While debugging some very strange rmap corruption reports in connection
with the online directory repair code. I root-caused the error to the
following incorrect sequence:
<start repair transaction>
<expand directory, causing a deferred rmap to be queued>
<roll transaction>
<cancel transaction>
Obviously, we should have committed the transaction instead of
cancelling it. Thinking more broadly, however, xfs_trans_cancel should
have warned us that we were throwing away work item that we already
committed to performing. This is not correct, and we need to shut down
the filesystem.
Change xfs_trans_cancel to complain in the loudest manner if we're
cancelling any transaction with deferred work items attached.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Now that we've gotten rid of the kmem_zone_t typedef, rename the
variables to _cache since that's what they are.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Remove these typedefs by referencing kmem_cache directly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Remove the few leftover instances of the xfs_dinode_t typedef.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Remove the shouty macro and instead use the inline function that
matches other state/feature check wrapper naming. This conversion
was done with sed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Convert the xfs_sb_version_hasfoo() to checks against
mp->m_features. Checks of the superblock itself during disk
operations (e.g. in the read/write verifiers and the to/from disk
formatters) are not converted - they operate purely on the
superblock state. Everything else should use the mount features.
Large parts of this conversion were done with sed with commands like
this:
for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do
sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f
done
With manual cleanups for things like "xfs_has_extflgbit" and other
little inconsistencies in naming.
The result is ia lot less typing to check features and an XFS binary
size reduced by a bit over 3kB:
$ size -t fs/xfs/built-in.a
text data bss dec hex filenam
before 1130866 311352 484 1442702 16038e (TOTALS)
after 1127727 311352 484 1439563 15f74b (TOTALS)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The AIL pushing is stalling on log forces when it comes across
pinned items. This is happening on removal workloads where the AIL
is dominated by stale items that are removed from AIL when the
checkpoint that marks the items stale is committed to the journal.
This results is relatively few items in the AIL, but those that are
are often pinned as directories items are being removed from are
still being logged.
As a result, many push cycles through the CIL will first issue a
blocking log force to unpin the items. This can take some time to
complete, with tracing regularly showing push delays of half a
second and sometimes up into the range of several seconds. Sequences
like this aren't uncommon:
....
399.829437: xfsaild: last lsn 0x11002dd000 count 101 stuck 101 flushing 0 tout 20
<wanted 20ms, got 270ms delay>
400.099622: xfsaild: target 0x11002f3600, prev 0x11002f3600, last lsn 0x0
400.099623: xfsaild: first lsn 0x11002f3600
400.099679: xfsaild: last lsn 0x1100305000 count 16 stuck 11 flushing 0 tout 50
<wanted 50ms, got 500ms delay>
400.589348: xfsaild: target 0x110032e600, prev 0x11002f3600, last lsn 0x0
400.589349: xfsaild: first lsn 0x1100305000
400.589595: xfsaild: last lsn 0x110032e600 count 156 stuck 101 flushing 30 tout 50
<wanted 50ms, got 460ms delay>
400.950341: xfsaild: target 0x1100353000, prev 0x110032e600, last lsn 0x0
400.950343: xfsaild: first lsn 0x1100317c00
400.950436: xfsaild: last lsn 0x110033d200 count 105 stuck 101 flushing 0 tout 20
<wanted 20ms, got 200ms delay>
401.142333: xfsaild: target 0x1100361600, prev 0x1100353000, last lsn 0x0
401.142334: xfsaild: first lsn 0x110032e600
401.142535: xfsaild: last lsn 0x1100353000 count 122 stuck 101 flushing 8 tout 10
<wanted 10ms, got 10ms delay>
401.154323: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x1100353000
401.154328: xfsaild: first lsn 0x1100353000
401.154389: xfsaild: last lsn 0x1100353000 count 101 stuck 101 flushing 0 tout 20
<wanted 20ms, got 300ms delay>
401.451525: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x0
401.451526: xfsaild: first lsn 0x1100353000
401.451804: xfsaild: last lsn 0x1100377200 count 170 stuck 22 flushing 122 tout 50
<wanted 50ms, got 500ms delay>
401.933581: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x0
....
In each of these cases, every AIL pass saw 101 log items stuck on
the AIL (pinned) with very few other items being found. Each pass, a
log force was issued, and delay between last/first is the sleep time
+ the sync log force time.
Some of these 101 items pinned the tail of the log. The tail of the
log does slowly creep forward (first lsn), but the problem is that
the log is actually out of reservation space because it's been
running so many transactions that stale items that never reach the
AIL but consume log space. Hence we have a largely empty AIL, with
long term pins on items that pin the tail of the log that don't get
pushed frequently enough to keep log space available.
The problem is the hundreds of milliseconds that we block in the log
force pushing the CIL out to disk. The AIL should not be stalled
like this - it needs to run and flush items that are at the tail of
the log with minimal latency. What we really need to do is trigger a
log flush, but then not wait for it at all - we've already done our
waiting for stuff to complete when we backed off prior to the log
force being issued.
Even if we remove the XFS_LOG_SYNC from the xfs_log_force() call, we
still do a blocking flush of the CIL and that is what is causing the
issue. Hence we need a new interface for the CIL to trigger an
immediate background push of the CIL to get it moving faster but not
to wait on that to occur. While the CIL is pushing, the AIL can also
be pushing.
We already have an internal interface to do this -
xlog_cil_push_now() - but we need a wrapper for it to be used
externally. xlog_cil_force_seq() can easily be extended to do what
we need as it already implements the synchronous CIL push via
xlog_cil_push_now(). Add the necessary flags and "push current
sequence" semantics to xlog_cil_force_seq() and convert the AIL
pushing to use it.
One of the complexities here is that the CIL push does not guarantee
that the commit record for the CIL checkpoint is written to disk.
The current log force ensures this by submitting the current ACTIVE
iclog that the commit record was written to. We need the CIL to
actually write this commit record to disk for an async push to
ensure that the checkpoint actually makes it to disk and unpins the
pinned items in the checkpoint on completion. Hence we need to pass
down to the CIL push that we are doing an async flush so that it can
switch out the commit_iclog if necessary to get written to disk when
the commit iclog is finally released.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Make it less shouty and a static inline before adding more calls
through the log code.
Also convert internal log code that uses XFS_FORCED_SHUTDOWN(mount)
to use xlog_is_shutdown(log) as well.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In xfs_trans_alloc, if the block reservation call returns ENOSPC, we
call xfs_blockgc_free_space with a NULL icwalk structure to try to free
space. Each frontend thread that encounters this situation starts its
own walk of the inode cache to see if it can find anything, which is
wasteful since we don't have any additional selection criteria. For
this one common case, create a function that reschedules all pending
background work immediately and flushes the workqueue so that the scan
can run in parallel.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In doing an investigation into AIL push stalls, I was looking at the
log force code to see if an async CIL push could be done instead.
This lead me to xfs_log_force_lsn() and looking at how it works.
xfs_log_force_lsn() is only called from inode synchronisation
contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn
value as the LSN to sync the log to. This gets passed to
xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the
journal, and then used by xfs_log_force_lsn() to flush the iclogs to
the journal.
The problem is that ip->i_itemp->ili_last_lsn does not store a
log sequence number. What it stores is passed to it from the
->iop_committing method, which is called by xfs_log_commit_cil().
The value this passes to the iop_committing method is the CIL
context sequence number that the item was committed to.
As it turns out, xlog_cil_force_lsn() converts the sequence to an
actual commit LSN for the related context and returns that to
xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn"
variable that contained a sequence with an actual LSN and then uses
that to sync the iclogs.
This caused me some confusion for a while, even though I originally
wrote all this code a decade ago. ->iop_committing is only used by
a couple of log item types, and only inode items use the sequence
number it is passed.
Let's clean up the API, CIL structures and inode log item to call it
a sequence number, and make it clear that the high level code is
using CIL sequence numbers and not on-disk LSNs for integrity
synchronisation purposes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Keep the mount superblock counters up to date for !lazysbcount
filesystems so that when we log the superblock they do not need
updating in any way because they are already correct.
It's found by what Zorro reported:
1. mkfs.xfs -f -l lazy-count=0 -m crc=0 $dev
2. mount $dev $mnt
3. fsstress -d $mnt -p 100 -n 1000 (maybe need more or less io load)
4. umount $mnt
5. xfs_repair -n $dev
and I've seen no problem with this patch.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reported-by: Zorro Lang <zlang@redhat.com>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
In commit f8f2835a9c we changed the behavior of XFS to use EFIs to
remove blocks from an overfilled AGFL because there were complaints
about transaction overruns that stemmed from trying to free multiple
blocks in a single transaction.
Unfortunately, that commit missed a subtlety in the debug-mode
transaction accounting when a realtime volume is attached. If a
realtime file undergoes a data fork mapping change such that realtime
extents are allocated (or freed) in the same transaction that a data
device block is also allocated (or freed), we can trip a debugging
assertion. This can happen (for example) if a realtime extent is
allocated and it is necessary to reshape the bmbt to hold the new
mapping.
When we go to allocate a bmbt block from an AG, the first thing the data
device block allocator does is ensure that the freelist is the proper
length. If the freelist is too long, it will trim the freelist to the
proper length.
In debug mode, trimming the freelist calls xfs_trans_agflist_delta() to
record the decrement in the AG free list count. Prior to f8f28 we would
put the free block back in the free space btrees in the same
transaction, which calls xfs_trans_agblocks_delta() to record the
increment in the AG free block count. Since AGFL blocks are included in
the global free block count (fdblocks), there is no corresponding
fdblocks update, so the AGFL free satisfies the following condition in
xfs_trans_apply_sb_deltas:
/*
* Check that superblock mods match the mods made to AGF counters.
*/
ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
(tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
tp->t_ag_btree_delta));
The comparison here used to be: (X + 0) == ((X+1) + -1 + 0), where X is
the number blocks that were allocated.
After commit f8f28 we defer the block freeing to the next chained
transaction, which means that the calls to xfs_trans_agflist_delta and
xfs_trans_agblocks_delta occur in separate transactions. The (first)
transaction that shortens the free list trips on the comparison, which
has now become:
(X + 0) == ((X) + -1 + 0)
because we haven't freed the AGFL block yet; we've only logged an
intention to free it. When the second transaction (the deferred free)
commits, it will evaluate the expression as:
(0 + 0) == (1 + 0 + 0)
and trip over that in turn.
At this point, the astute reader may note that the two commits tagged by
this patch have been in the kernel for a long time but haven't generated
any bug reports. How is it that the author became aware of this bug?
This originally surfaced as an intermittent failure when I was testing
realtime rmap, but a different bug report by Zorro Lang reveals the same
assertion occuring on !lazysbcount filesystems.
The common factor to both reports (and why this problem wasn't
previously reported) becomes apparent if we consider when
xfs_trans_apply_sb_deltas is called by __xfs_trans_commit():
if (tp->t_flags & XFS_TRANS_SB_DIRTY)
xfs_trans_apply_sb_deltas(tp);
With a modern lazysbcount filesystem, transactions update only the
percpu counters, so they don't need to set XFS_TRANS_SB_DIRTY, hence
xfs_trans_apply_sb_deltas is rarely called.
However, updates to the count of free realtime extents are not part of
lazysbcount, so XFS_TRANS_SB_DIRTY will be set on transactions adding or
removing data fork mappings to realtime files; similarly,
XFS_TRANS_SB_DIRTY is always set on !lazysbcount filesystems.
Dave mentioned in response to an earlier version of this patch:
"IIUC, what you are saying is that this debug code is simply not
exercised in normal testing and hasn't been for the past decade? And it
still won't be exercised on anything other than realtime device testing?
"...it was debugging code from 1994 that was largely turned into dead
code when lazysbcounters were introduced in 2007. Hence I'm not sure it
holds any value anymore."
This debugging code isn't especially helpful - you can modify the
flcount on one AG and the freeblks of another AG, and it won't trigger.
Add the fact that nobody noticed for a decade, and let's just get rid of
it (and start testing realtime :P).
This bug was found by running generic/051 on either a V4 filesystem
lacking lazysbcount; or a V5 filesystem with a realtime volume.
Cc: bfoster@redhat.com, zlang@redhat.com
Fixes: f8f2835a9c ("xfs: defer agfl block frees when dfops is available")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
In preparation of removing the historic icinode struct, move the nblocks
field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
As the first step of shrinking, this attempts to enable shrinking
unused space in the last allocation group by fixing up freespace
btree, agi, agf and adjusting super block and use a helper
xfs_ag_shrink_space() to fixup the last AG.
This can be all done in one transaction for now, so I think no
additional protection is needed.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
- 21.92% __xfs_trans_commit
- 21.62% xfs_log_commit_cil
- 11.69% xfs_trans_unreserve_and_mod_sb
- 11.58% __percpu_counter_compare
- 11.45% __percpu_counter_sum
- 10.29% _raw_spin_lock_irqsave
- 10.28% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
We debated just getting rid of it last time this came up and
there was no real objection to removing it. Now it's the biggest
scalability limitation for debug kernels even on smallish machines,
so let's just get rid of it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Because the iomap code using PF_MEMALLOC_NOFS to detect transaction
recursion in XFS is just wrong. Remove it from the iomap code and
replace it with XFS specific internal checks using
current->journal_info instead.
[djwong: This change also realigns the lifetime of NOFS flag changes to
match the incore transaction, instead of the inconsistent scheme we have
now.]
Fixes: 9070733b4e ("xfs: abstract PF_FSTRANS to PF_MEMALLOC_NOFS")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Brian Foster reported a lockdep warning on xfs/167:
============================================
WARNING: possible recursive locking detected
5.11.0-rc4 #35 Tainted: G W I
--------------------------------------------
fsstress/17733 is trying to acquire lock:
ffff8e0fd1d90650 (sb_internal){++++}-{0:0}, at: xfs_free_eofblocks+0x104/0x1d0 [xfs]
but task is already holding lock:
ffff8e0fd1d90650 (sb_internal){++++}-{0:0}, at: xfs_trans_alloc_inode+0x5f/0x160 [xfs]
stack backtrace:
CPU: 38 PID: 17733 Comm: fsstress Tainted: G W I 5.11.0-rc4 #35
Hardware name: Dell Inc. PowerEdge R740/01KPX8, BIOS 1.6.11 11/20/2018
Call Trace:
dump_stack+0x8b/0xb0
__lock_acquire.cold+0x159/0x2ab
lock_acquire+0x116/0x370
xfs_trans_alloc+0x1ad/0x310 [xfs]
xfs_free_eofblocks+0x104/0x1d0 [xfs]
xfs_blockgc_scan_inode+0x24/0x60 [xfs]
xfs_inode_walk_ag+0x202/0x4b0 [xfs]
xfs_inode_walk+0x66/0xc0 [xfs]
xfs_trans_alloc+0x160/0x310 [xfs]
xfs_trans_alloc_inode+0x5f/0x160 [xfs]
xfs_alloc_file_space+0x105/0x300 [xfs]
xfs_file_fallocate+0x270/0x460 [xfs]
vfs_fallocate+0x14d/0x3d0
__x64_sys_fallocate+0x3e/0x70
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The cause of this is the new code that spurs a scan to garbage collect
speculative preallocations if we fail to reserve enough blocks while
allocating a transaction. While the warning itself is a fairly benign
lockdep complaint, it does expose a potential livelock if the rwsem
behavior ever changes with regards to nesting read locks when someone's
waiting for a write lock.
Fix this by freeing the transaction and jumping back to xfs_trans_alloc
like this patch in the V4 submission[1].
[1] https://lore.kernel.org/linux-xfs/161142798066.2171939.9311024588681972086.stgit@magnolia/
Fixes: a1a7d05a05 ("xfs: flush speculative space allocations when we run out of space")
Reported-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If a fs modification (creation, file write, reflink, etc.) is unable to
reserve enough space to handle the modification, try clearing whatever
space the filesystem might have been hanging onto in the hopes of
speeding up the filesystem. The flushing behavior will become
particularly important when we add deferred inode inactivation because
that will increase the amount of space that isn't actively tied to user
data.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
If a file user, group, or project change is unable to reserve enough
quota to handle the modification, try clearing whatever space the
filesystem might have been hanging onto in the hopes of speeding up the
filesystem. The flushing behavior will become particularly important
when we add deferred inode inactivation because that will increase the
amount of space that isn't actively tied to user data.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
If an inode creation is unable to reserve enough quota to handle the
modification, try clearing whatever space the filesystem might have been
hanging onto in the hopes of speeding up the filesystem. The flushing
behavior will become particularly important when we add deferred inode
inactivation because that will increase the amount of space that isn't
actively tied to user data.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
If a fs modification (data write, reflink, xattr set, fallocate, etc.)
is unable to reserve enough quota to handle the modification, try
clearing whatever space the filesystem might have been hanging onto in
the hopes of speeding up the filesystem. The flushing behavior will
become particularly important when we add deferred inode inactivation
because that will increase the amount of space that isn't actively tied
to user data.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Now that the only caller of this function is xfs_trans_alloc_ichange,
just open-code the meat of _chown_reserve in that caller. Drop the
(redundant) [ugp]id checks because xfs has a 1:1 relationship between
quota ids and incore dquots.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
For file ownership (uid, gid, prid) changes, create a new helper
xfs_trans_alloc_ichange that allocates a transaction and reserves the
appropriate amount of quota against that transction in preparation for a
change of user, group, or project id. Replace all the open-coded idioms
with a single call to this helper so that we can contain the retry loops
in the next patchset.
This changes the locking behavior for ichange transactions slightly.
Since tr_ichange does not have a permanent reservation and cannot roll,
we pass XFS_ILOCK_EXCL to ijoin so that the inode will be unlocked
automatically at commit time.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
For file creation, create a new helper xfs_trans_alloc_icreate that
allocates a transaction and reserves the appropriate amount of quota
against that transction. Replace all the open-coded idioms with a
single call to this helper so that we can contain the retry loops in the
next patchset.
This changes the locking behavior for non-tempfile creation slightly, in
that we now make the quota reservation without holding the directory
ILOCK. While the dquots chosen for inode creation are based on the
directory state at a given point in time, the directory ILOCK was
released as soon as the dquot references are picked up. Hence it was
never necessary to hold the directory ILOCK for the quota reservation.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Make it so that we can reserve rt blocks with the xfs_trans_alloc_inode
wrapper function, then convert a few more callsites.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Create a new helper xfs_trans_alloc_inode that allocates a transaction,
locks and joins an inode to it, and then reserves the appropriate amount
of quota against that transction. Then replace all the open-coded
idioms with a single call to this helper.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Prepare for kernel xfs_buf alignment by getting rid of the
xfs_buf_t typedef from userspace.
[darrick: This patch is a port of a userspace patch removing the
xfs_buf_t typedef in preparation to make the userspace xfs_buf code
behave more like its kernel counterpart.]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
We should do the assert for all the log intent-done items if they appear
here. This patch detect intent-done items by the fact that their item ops
don't have iop_unpin and iop_push methods and also move the helper
xlog_item_is_intent to xfs_trans.h.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove the mp argument as this function is only called in transaction
context, and open code xfs_getsb given that the function already accesses
the buffer pointer in the mount point directly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use kmem_cache_zalloc() directly.
With the exception of xlog_ticket_alloc() which will be dealt on the
next patch for readability.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The rmapbt extent swap algorithm remaps individual extents between
the source inode and the target to trigger reverse mapping metadata
updates. If either inode straddles a format or other bmap allocation
boundary, the individual unmap and map cycles can trigger repeated
bmap block allocations and frees as the extent count bounces back
and forth across the boundary. While net block usage is bound across
the swap operation, this behavior can prematurely exhaust the
transaction block reservation because it continuously drains as the
transaction rolls. Each allocation accounts against the reservation
and each free returns to global free space on transaction roll.
The previous workaround to this problem attempted to detect this
boundary condition and provide surplus block reservation to
acommodate it. This is insufficient because more remaps can occur
than implied by the extent counts; if start offset boundaries are
not aligned between the two inodes, for example.
To address this problem more generically and dynamically, add a
transaction accounting mode that returns freed blocks to the
transaction reservation instead of the superblock counters on
transaction roll and use it when the rmapbt based algorithm is
active. This allows the chain of remap transactions to preserve the
block reservation based own its own frees and prevent premature
exhaustion regardless of the remap pattern. Note that this is only
safe for superblocks with lazy sb accounting, but the latter is
required for v5 supers and the rmap feature depends on v5.
Fixes: b3fed43482 ("xfs: account format bouncing into rmapbt swapext tx reservation")
Root-caused-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
It's a global atomic counter, and we are hitting it at a rate of
half a million transactions a second, so it's bouncing the counter
cacheline all over the place on large machines. We don't actually
need it anymore - it used to be required because the VFS freeze code
could not track/prevent filesystem transactions that were running,
but that problem no longer exists.
Hence to remove the counter, we simply have to ensure that nothing
calls xfs_sync_sb() while we are trying to quiesce the filesytem.
That only happens if the log worker is still running when we call
xfs_quiesce_attr(). The log worker is cancelled at the end of
xfs_quiesce_attr() by calling xfs_log_quiesce(), so just call it
early here and then we can remove the counter altogether.
Concurrent create, 50 million inodes, identical 16p/16GB virtual
machines on different physical hosts. Machine A has twice the CPU
cores per socket of machine B:
unpatched patched
machine A: 3m16s 2m00s
machine B: 4m04s 4m05s
Create rates:
unpatched patched
machine A: 282k+/-31k 468k+/-21k
machine B: 231k+/-8k 233k+/-11k
Concurrent rm of same 50 million inodes:
unpatched patched
machine A: 6m42s 2m33s
machine B: 4m47s 4m47s
The transaction rate on the fast machine went from just under
300k/sec to 700k/sec, which indicates just how much of a bottleneck
this atomic counter was.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Shaokun Zhang reported that XFS was using substantial CPU time in
percpu_count_sum() when running a single threaded benchmark on
a high CPU count (128p) machine from xfs_mod_ifree(). The issue
is that the filesystem is empty when the benchmark runs, so inode
allocation is running with a very low inode free count.
With the percpu counter batching, this means comparisons when the
counter is less that 128 * 256 = 32768 use the slow path of adding
up all the counters across the CPUs, and this is expensive on high
CPU count machines.
The summing in xfs_mod_ifree() is only used to fire an assert if an
underrun occurs. The error is ignored by the higher level code.
Hence this is really just debug code and we don't need to run it
on production kernels, nor do we need such debug checks to return
error values just to trigger an assert.
Finally, xfs_mod_icount/xfs_mod_ifree are only called from
xfs_trans_unreserve_and_mod_sb(), so get rid of them and just
directly call the percpu_counter_add/percpu_counter_compare
functions. The compare functions are now run only on debug builds as
they are internal to ASSERT() checks and so only compiled in when
ASSERTs are active (CONFIG_XFS_DEBUG=y or CONFIG_XFS_WARN=y).
Reported-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs: gut error handling in xfs_trans_unreserve_and_mod_sb()
From: Dave Chinner <dchinner@redhat.com>
The error handling in xfs_trans_unreserve_and_mod_sb() is largely
incorrect - rolling back the changes in the transaction if only one
counter underruns makes all the other counters incorrect. We still
allow the change to proceed and committing the transaction, except
now we have multiple incorrect counters instead of a single
underflow.
Further, we don't actually report the error to the caller, so this
is completely silent except on debug kernels that will assert on
failure before we even get to the rollback code. Hence this error
handling is broken, untested, and largely unnecessary complexity.
Just remove it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove xlog_ticket_done and just call the renamed low-level helpers for
ungranting or regranting log space directly. To make that a little
the reference put on the ticket and all tracing is moved into the actual
helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_log_done() does two separate things. Firstly, it triggers commit
records to be written for permanent transactions, and secondly it
releases or regrants transaction reservation space.
Since delayed logging was introduced, transactions no longer write
directly to the log, hence they never have the XLOG_TIC_INITED flag
cleared on them. Hence transactions never write commit records to
the log and only need to modify reservation space.
Split up xfs_log_done into two parts, and only call the parts of the
operation needed for the context xfs_log_done() is currently being
called from.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
I noticed that fsfreeze can take a very long time to freeze an XFS if
there happens to be a GETFSMAP caller running in the background. I also
happened to notice the following in dmesg:
------------[ cut here ]------------
WARNING: CPU: 2 PID: 43492 at fs/xfs/xfs_super.c:853 xfs_quiesce_attr+0x83/0x90 [xfs]
Modules linked in: xfs libcrc32c ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 ip_set_hash_ip ip_set_hash_net xt_tcpudp xt_set ip_set_hash_mac ip_set nfnetlink ip6table_filter ip6_tables bfq iptable_filter sch_fq_codel ip_tables x_tables nfsv4 af_packet [last unloaded: xfs]
CPU: 2 PID: 43492 Comm: xfs_io Not tainted 5.6.0-rc4-djw #rc4
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.10.2-1ubuntu1 04/01/2014
RIP: 0010:xfs_quiesce_attr+0x83/0x90 [xfs]
Code: 7c 07 00 00 85 c0 75 22 48 89 df 5b e9 96 c1 00 00 48 c7 c6 b0 2d 38 a0 48 89 df e8 57 64 ff ff 8b 83 7c 07 00 00 85 c0 74 de <0f> 0b 48 89 df 5b e9 72 c1 00 00 66 90 0f 1f 44 00 00 41 55 41 54
RSP: 0018:ffffc900030f3e28 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffff88802ac54000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff81e4a6f0 RDI: 00000000ffffffff
RBP: ffff88807859f070 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000010 R12: 0000000000000000
R13: ffff88807859f388 R14: ffff88807859f4b8 R15: ffff88807859f5e8
FS: 00007fad1c6c0fc0(0000) GS:ffff88807e000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f0c7d237000 CR3: 0000000077f01003 CR4: 00000000001606a0
Call Trace:
xfs_fs_freeze+0x25/0x40 [xfs]
freeze_super+0xc8/0x180
do_vfs_ioctl+0x70b/0x750
? __fget_files+0x135/0x210
ksys_ioctl+0x3a/0xb0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x50/0x1a0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
These two things appear to be related. The assertion trips when another
thread initiates a fsmap request (which uses an empty transaction) after
the freezer waited for m_active_trans to hit zero but before the the
freezer executes the WARN_ON just prior to calling xfs_log_quiesce.
The lengthy delays in freezing happen because the freezer calls
xfs_wait_buftarg to clean out the buffer lru list. Meanwhile, the
GETFSMAP caller is continuing to grab and release buffers, which means
that it can take a very long time for the buffer lru list to empty out.
We fix both of these races by calling sb_start_write to obtain freeze
protection while using empty transactions for GETFSMAP and for metadata
scrubbing. The other two users occur during mount, during which time we
cannot fs freeze.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Just dereference bp->b_addr directly and make the code a little
simpler and more clear.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We can remove it now, without needing to rework the KM_ flags.
Use kmem_cache_free() directly.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Since no caller is using KM_NOSLEEP and no callee branches on KM_SLEEP,
we can remove KM_NOSLEEP and replace KM_SLEEP with 0.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Instead of a magic flag for xfs_trans_alloc, just ensure all callers
that can't relclaim through the file system use memalloc_nofs_save to
set the per-task nofs flag.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There are many, many xfs header files which are included but
unneeded (or included twice) in the xfs code, so remove them.
nb: xfs_linux.h includes about 9 headers for everyone, so those
explicit includes get removed by this. I'm not sure what the
preference is, but if we wanted explicit includes everywhere,
a followup patch could remove those xfs_*.h includes from
xfs_linux.h and move them into the files that need them.
Or it could be left as-is.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We have various items that are released from ->iop_comitting. Add a
flag to just call ->iop_release from the commit path to avoid tons
of boilerplate code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The iop_unlock method is called when comitting or cancelling a
transaction. In the latter case, the transaction may or may not be
aborted. While there is no known problem with the current code in
practice, this implementation is limited in that any log item
implementation that might want to differentiate between a commit and a
cancellation must rely on the aborted state. The aborted bit is only
set when the cancelled transaction is dirty, however. This means that
there is no way to distinguish between a commit and a clean transaction
cancellation.
For example, intent log items currently rely on this distinction. The
log item is either transferred to the CIL on commit or released on
transaction cancel. There is currently no possibility for a clean intent
log item in a transaction, but if that state is ever introduced a cancel
of such a transaction will immediately result in memory leaks of the
associated log item(s). This is an interface deficiency and landmine.
To clean this up, replace the iop_unlock method with an iop_release
method that is specific to transaction cancel. The existing
iop_committing method occurs at the same time as iop_unlock in the
commit path and there is no need for two separate callbacks here.
Overload the iop_committing method with the current commit time
iop_unlock implementations to eliminate the need for the latter and
further simplify the interface.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
While commiting items looks very similar to freeing them on error it is
a different operation, and they will diverge a bit soon.
Split out the commit case from xfs_trans_free_items, inline it into
xfs_log_commit_cil and give it a separate trace point.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Just check if they are present first.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Just pass a straight bool aborted instead of abusing XFS_LI_ABORTED as a
flag in function parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The flags value is always passed as 0 so remove the argument.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We've had a few reports of lockdep tripping over memory reclaim
context vs filesystem freeze "deadlocks". They all have looked
to be false positives on analysis, but it seems that they are
being tripped because we take freeze references before we run
a GFP_KERNEL allocation for the struct xfs_trans.
We can avoid this false positive vector just by re-ordering the
operations in xfs_trans_alloc(). That is. we need allocate the
structure before we take the freeze reference and enter the GFP_NOFS
allocation context that follows the xfs_trans around. This prevents
lockdep from seeing the GFP_KERNEL allocation inside the transaction
context, and that prevents it from triggering the freeze level vs
alloc context vs reclaim warnings.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>