock - 1.41% _raw_spin_lock_irqsave - 1.39% do_raw_spin_lock __pv_queued_spin_lock_slowpath - 0.76% _raw_spin_unlock 0.75% do_raw_spin_unlock This is basically hammering the pag->pag_buf_lock from lots of CPUs doing trylocks at the same time. Most of the buffer trylock operations ultimately fail after we've done the lookup, so we're really hammering the buf hash lock whilst making no progress. We can also see significant spinlock traffic on the same lock just under normal operation when lots of tasks are accessing metadata from the same AG, so let's avoid all this by creating a lookup fast path which leverages the rhashtable's ability to do RCU protected lookups. Signed-off-by: Dave Chinner <dchinner@redhat.com> -----BEGIN PGP SIGNATURE----- iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmLPvngUHGRhdmlkQGZy b21vcmJpdC5jb20ACgkQregpR/R1+h0gTw/9EK1gj31QpurgGziYsL0JFI1Uq33Z 2rB/yTJXzxe+J7cE6B2RYuSj4EK7YI1aZXTRC5De5A8TqbFaNztrigqxNNpm3jh0 T0AbVQoY7XzjbvMHQ0VFPBcJGcVbQypA+rabSlLHfU9zfN3t4EnM+BmuaFqygGZj 1A6ZjkVChmEprGjd16846sgvMqdLa4yJ4/9Jsu5WlI+vPZj9gJX/7Mjc580Zljb5 gg9Cf8ziW78gpHzj3ufSWv2jBcWcMdyHpyCF/fNceROUaxmZKsMUDKcsia9TyQhB yJXxw9Rnb3F23VJSYMJIcf4+RTd7iqd88GhEEFYxj41gI/jQxqRovlS1ljk2l20R 3i4TUs7yF24sLLQdL8YkJiGCOEvRqPPcNd4xfGwdioRwXwoEqB7L/vYpUheQ8qSZ Tnn4vmGm+GQHNnQNhxiF8KkAd9gwcUslN36ZJn+h3zjvfgAFQFChsk+3CoFoxsth BpbFT3lo4Hc6xJBDCp7Z3Gxurxq5fQ2CGYHxCBT4feNkZS5YOLd/Os2hIZVId8XA jp66ZyELd8zj+CxMp4ZyYqsFETIao13B8KPEqvI2/obEDE6p/++olP8aqKIP1C8d ASOjxP8KqWEHLe3or4W3m2WSDa5fp1b3G/mjS7r/jDKqIuTMZXYw4CJx1x3rTr4F nXAnlWoGVq7HjWc= =8UYp -----END PGP SIGNATURE----- Merge tag 'xfs-buf-lockless-lookup-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB xfs: lockless buffer cache lookups Current work to merge the XFS inode life cycle with the VFS inode life cycle is finding some interesting issues. If we have a path that hits buffer trylocks fairly hard (e.g. a non-blocking background inode freeing function), we end up hitting massive contention on the buffer cache hash locks: - 92.71% 0.05% [kernel] [k] xfs_inodegc_worker - 92.67% xfs_inodegc_worker - 92.13% xfs_inode_unlink - 91.52% xfs_inactive_ifree - 85.63% xfs_read_agi - 85.61% xfs_trans_read_buf_map - 85.59% xfs_buf_read_map - xfs_buf_get_map - 85.55% xfs_buf_find - 72.87% _raw_spin_lock - do_raw_spin_lock 71.86% __pv_queued_spin_lock_slowpath - 8.74% xfs_buf_rele - 7.88% _raw_spin_lock - 7.88% do_raw_spin_lock 7.63% __pv_queued_spin_lock_slowpath - 1.70% xfs_buf_trylock - 1.68% down_trylock - 1.41% _raw_spin_lock_irqsave - 1.39% do_raw_spin_lock __pv_queued_spin_lock_slowpath - 0.76% _raw_spin_unlock 0.75% do_raw_spin_unlock This is basically hammering the pag->pag_buf_lock from lots of CPUs doing trylocks at the same time. Most of the buffer trylock operations ultimately fail after we've done the lookup, so we're really hammering the buf hash lock whilst making no progress. We can also see significant spinlock traffic on the same lock just under normal operation when lots of tasks are accessing metadata from the same AG, so let's avoid all this by creating a lookup fast path which leverages the rhashtable's ability to do RCU protected lookups. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org> * tag 'xfs-buf-lockless-lookup-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: xfs: lockless buffer lookup xfs: remove a superflous hash lookup when inserting new buffers xfs: reduce the number of atomic when locking a buffer after lookup xfs: merge xfs_buf_find() and xfs_buf_get_map() xfs: break up xfs_buf_find() into individual pieces xfs: rework xfs_buf_incore() API |
||
Darrick J. Wong
|
4613b17cc4 |
xfs: introduce in-memory inode unlink log items
To facilitate future improvements in inode logging and improving inode cluster buffer locking order consistency, we need a new mechanism for defering inode cluster buffer modifications during unlinked list modifications. The unlinked inode list buffer locking is complex. The unlinked list is unordered - we add to the tail, remove from where-ever the inode is in the list. Hence we might need to lock two inode buffers here (previous inode in list and the one being removed). While we can order the locking of these buffers correctly within the confines of the unlinked list, there may be other inodes that need buffer locking in the same transaction. e.g. O_TMPFILE being linked into a directory also modifies the directory inode. Hence we need a mechanism for defering unlinked inode list updates until a point where we know that all modifications have been made and all that remains is to lock and modify the cluster buffers. We can do this by first observing that we serialise unlinked list modifications by holding the AGI buffer lock. IOWs, the AGI is going to be locked until the transaction commits any time we modify the unlinked list. Hence it doesn't matter when in the unlink transactions that we actually load, lock and modify the inode cluster buffer. We add an in-memory unlinked inode log item to defer the inode cluster buffer update to transaction commit time where it can be ordered with all the other inode cluster operations that need to be done. Essentially all we need to do is record the inodes that need to have their unlinked list pointer updated in a new log item that we attached to the transaction. This log item exists purely for the purpose of delaying the update of the unlinked list pointer until the inode cluster buffer can be locked in the correct order around the other inode cluster buffers. It plays no part in the actual commit, and there's no change to anything that is written to the log. i.e. the inode cluster buffers still have to be fully logged here (not just ordered) as log recovery depedends on this to replay mods to the unlinked inode list. Hence if we add a "precommit" hook into xfs_trans_commit() to run a "precommit" operation on these iunlink log items, we can delay the locking, modification and logging of the inode cluster buffer until after all other modifications have been made. The precommit hook reuires us to sort the items that are going to be run so that we can lock precommit items in the correct order as we perform the modifications they describe. To make this unlinked inode list processing simpler and easier to implement as a log item, we need to change the way we track the unlinked list in memory. Starting from the observation that an inode on the unlinked list is pinned in memory by the VFS, we can use the xfs_inode itself to track the unlinked list. To do this efficiently, we want the unlinked list to be a double linked list. The problem here is that we need a list per AGI unlinked list, and there are 64 of these per AGI. The approach taken in this patchset is to shadow the AGI unlinked list heads in the perag, and link inodes by agino, hence requiring only 8 extra bytes per inode to track this state. We can then use the agino pointers for lockless inode cache lookups to retreive the inode. The aginos in the inode are modified only under the AGI lock, just like the cluster buffer pointers, so we don't need any extra locking here. The i_next_unlinked field tracks the on-disk value of the unlinked list, and the i_prev_unlinked is a purely in-memory pointer that enables us to efficiently remove inodes from the middle of the list. This results in moving a lot of the unlink modification work into the precommit operations on the unlink log item. Tracking all the unlinked inodes in the inodes themselves also gets rid of the unlinked list reference hash table that is used to track this back pointer relationship. This greatly simplifies the the unlinked list modification code, and removes memory allocations in this hot path to track back pointers. This, overall, slightly reduces the CPU overhead of the unlink path. The result of this log item means that we move all the actual manipulation of objects to be logged out of the iunlink path and into the iunlink item. This allows for future optimisation of this mechanism without needing changes to high level unlink path, as well as making the unlink lock ordering predictable and synchronised with other operations that may require inode cluster locking. Signed-off-by: Dave Chinner <dchinner@redhat.com> -----BEGIN PGP SIGNATURE----- iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmLPvZAUHGRhdmlkQGZy b21vcmJpdC5jb20ACgkQregpR/R1+h2CDBAAj9QH4/XIe8JIx/mKgAGzcNNwQxu8 geBqb5S2ri0oB22pRXKc/3zArw/8zPwcgZF83ChkFrQ6tLn4JGkEEuvIKr3b8k50 2AEghYf8dqCaXRpkdvIGjJtdK54MFZIHv9TYRwHVzBp3WLtrz7uHmKeRf2qeSBMI DLurzVIbcocMptvHxrZZCpf1ajuVdovXtuw8ExiORZZKLOeF+3xBGztenkfh2BTO 8Kh8qJVSNN41XQ8h87PWyQtmah6JouqURXXGERJcgLbr80pTSw2EBihJvmXUmn8y qnoT27TCPAMOEDTWe+SHzLOVRLvhN+at/lFWbvas6PwOvDGAwQQtZkv/QyLTSgqD 6Zg9xJeeSgHhHP2kCeLlKmvW1dRptcUzhCWOrQ9Ry+WZnKK5ZenevkaAXAva6ucS NXwIU1DnWfJ51SHIYQiQIci2g+vF+pnJRQq1DtYUuwtBSWfsmw1uquNZodgbA9Ue k6hfk4qVua63k+vXsd5gVdCHT+Liw+1ldTInl2GNhT/riNzewO0HY3zmc1aZQyMM mymHXKVcQJbLpJvwqB5SXq8a37fbpoQDYlycptSF/YxxBhiCKKWuc6q7Tl6Y9VSS qpSHvh+MkJcP8PYtPjNUcJ9yeXhYJgkv1KK47zkIKzOD9a+zh4SIrfiBUflZbpQq M9ubXGHVmFqS4Nk= =59M0 -----END PGP SIGNATURE----- Merge tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB xfs: introduce in-memory inode unlink log items To facilitate future improvements in inode logging and improving inode cluster buffer locking order consistency, we need a new mechanism for defering inode cluster buffer modifications during unlinked list modifications. The unlinked inode list buffer locking is complex. The unlinked list is unordered - we add to the tail, remove from where-ever the inode is in the list. Hence we might need to lock two inode buffers here (previous inode in list and the one being removed). While we can order the locking of these buffers correctly within the confines of the unlinked list, there may be other inodes that need buffer locking in the same transaction. e.g. O_TMPFILE being linked into a directory also modifies the directory inode. Hence we need a mechanism for defering unlinked inode list updates until a point where we know that all modifications have been made and all that remains is to lock and modify the cluster buffers. We can do this by first observing that we serialise unlinked list modifications by holding the AGI buffer lock. IOWs, the AGI is going to be locked until the transaction commits any time we modify the unlinked list. Hence it doesn't matter when in the unlink transactions that we actually load, lock and modify the inode cluster buffer. We add an in-memory unlinked inode log item to defer the inode cluster buffer update to transaction commit time where it can be ordered with all the other inode cluster operations that need to be done. Essentially all we need to do is record the inodes that need to have their unlinked list pointer updated in a new log item that we attached to the transaction. This log item exists purely for the purpose of delaying the update of the unlinked list pointer until the inode cluster buffer can be locked in the correct order around the other inode cluster buffers. It plays no part in the actual commit, and there's no change to anything that is written to the log. i.e. the inode cluster buffers still have to be fully logged here (not just ordered) as log recovery depedends on this to replay mods to the unlinked inode list. Hence if we add a "precommit" hook into xfs_trans_commit() to run a "precommit" operation on these iunlink log items, we can delay the locking, modification and logging of the inode cluster buffer until after all other modifications have been made. The precommit hook reuires us to sort the items that are going to be run so that we can lock precommit items in the correct order as we perform the modifications they describe. To make this unlinked inode list processing simpler and easier to implement as a log item, we need to change the way we track the unlinked list in memory. Starting from the observation that an inode on the unlinked list is pinned in memory by the VFS, we can use the xfs_inode itself to track the unlinked list. To do this efficiently, we want the unlinked list to be a double linked list. The problem here is that we need a list per AGI unlinked list, and there are 64 of these per AGI. The approach taken in this patchset is to shadow the AGI unlinked list heads in the perag, and link inodes by agino, hence requiring only 8 extra bytes per inode to track this state. We can then use the agino pointers for lockless inode cache lookups to retreive the inode. The aginos in the inode are modified only under the AGI lock, just like the cluster buffer pointers, so we don't need any extra locking here. The i_next_unlinked field tracks the on-disk value of the unlinked list, and the i_prev_unlinked is a purely in-memory pointer that enables us to efficiently remove inodes from the middle of the list. This results in moving a lot of the unlink modification work into the precommit operations on the unlink log item. Tracking all the unlinked inodes in the inodes themselves also gets rid of the unlinked list reference hash table that is used to track this back pointer relationship. This greatly simplifies the the unlinked list modification code, and removes memory allocations in this hot path to track back pointers. This, overall, slightly reduces the CPU overhead of the unlink path. The result of this log item means that we move all the actual manipulation of objects to be logged out of the iunlink path and into the iunlink item. This allows for future optimisation of this mechanism without needing changes to high level unlink path, as well as making the unlink lock ordering predictable and synchronised with other operations that may require inode cluster locking. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org> * tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: xfs: add in-memory iunlink log item xfs: add log item precommit operation xfs: combine iunlink inode update functions xfs: clean up xfs_iunlink_update_inode() xfs: double link the unlinked inode list xfs: introduce xfs_iunlink_lookup xfs: refactor xlog_recover_process_iunlinks() xfs: track the iunlink list pointer in the xfs_inode xfs: factor the xfs_iunlink functions xfs: flush inode gc workqueue before clearing agi bucket |
||
Dave Chinner
|
2fd26cc07e |
xfs: double link the unlinked inode list
Now we have forwards traversal via the incore inode in place, we now need to add back pointers to the incore inode to entirely replace the back reference cache. We use the same lookup semantics and constraints as for the forwards pointer lookups during unlinks, and so we can look up any inode in the unlinked list directly and update the list pointers, forwards or backwards, at any time. The only wrinkle in converting the unlinked list manipulations to use in-core previous pointers is that log recovery doesn't have the incore inode state built up so it can't just read in an inode and release it to finish off the unlink. Hence we need to modify the traversal in recovery to read one inode ahead before we release the inode at the head of the list. This populates the next->prev relationship sufficient to be able to replay the unlinked list and hence greatly simplify the runtime code. This recovery algorithm also requires that we actually remove inodes from the unlinked list one at a time as background inode inactivation will result in unlinked list removal racing with the building of the in-memory unlinked list state. We could serialise this by holding the AGI buffer lock when constructing the in memory state, but all that does is lockstep background processing with list building. It is much simpler to flush the inodegc immediately after releasing the inode so that it is unlinked immediately and there is no races present at all. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> |
||
Dave Chinner
|
4fcc94d653 |
xfs: track the iunlink list pointer in the xfs_inode
Having direct access to the i_next_unlinked pointer in unlinked inodes greatly simplifies the processing of inodes on the unlinked list. We no longer need to look up the inode buffer just to find next inode in the list if the xfs_inode is in memory. These improvements will be realised over upcoming patches as other dependencies on the inode buffer for unlinked list processing are removed. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> |
||
Darrick J. Wong
|
c01147d929 |
xfs: replace inode fork size macros with functions
Replace the shouty macros here with typechecked helper functions. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |