Commit Graph

49 Commits

Author SHA1 Message Date
Julien Thierry
133d051863 arm64: Make PMR part of task context
In order to replace PSR.I interrupt disabling/enabling with ICC_PMR_EL1
interrupt masking, ICC_PMR_EL1 needs to be saved/restored when
taking/returning from an exception. This mimics the way hardware saves
and restores PSR.I bit in spsr_el1 for exceptions and ERET.

Add PMR to the registers to save in the pt_regs struct upon kernel entry,
and restore it before ERET. Also, initialize it to a sane value when
creating new tasks.

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-06 10:05:18 +00:00
Andrew Murray
83a680dd97 arm64: asm-offsets: remove unused offsets
There are a number of offsets defined in asm-offsets.c which no longer
have any users. Let's clean this up by removing them.

All the remaining offsets are in use.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-01-21 16:26:29 +00:00
Ard Biesheuvel
0a1213fa74 arm64: enable per-task stack canaries
This enables the use of per-task stack canary values if GCC has
support for emitting the stack canary reference relative to the
value of sp_el0, which holds the task struct pointer in the arm64
kernel.

The $(eval) extends KBUILD_CFLAGS at the moment the make rule is
applied, which means asm-offsets.o (which we rely on for the offset
value) is built without the arguments, and everything built afterwards
has the options set.

Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-12 18:45:31 +00:00
Marc Zyngier
b4f18c063a arm64: KVM: Handle guest's ARCH_WORKAROUND_2 requests
In order to forward the guest's ARCH_WORKAROUND_2 calls to EL3,
add a small(-ish) sequence to handle it at EL2. Special care must
be taken to track the state of the guest itself by updating the
workaround flags. We also rely on patching to enable calls into
the firmware.

Note that since we need to execute branches, this always executes
after the Spectre-v2 mitigation has been applied.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-05-31 18:00:57 +01:00
Ard Biesheuvel
24534b3511 arm64: assembler: add macros to conditionally yield the NEON under PREEMPT
Add support macros to conditionally yield the NEON (and thus the CPU)
that may be called from the assembler code.

In some cases, yielding the NEON involves saving and restoring a non
trivial amount of context (especially in the CRC folding algorithms),
and so the macro is split into three, and the code in between is only
executed when the yield path is taken, allowing the context to be preserved.
The third macro takes an optional label argument that marks the resume
path after a yield has been performed.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-04-11 18:50:34 +01:00
Christoffer Dall
4464e210de KVM: arm64: Avoid storing the vcpu pointer on the stack
We already have the percpu area for the host cpu state, which points to
the VCPU, so there's no need to store the VCPU pointer on the stack on
every context switch.  We can be a little more clever and just use
tpidr_el2 for the percpu offset and load the VCPU pointer from the host
context.

This has the benefit of being able to retrieve the host context even
when our stack is corrupted, and it has a potential performance benefit
because we trade a store plus a load for an mrs and a load on a round
trip to the guest.

This does require us to calculate the percpu offset without including
the offset from the kernel mapping of the percpu array to the linear
mapping of the array (which is what we store in tpidr_el1), because a
PC-relative generated address in EL2 is already giving us the hyp alias
of the linear mapping of a kernel address.  We do this in
__cpu_init_hyp_mode() by using kvm_ksym_ref().

The code that accesses ESR_EL2 was previously using an alternative to
use the _EL1 accessor on VHE systems, but this was actually unnecessary
as the _EL1 accessor aliases the ESR_EL2 register on VHE, and the _EL2
accessor does the same thing on both systems.

Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:09 +00:00
James Morse
0067df413b KVM: arm64: Handle RAS SErrors from EL2 on guest exit
We expect to have firmware-first handling of RAS SErrors, with errors
notified via an APEI method. For systems without firmware-first, add
some minimal handling to KVM.

There are two ways KVM can take an SError due to a guest, either may be a
RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO,
or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit.

The current SError from EL2 code unmasks SError and tries to fence any
pending SError into a single instruction window. It then leaves SError
unmasked.

With the v8.2 RAS Extensions we may take an SError for a 'corrected'
error, but KVM is only able to handle SError from EL2 if they occur
during this single instruction window...

The RAS Extensions give us a new instruction to synchronise and
consume SErrors. The RAS Extensions document (ARM DDI0587),
'2.4.1 ESB and Unrecoverable errors' describes ESB as synchronising
SError interrupts generated by 'instructions, translation table walks,
hardware updates to the translation tables, and instruction fetches on
the same PE'. This makes ESB equivalent to KVMs existing
'dsb, mrs-daifclr, isb' sequence.

Use the alternatives to synchronise and consume any SError using ESB
instead of unmasking and taking the SError. Set ARM_EXIT_WITH_SERROR_BIT
in the exit_code so that we can restart the vcpu if it turns out this
SError has no impact on the vcpu.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-16 15:09:36 +00:00
James Morse
f5df269618 arm64: kernel: Add arch-specific SDEI entry code and CPU masking
The Software Delegated Exception Interface (SDEI) is an ARM standard
for registering callbacks from the platform firmware into the OS.
This is typically used to implement RAS notifications.

Such notifications enter the kernel at the registered entry-point
with the register values of the interrupted CPU context. Because this
is not a CPU exception, it cannot reuse the existing entry code.
(crucially we don't implicitly know which exception level we interrupted),

Add the entry point to entry.S to set us up for calling into C code. If
the event interrupted code that had interrupts masked, we always return
to that location. Otherwise we pretend this was an IRQ, and use SDEI's
complete_and_resume call to return to vbar_el1 + offset.

This allows the kernel to deliver signals to user space processes. For
KVM this triggers the world switch, a quick spin round vcpu_run, then
back into the guest, unless there are pending signals.

Add sdei_mask_local_cpu() calls to the smp_send_stop() code, this covers
the panic() code-path, which doesn't invoke cpuhotplug notifiers.

Because we can interrupt entry-from/exit-to another EL, we can't trust the
value in sp_el0 or x29, even if we interrupted the kernel, in this case
the code in entry.S will save/restore sp_el0 and use the value in
__entry_task.

When we have VMAP stacks we can interrupt the stack-overflow test, which
stirs x0 into sp, meaning we have to have our own VMAP stacks. For now
these are allocated when we probe the interface. Future patches will add
refcounting hooks to allow the arch code to allocate them lazily.

Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-13 10:45:17 +00:00
Will Deacon
51a0048beb arm64: mm: Map entry trampoline into trampoline and kernel page tables
The exception entry trampoline needs to be mapped at the same virtual
address in both the trampoline page table (which maps nothing else)
and also the kernel page table, so that we can swizzle TTBR1_EL1 on
exceptions from and return to EL0.

This patch maps the trampoline at a fixed virtual address in the fixmap
area of the kernel virtual address space, which allows the kernel proper
to be randomized with respect to the trampoline when KASLR is enabled.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-11 13:40:50 +00:00
Ard Biesheuvel
7326749801 arm64: unwind: reference pt_regs via embedded stack frame
As it turns out, the unwind code is slightly broken, and probably has
been for a while. The problem is in the dumping of the exception stack,
which is intended to dump the contents of the pt_regs struct at each
level in the call stack where an exception was taken and routed to a
routine marked as __exception (which means its stack frame is right
below the pt_regs struct on the stack).

'Right below the pt_regs struct' is ill defined, though: the unwind
code assigns 'frame pointer + 0x10' to the .sp member of the stackframe
struct at each level, and dump_backtrace() happily dereferences that as
the pt_regs pointer when encountering an __exception routine. However,
the actual size of the stack frame created by this routine (which could
be one of many __exception routines we have in the kernel) is not known,
and so frame.sp is pretty useless to figure out where struct pt_regs
really is.

So it seems the only way to ensure that we can find our struct pt_regs
when walking the stack frames is to put it at a known fixed offset of
the stack frame pointer that is passed to such __exception routines.
The simplest way to do that is to put it inside pt_regs itself, which is
the main change implemented by this patch. As a bonus, doing this allows
us to get rid of a fair amount of cruft related to walking from one stack
to the other, which is especially nice since we intend to introduce yet
another stack for overflow handling once we add support for vmapped
stacks. It also fixes an inconsistency where we only add a stack frame
pointing to ELR_EL1 if we are executing from the IRQ stack but not when
we are executing from the task stack.

To consistly identify exceptions regs even in the presence of exceptions
taken from entry code, we must check whether the next frame was created
by entry text, rather than whether the current frame was crated by
exception text.

To avoid backtracing using PCs that fall in the idmap, or are controlled
by userspace, we must explcitly zero the FP and LR in startup paths, and
must ensure that the frame embedded in pt_regs is zeroed upon entry from
EL0. To avoid these NULL entries showin in the backtrace, unwind_frame()
is updated to avoid them.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[Mark: compare current frame against .entry.text, avoid bogus PCs]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
2017-08-09 14:07:13 +01:00
Andy Gross
680a0873e1 arm: kernel: Add SMC structure parameter
This patch adds a quirk parameter to the arm_smccc_(smc/hvc) calls.
The quirk structure allows for specialized SMC operations due to SoC
specific requirements.  The current arm_smccc_(smc/hvc) is renamed and
macros are used instead to specify the standard arm_smccc_(smc/hvc) or
the arm_smccc_(smc/hvc)_quirk function.

This patch and partial implementation was suggested by Will Deacon.

Signed-off-by: Andy Gross <andy.gross@linaro.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-03 18:46:33 +00:00
Catalin Marinas
4b65a5db36 arm64: Introduce uaccess_{disable,enable} functionality based on TTBR0_EL1
This patch adds the uaccess macros/functions to disable access to user
space by setting TTBR0_EL1 to a reserved zeroed page. Since the value
written to TTBR0_EL1 must be a physical address, for simplicity this
patch introduces a reserved_ttbr0 page at a constant offset from
swapper_pg_dir. The uaccess_disable code uses the ttbr1_el1 value
adjusted by the reserved_ttbr0 offset.

Enabling access to user is done by restoring TTBR0_EL1 with the value
from the struct thread_info ttbr0 variable. Interrupts must be disabled
during the uaccess_ttbr0_enable code to ensure the atomicity of the
thread_info.ttbr0 read and TTBR0_EL1 write. This patch also moves the
get_thread_info asm macro from entry.S to assembler.h for reuse in the
uaccess_ttbr0_* macros.

Cc: Will Deacon <will.deacon@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-21 18:48:53 +00:00
Mark Rutland
c02433dd6d arm64: split thread_info from task stack
This patch moves arm64's struct thread_info from the task stack into
task_struct. This protects thread_info from corruption in the case of
stack overflows, and makes its address harder to determine if stack
addresses are leaked, making a number of attacks more difficult. Precise
detection and handling of overflow is left for subsequent patches.

Largely, this involves changing code to store the task_struct in sp_el0,
and acquire the thread_info from the task struct. Core code now
implements current_thread_info(), and as noted in <linux/sched.h> this
relies on offsetof(task_struct, thread_info) == 0, enforced by core
code.

This change means that the 'tsk' register used in entry.S now points to
a task_struct, rather than a thread_info as it used to. To make this
clear, the TI_* field offsets are renamed to TSK_TI_*, with asm-offsets
appropriately updated to account for the structural change.

Userspace clobbers sp_el0, and we can no longer restore this from the
stack. Instead, the current task is cached in a per-cpu variable that we
can safely access from early assembly as interrupts are disabled (and we
are thus not preemptible).

Both secondary entry and idle are updated to stash the sp and task
pointer separately.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: James Morse <james.morse@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-11 18:25:46 +00:00
Mark Rutland
3fe12da4c7 arm64: asm-offsets: remove unused definitions
Subsequent patches will move the thread_info::{task,cpu} fields, and the
current TI_{TASK,CPU} offset definitions are not used anywhere.

This patch removes the redundant definitions.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-11 18:25:42 +00:00
Suzuki K Poulose
116c81f427 arm64: Work around systems with mismatched cache line sizes
Systems with differing CPU i-cache/d-cache line sizes can cause
problems with the cache management by software when the execution
is migrated from one to another. Usually, the application reads
the cache size on a CPU and then uses that length to perform cache
operations. However, if it gets migrated to another CPU with a smaller
cache line size, things could go completely wrong. To prevent such
cases, always use the smallest cache line size among the CPUs. The
kernel CPU feature infrastructure already keeps track of the safe
value for all CPUID registers including CTR. This patch works around
the problem by :

For kernel, dynamically patch the kernel to read the cache size
from the system wide copy of CTR_EL0.

For applications, trap read accesses to CTR_EL0 (by clearing the SCTLR.UCT)
and emulate the mrs instruction to return the system wide safe value
of CTR_EL0.

For faster access (i.e, avoiding to lookup the system wide value of CTR_EL0
via read_system_reg), we keep track of the pointer to table entry for
CTR_EL0 in the CPU feature infrastructure.

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-09-09 15:03:29 +01:00
Linus Torvalds
e831101a73 arm64 updates for 4.8:
- Kexec support for arm64
 - Kprobes support
 - Expose MIDR_EL1 and REVIDR_EL1 CPU identification registers to sysfs
 - Trapping of user space cache maintenance operations and emulation in
   the kernel (CPU errata workaround)
 - Clean-up of the early page tables creation (kernel linear mapping, EFI
   run-time maps) to avoid splitting larger blocks (e.g. pmds) into
   smaller ones (e.g. ptes)
 - VDSO support for CLOCK_MONOTONIC_RAW in clock_gettime()
 - ARCH_HAS_KCOV enabled for arm64
 - Optimise IP checksum helpers
 - SWIOTLB optimisation to only allocate/initialise the buffer if the
   available RAM is beyond the 32-bit mask
 - Properly handle the "nosmp" command line argument
 - Fix for the initialisation of the CPU debug state during early boot
 - vdso-offsets.h build dependency workaround
 - Build fix when RANDOMIZE_BASE is enabled with MODULES off
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJXmF/UAAoJEGvWsS0AyF7x+jwP/2fErtX6FTXmdG0c3HBkTpuy
 gEuzN2ByWbP6Io+unLC6NvbQQb1q6c73PTqjsoeMHUx2o8YK3jgWEBcC+7AuepoZ
 YGl3r08e75a/fGrgNwEQQC1lNlgjpog4kzVDh5ji6oRXNq+OkjJGUtRPe3gBoqxv
 NAjviciID/MegQaq4SaMd26AmnjuUGKogo5vlIaXK0SemX9it+ytW7eLAXuVY+gW
 EvO3Nxk0Y5oZKJF8qRw6oLSmw1bwn2dD26OgfXfCiI30QBookRyWIoXRedUOZmJq
 D0+Tipd7muO4PbjlxS8aY/wd/alfnM5+TJ6HpGDo+Y1BDauXfiXMf3ktDFE5QvJB
 KgtICmC0stWwbDT35dHvz8sETsrCMA2Q/IMrnyxG+nj9BxVQU7rbNrxfCXesJy7Q
 4EsQbcTyJwu+ECildBezfoei99XbFZyWk2vKSkTCFKzgwXpftGFaffgZ3DIzBAHH
 IjecDqIFENC8ymrjyAgrGjeFG+2WB/DBgoSS3Baiz6xwQqC4wFMnI3jPECtJjb/U
 6e13f+onXu5lF1YFKAiRjGmqa/G1ZMr+uKZFsembuGqsZdAPkzzUHyAE9g4JVO8p
 t3gc3/M3T7oLSHuw4xi1/Ow5VGb2UvbslFrp7OpuFZ7CJAvhKlHL5rPe385utsFE
 7++5WHXHAegeJCDNAKY2
 =iJOY
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:

 - Kexec support for arm64

 - Kprobes support

 - Expose MIDR_EL1 and REVIDR_EL1 CPU identification registers to sysfs

 - Trapping of user space cache maintenance operations and emulation in
   the kernel (CPU errata workaround)

 - Clean-up of the early page tables creation (kernel linear mapping,
   EFI run-time maps) to avoid splitting larger blocks (e.g.  pmds) into
   smaller ones (e.g.  ptes)

 - VDSO support for CLOCK_MONOTONIC_RAW in clock_gettime()

 - ARCH_HAS_KCOV enabled for arm64

 - Optimise IP checksum helpers

 - SWIOTLB optimisation to only allocate/initialise the buffer if the
   available RAM is beyond the 32-bit mask

 - Properly handle the "nosmp" command line argument

 - Fix for the initialisation of the CPU debug state during early boot

 - vdso-offsets.h build dependency workaround

 - Build fix when RANDOMIZE_BASE is enabled with MODULES off

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (64 commits)
  arm64: arm: Fix-up the removal of the arm64 regs_query_register_name() prototype
  arm64: Only select ARM64_MODULE_PLTS if MODULES=y
  arm64: mm: run pgtable_page_ctor() on non-swapper translation table pages
  arm64: mm: make create_mapping_late() non-allocating
  arm64: Honor nosmp kernel command line option
  arm64: Fix incorrect per-cpu usage for boot CPU
  arm64: kprobes: Add KASAN instrumentation around stack accesses
  arm64: kprobes: Cleanup jprobe_return
  arm64: kprobes: Fix overflow when saving stack
  arm64: kprobes: WARN if attempting to step with PSTATE.D=1
  arm64: debug: remove unused local_dbg_{enable, disable} macros
  arm64: debug: remove redundant spsr manipulation
  arm64: debug: unmask PSTATE.D earlier
  arm64: localise Image objcopy flags
  arm64: ptrace: remove extra define for CPSR's E bit
  kprobes: Add arm64 case in kprobe example module
  arm64: Add kernel return probes support (kretprobes)
  arm64: Add trampoline code for kretprobes
  arm64: kprobes instruction simulation support
  arm64: Treat all entry code as non-kprobe-able
  ...
2016-07-27 11:16:05 -07:00
Catalin Marinas
a95b0644b3 Merge branch 'for-next/kprobes' into for-next/core
* kprobes:
  arm64: kprobes: Add KASAN instrumentation around stack accesses
  arm64: kprobes: Cleanup jprobe_return
  arm64: kprobes: Fix overflow when saving stack
  arm64: kprobes: WARN if attempting to step with PSTATE.D=1
  kprobes: Add arm64 case in kprobe example module
  arm64: Add kernel return probes support (kretprobes)
  arm64: Add trampoline code for kretprobes
  arm64: kprobes instruction simulation support
  arm64: Treat all entry code as non-kprobe-able
  arm64: Blacklist non-kprobe-able symbol
  arm64: Kprobes with single stepping support
  arm64: add conditional instruction simulation support
  arm64: Add more test functions to insn.c
  arm64: Add HAVE_REGS_AND_STACK_ACCESS_API feature
2016-07-21 18:20:41 +01:00
William Cohen
da6a91252a arm64: Add trampoline code for kretprobes
The trampoline code is used by kretprobes to capture a return from a probed
function.  This is done by saving the registers, calling the handler, and
restoring the registers. The code then returns to the original saved caller
return address. It is necessary to do this directly instead of using a
software breakpoint because the code used in processing that breakpoint
could itself be kprobe'd and cause a problematic reentry into the debug
exception handler.

Signed-off-by: William Cohen <wcohen@redhat.com>
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
[catalin.marinas@arm.com: removed unnecessary masking of the PSTATE bits]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-19 15:03:22 +01:00
Kevin Brodsky
49eea433b3 arm64: Add support for CLOCK_MONOTONIC_RAW in clock_gettime() vDSO
So far the arm64 clock_gettime() vDSO implementation only supported
the following clocks, falling back to the syscall for the others:
- CLOCK_REALTIME{,_COARSE}
- CLOCK_MONOTONIC{,_COARSE}

This patch adds support for the CLOCK_MONOTONIC_RAW clock, taking
advantage of the recent refactoring of the vDSO time functions. Like
the non-_COARSE clocks, this only works when the "arch_sys_counter"
clocksource is in use (allowing us to read the current time from the
virtual counter register), otherwise we also have to fall back to the
syscall.

Most of the data is shared with CLOCK_MONOTONIC, and the algorithm is
similar. The reference implementation in kernel/time/timekeeping.c
shows that:
- CLOCK_MONOTONIC = tk->wall_to_monotonic + tk->xtime_sec +
  timekeeping_get_ns(&tk->tkr_mono)
- CLOCK_MONOTONIC_RAW = tk->raw_time + timekeeping_get_ns(&tk->tkr_raw)
- tkr_mono and tkr_raw are identical (in particular, same
  clocksource), except these members:
  * mult (only mono's multiplier is NTP-adjusted)
  * xtime_nsec (always 0 for raw)

Therefore, tk->raw_time and tkr_raw->mult are now also stored in the
vDSO data page.

Cc: Ali Saidi <ali.saidi@arm.com>
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-12 16:06:32 +01:00
James Morse
e19a6ee246 arm64: kernel: Save and restore UAO and addr_limit on exception entry
If we take an exception while at EL1, the exception handler inherits
the original context's addr_limit and PSTATE.UAO values. To be consistent
always reset addr_limit and PSTATE.UAO on (re-)entry to EL1. This
prevents accidental re-use of the original context's addr_limit.

Based on a similar patch for arm from Russell King.

Cc: <stable@vger.kernel.org> # 4.6-
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-07-07 15:55:37 +01:00
James Morse
82869ac57b arm64: kernel: Add support for hibernate/suspend-to-disk
Add support for hibernate/suspend-to-disk.

Suspend borrows code from cpu_suspend() to write cpu state onto the stack,
before calling swsusp_save() to save the memory image.

Restore creates a set of temporary page tables, covering only the
linear map, copies the restore code to a 'safe' page, then uses the copy to
restore the memory image. The copied code executes in the lower half of the
address space, and once complete, restores the original kernel's page
tables. It then calls into cpu_resume(), and follows the normal
cpu_suspend() path back into the suspend code.

To restore a kernel using KASLR, the address of the page tables, and
cpu_resume() are stored in the hibernate arch-header and the el2
vectors are pivotted via the 'safe' page in low memory.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Kevin Hilman <khilman@baylibre.com> # Tested on Juno R2
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-28 13:36:22 +01:00
James Morse
cabe1c81ea arm64: Change cpu_resume() to enable mmu early then access sleep_sp by va
By enabling the MMU early in cpu_resume(), the sleep_save_sp and stack can
be accessed by VA, which avoids the need to convert-addresses and clean to
PoC on the suspend path.

MMU setup is shared with the boot path, meaning the swapper_pg_dir is
restored directly: ttbr1_el1 is no longer saved/restored.

struct sleep_save_sp is removed, replacing it with a single array of
pointers.

cpu_do_{suspend,resume} could be further reduced to not restore: cpacr_el1,
mdscr_el1, tcr_el1, vbar_el1 and sctlr_el1, all of which are set by
__cpu_setup(). However these values all contain res0 bits that may be used
to enable future features.

Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-28 12:05:46 +01:00
James Morse
adc9b2dfd0 arm64: kernel: Rework finisher callback out of __cpu_suspend_enter()
Hibernate could make use of the cpu_suspend() code to save/restore cpu
state, however it needs to be able to return '0' from the 'finisher'.

Rework cpu_suspend() so that the finisher is called from C code,
independently from the save/restore of cpu state. Space to save the context
in is allocated in the caller's stack frame, and passed into
__cpu_suspend_enter().

Hibernate's use of this API will look like a copy of the cpu_suspend()
function.

Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-28 12:05:46 +01:00
Linus Torvalds
588ab3f9af arm64 updates for 4.6:
- Initial page table creation reworked to avoid breaking large block
   mappings (huge pages) into smaller ones. The ARM architecture requires
   break-before-make in such cases to avoid TLB conflicts but that's not
   always possible on live page tables
 
 - Kernel virtual memory layout: the kernel image is no longer linked to
   the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of
   the vmalloc space, allowing the kernel to be loaded (nearly) anywhere
   in physical RAM
 
 - Kernel ASLR: position independent kernel Image and modules being
   randomly mapped in the vmalloc space with the randomness is provided
   by UEFI (efi_get_random_bytes() patches merged via the arm64 tree,
   acked by Matt Fleming)
 
 - Implement relative exception tables for arm64, required by KASLR
   (initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but
   actual x86 conversion to deferred to 4.7 because of the merge
   dependencies)
 
 - Support for the User Access Override feature of ARMv8.2: this allows
   uaccess functions (get_user etc.) to be implemented using LDTR/STTR
   instructions. Such instructions, when run by the kernel, perform
   unprivileged accesses adding an extra level of protection. The
   set_fs() macro is used to "upgrade" such instruction to privileged
   accesses via the UAO bit
 
 - Half-precision floating point support (part of ARMv8.2)
 
 - Optimisations for CPUs with or without a hardware prefetcher (using
   run-time code patching)
 
 - copy_page performance improvement to deal with 128 bytes at a time
 
 - Sanity checks on the CPU capabilities (via CPUID) to prevent
   incompatible secondary CPUs from being brought up (e.g. weird
   big.LITTLE configurations)
 
 - valid_user_regs() reworked for better sanity check of the sigcontext
   information (restored pstate information)
 
 - ACPI parking protocol implementation
 
 - CONFIG_DEBUG_RODATA enabled by default
 
 - VDSO code marked as read-only
 
 - DEBUG_PAGEALLOC support
 
 - ARCH_HAS_UBSAN_SANITIZE_ALL enabled
 
 - Erratum workaround Cavium ThunderX SoC
 
 - set_pte_at() fix for PROT_NONE mappings
 
 - Code clean-ups
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJW6u95AAoJEGvWsS0AyF7xMyoP/3x2O6bgreSQ84BdO4JChN4+
 RQ9OVdX8u2ItO9sgaCY2AA6KoiBuEjGmPl/XRuK0I7DpODTtRjEXQHuNNhz8AelC
 hn4AEVqamY6Z5BzHFIjs8G9ydEbq+OXcKWEdwSsBhP/cMvI7ss3dps1f5iNPT5Vv
 50E/kUz+aWYy7pKlB18VDV7TUOA3SuYuGknWV8+bOY5uPb8hNT3Y3fHOg/EuNNN3
 DIuYH1V7XQkXtF+oNVIGxzzJCXULBE7egMcWAm1ydSOHK0JwkZAiL7OhI7ceVD0x
 YlDxBnqmi4cgzfBzTxITAhn3OParwN6udQprdF1WGtFF6fuY2eRDSH/L/iZoE4DY
 OulL951OsBtF8YC3+RKLk908/0bA2Uw8ftjCOFJTYbSnZBj1gWK41VkCYMEXiHQk
 EaN8+2Iw206iYIoyvdjGCLw7Y0oakDoVD9vmv12SOaHeQljTkjoN8oIlfjjKTeP7
 3AXj5v9BDMDVh40nkVayysRNvqe48Kwt9Wn0rhVTLxwdJEiFG/OIU6HLuTkretdN
 dcCNFSQrRieSFHpBK9G0vKIpIss1ZwLm8gjocVXH7VK4Mo/TNQe4p2/wAF29mq4r
 xu1UiXmtU3uWxiqZnt72LOYFCarQ0sFA5+pMEvF5W+NrVB0wGpXhcwm+pGsIi4IM
 LepccTgykiUBqW5TRzPz
 =/oS+
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:
 "Here are the main arm64 updates for 4.6.  There are some relatively
  intrusive changes to support KASLR, the reworking of the kernel
  virtual memory layout and initial page table creation.

  Summary:

   - Initial page table creation reworked to avoid breaking large block
     mappings (huge pages) into smaller ones.  The ARM architecture
     requires break-before-make in such cases to avoid TLB conflicts but
     that's not always possible on live page tables

   - Kernel virtual memory layout: the kernel image is no longer linked
     to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom
     of the vmalloc space, allowing the kernel to be loaded (nearly)
     anywhere in physical RAM

   - Kernel ASLR: position independent kernel Image and modules being
     randomly mapped in the vmalloc space with the randomness is
     provided by UEFI (efi_get_random_bytes() patches merged via the
     arm64 tree, acked by Matt Fleming)

   - Implement relative exception tables for arm64, required by KASLR
     (initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c
     but actual x86 conversion to deferred to 4.7 because of the merge
     dependencies)

   - Support for the User Access Override feature of ARMv8.2: this
     allows uaccess functions (get_user etc.) to be implemented using
     LDTR/STTR instructions.  Such instructions, when run by the kernel,
     perform unprivileged accesses adding an extra level of protection.
     The set_fs() macro is used to "upgrade" such instruction to
     privileged accesses via the UAO bit

   - Half-precision floating point support (part of ARMv8.2)

   - Optimisations for CPUs with or without a hardware prefetcher (using
     run-time code patching)

   - copy_page performance improvement to deal with 128 bytes at a time

   - Sanity checks on the CPU capabilities (via CPUID) to prevent
     incompatible secondary CPUs from being brought up (e.g.  weird
     big.LITTLE configurations)

   - valid_user_regs() reworked for better sanity check of the
     sigcontext information (restored pstate information)

   - ACPI parking protocol implementation

   - CONFIG_DEBUG_RODATA enabled by default

   - VDSO code marked as read-only

   - DEBUG_PAGEALLOC support

   - ARCH_HAS_UBSAN_SANITIZE_ALL enabled

   - Erratum workaround Cavium ThunderX SoC

   - set_pte_at() fix for PROT_NONE mappings

   - Code clean-ups"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits)
  arm64: kasan: Fix zero shadow mapping overriding kernel image shadow
  arm64: kasan: Use actual memory node when populating the kernel image shadow
  arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission
  arm64: Fix misspellings in comments.
  arm64: efi: add missing frame pointer assignment
  arm64: make mrs_s prefixing implicit in read_cpuid
  arm64: enable CONFIG_DEBUG_RODATA by default
  arm64: Rework valid_user_regs
  arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly
  arm64: KVM: Move kvm_call_hyp back to its original localtion
  arm64: mm: treat memstart_addr as a signed quantity
  arm64: mm: list kernel sections in order
  arm64: lse: deal with clobbered IP registers after branch via PLT
  arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR
  arm64: kconfig: add submenu for 8.2 architectural features
  arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot
  arm64: Add support for Half precision floating point
  arm64: Remove fixmap include fragility
  arm64: Add workaround for Cavium erratum 27456
  arm64: mm: Mark .rodata as RO
  ...
2016-03-17 20:03:47 -07:00
Marc Zyngier
5f05a72aed arm64: KVM: Move most of the fault decoding to C
The fault decoding process (including computing the IPA in the case
of a permission fault) would be much better done in C code, as we
have a reasonable infrastructure to deal with the VHE/non-VHE
differences.

Let's move the whole thing to C, including the workaround for
erratum 834220, and just patch the odd ESR_EL2 access remaining
in hyp-entry.S.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-02-29 18:34:18 +00:00
Suzuki K Poulose
bb9052744f arm64: Handle early CPU boot failures
A secondary CPU could fail to come online due to insufficient
capabilities and could simply die or loop in the kernel.
e.g, a CPU with no support for the selected kernel PAGE_SIZE
loops in kernel with MMU turned off.
or a hotplugged CPU which doesn't have one of the advertised
system capability will die during the activation.

There is no way to synchronise the status of the failing CPU
back to the master. This patch solves the issue by adding a
field to the secondary_data which can be updated by the failing
CPU. If the secondary CPU fails even before turning the MMU on,
it updates the status in a special variable reserved in the head.txt
section to make sure that the update can be cache invalidated safely
without possible sharing of cache write back granule.

Here are the possible states :

 -1. CPU_MMU_OFF - Initial value set by the master CPU, this value
indicates that the CPU could not turn the MMU on, hence the status
could not be reliably updated in the secondary_data. Instead, the
CPU has updated the status @ __early_cpu_boot_status.

 0. CPU_BOOT_SUCCESS - CPU has booted successfully.

 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the
master CPU to synchronise by issuing a cpu_ops->cpu_kill.

 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is
looping in the kernel. This information could be used by say,
kexec to check if it is really safe to do a kexec reboot.

 3. CPU_PANIC_KERNEL - CPU detected some serious issues which
requires kernel to crash immediately. The secondary CPU cannot
call panic() until it has initialised the GIC. This flag can
be used to instruct the master to do so.

Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[catalin.marinas@arm.com: conflict resolution]
[catalin.marinas@arm.com: converted "status" from int to long]
[catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-25 10:32:23 +00:00
Linus Torvalds
1baa5efbeb * s390: Support for runtime instrumentation within guests,
support of 248 VCPUs.
 
 * ARM: rewrite of the arm64 world switch in C, support for
 16-bit VM identifiers.  Performance counter virtualization
 missed the boat.
 
 * x86: Support for more Hyper-V features (synthetic interrupt
 controller), MMU cleanups
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJWlSKwAAoJEL/70l94x66DY0UIAK5vp4zfQoQOJC4KP4Xgxwdu
 kpnK2Boz3/74o1b0y5+eJZoUZCsXCVLtmP5uhmMxUYWDgByFG2X8ZDhPFwB5FYLT
 2dN+Lr4tsolgIfRdHZtrT6Svp9SDL039bWTdscnbR6l37/j9FRWvpKdhI3orloFD
 /i4CSW2dVIq1/9Xctwu/rtcOEesEx4Cad+6YV3/530eVAXFzE908nXfmqJNZTocY
 YCGcmrMVCOu0ng5QM4xSzmmYjKMLUcRs+QzZWkVBzdJtTgwZUr09yj7I2dZ1yj/i
 cxYrJy6shSwE74XkXsmvG+au3C5u3vX4tnXjBFErnPJ99oqzHatVnFWNRhj4dLQ=
 =PIj1
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "PPC changes will come next week.

   - s390: Support for runtime instrumentation within guests, support of
     248 VCPUs.

   - ARM: rewrite of the arm64 world switch in C, support for 16-bit VM
     identifiers.  Performance counter virtualization missed the boat.

   - x86: Support for more Hyper-V features (synthetic interrupt
     controller), MMU cleanups"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (115 commits)
  kvm: x86: Fix vmwrite to SECONDARY_VM_EXEC_CONTROL
  kvm/x86: Hyper-V SynIC timers tracepoints
  kvm/x86: Hyper-V SynIC tracepoints
  kvm/x86: Update SynIC timers on guest entry only
  kvm/x86: Skip SynIC vector check for QEMU side
  kvm/x86: Hyper-V fix SynIC timer disabling condition
  kvm/x86: Reorg stimer_expiration() to better control timer restart
  kvm/x86: Hyper-V unify stimer_start() and stimer_restart()
  kvm/x86: Drop stimer_stop() function
  kvm/x86: Hyper-V timers fix incorrect logical operation
  KVM: move architecture-dependent requests to arch/
  KVM: renumber vcpu->request bits
  KVM: document which architecture uses each request bit
  KVM: Remove unused KVM_REQ_KICK to save a bit in vcpu->requests
  kvm: x86: Check kvm_write_guest return value in kvm_write_wall_clock
  KVM: s390: implement the RI support of guest
  kvm/s390: drop unpaired smp_mb
  kvm: x86: fix comment about {mmu,nested_mmu}.gva_to_gpa
  KVM: x86: MMU: Use clear_page() instead of init_shadow_page_table()
  arm/arm64: KVM: Detect vGIC presence at runtime
  ...
2016-01-12 13:22:12 -08:00
Jens Wiklander
14457459f9 ARM: 8480/2: arm64: add implementation for arm-smccc
Adds implementation for arm-smccc and enables CONFIG_HAVE_SMCCC.

Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2016-01-04 16:24:45 +00:00
Marc Zyngier
23a13465c8 arm64: KVM: Cleanup asm-offset.c
As we've now rewritten most of our code-base in C, most of the
KVM-specific code in asm-offset.c is useless. Delete-time again!

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-12-14 11:30:43 +00:00
Marc Zyngier
9d8415d6c1 arm64: KVM: Turn system register numbers to an enum
Having the system register numbers as #defines has been a pain
since day one, as the ordering is pretty fragile, and moving
things around leads to renumbering and epic conflict resolutions.

Now that we're mostly acessing the sysreg file in C, an enum is
a much better type to use, and we can clean things up a bit.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-12-14 11:30:43 +00:00
Will Deacon
5aec715d7d arm64: mm: rewrite ASID allocator and MM context-switching code
Our current switch_mm implementation suffers from a number of problems:

  (1) The ASID allocator relies on IPIs to synchronise the CPUs on a
      rollover event

  (2) Because of (1), we cannot allocate ASIDs with interrupts disabled
      and therefore make use of a TIF_SWITCH_MM flag to postpone the
      actual switch to finish_arch_post_lock_switch

  (3) We run context switch with a reserved (invalid) TTBR0 value, even
      though the ASID and pgd are updated atomically

  (4) We take a global spinlock (cpu_asid_lock) during context-switch

  (5) We use h/w broadcast TLB operations when they are not required
      (e.g. in flush_context)

This patch addresses these problems by rewriting the ASID algorithm to
match the bitmap-based arch/arm/ implementation more closely. This in
turn allows us to remove much of the complications surrounding switch_mm,
including the ugly thread flag.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-07 11:55:41 +01:00
Vladimir Murzin
48f8bd5775 arm64: KVM: remove remaining reference to vgic_sr_vectors
Since commit 8a14849 (arm64: KVM: Switch vgic save/restore to
alternative_insn) vgic_sr_vectors is not used anymore, so remove
remaining leftovers and kill the structure.

Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2015-08-12 11:28:23 +01:00
Alex Bennée
84e690bfbe KVM: arm64: introduce vcpu->arch.debug_ptr
This introduces a level of indirection for the debug registers. Instead
of using the sys_regs[] directly we store registers in a structure in
the vcpu. The new kvm_arm_reset_debug_ptr() sets the debug ptr to the
guest context.

Because we no longer give the sys_regs offset for the sys_reg_desc->reg
field, but instead the index into a debug-specific struct we need to
add a number of additional trap functions for each register. Also as the
generic generic user-space access code no longer works we have
introduced a new pair of function pointers to the sys_reg_desc structure
to override the generic code when needed.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2015-07-21 12:50:25 +01:00
Alex Bennée
56c7f5e77f KVM: arm: introduce kvm_arm_init/setup/clear_debug
This is a precursor for later patches which will need to do more to
setup debug state before entering the hyp.S switch code. The existing
functionality for setting mdcr_el2 has been moved out of hyp.S and now
uses the value kept in vcpu->arch.mdcr_el2.

As the assembler used to previously mask and preserve MDCR_EL2.HPMN I've
had to add a mechanism to save the value of mdcr_el2 as a per-cpu
variable during the initialisation code. The kernel never sets this
number so we are assuming the bootcode has set up the correct value
here.

This also moves the conditional setting of the TDA bit from the hyp code
into the C code which is currently used for the lazy debug register
context switch code.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2015-07-21 12:47:08 +01:00
Marc Zyngier
8a14849b4a arm64: KVM: Switch vgic save/restore to alternative_insn
So far, we configured the world-switch by having a small array
of pointers to the save and restore functions, depending on the
GIC used on the platform.

Loading these values each time is a bit silly (they never change),
and it makes sense to rely on the instruction patching instead.

This leads to a nice cleanup of the code.

Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-06-12 15:12:08 +01:00
Linus Torvalds
714d8e7e27 arm64 updates for 4.1:
The main change here is a significant head.S rework that allows us to
 boot on machines with physical memory at a really high address without
 having to increase our mapped VA range. Other changes include:
 
 - AES performance boost for Cortex-A57
 - AArch32 (compat) userspace with 64k pages
 - Cortex-A53 erratum workaround for #845719
 - defconfig updates (new platforms, PCI, ...)
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABCgAGBQJVLnQpAAoJELescNyEwWM03RIH/iwcDc0MBZgkwfD5cnY+29p4
 m89lMDo3SyGQT4NynHSw7P3R7c3zULmI+9hmJMw/yfjjjL6m7X+vVAF3xj1Am4Al
 OzCqYLHyFnlRktzJ6dWeF1Ese7tWqPpxn+OCXgYNpz/r5MfF/HhlyX/qNzAQPKrw
 ZpDvnt44DgUfweqjTbwQUg2wkyCRjmz57MQYxDcmJStdpHIu24jWOvDIo3OJGjyS
 L49I9DU6DGUhkISZmmBE0T7vmKMD1BcgI7OIzX2WIqn521QT+GSLMhRxaHmK1s1V
 A8gaMTwpo0xFhTAt7sbw/5+2663WmfRdZI+FtduvORsoxX6KdDn7DH1NQixIm8s=
 =+F0I
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Will Deacon:
 "Here are the core arm64 updates for 4.1.

  Highlights include a significant rework to head.S (allowing us to boot
  on machines with physical memory at a really high address), an AES
  performance boost on Cortex-A57 and the ability to run a 32-bit
  userspace with 64k pages (although this requires said userspace to be
  built with a recent binutils).

  The head.S rework spilt over into KVM, so there are some changes under
  arch/arm/ which have been acked by Marc Zyngier (KVM co-maintainer).
  In particular, the linker script changes caused us some issues in
  -next, so there are a few merge commits where we had to apply fixes on
  top of a stable branch.

  Other changes include:

   - AES performance boost for Cortex-A57
   - AArch32 (compat) userspace with 64k pages
   - Cortex-A53 erratum workaround for #845719
   - defconfig updates (new platforms, PCI, ...)"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (39 commits)
  arm64: fix midr range for Cortex-A57 erratum 832075
  arm64: errata: add workaround for cortex-a53 erratum #845719
  arm64: Use bool function return values of true/false not 1/0
  arm64: defconfig: updates for 4.1
  arm64: Extract feature parsing code from cpu_errata.c
  arm64: alternative: Allow immediate branch as alternative instruction
  arm64: insn: Add aarch64_insn_decode_immediate
  ARM: kvm: round HYP section to page size instead of log2 upper bound
  ARM: kvm: assert on HYP section boundaries not actual code size
  arm64: head.S: ensure idmap_t0sz is visible
  arm64: pmu: add support for interrupt-affinity property
  dt: pmu: extend ARM PMU binding to allow for explicit interrupt affinity
  arm64: head.S: ensure visibility of page tables
  arm64: KVM: use ID map with increased VA range if required
  arm64: mm: increase VA range of identity map
  ARM: kvm: implement replacement for ld's LOG2CEIL()
  arm64: proc: remove unused cpu_get_pgd macro
  arm64: enforce x1|x2|x3 == 0 upon kernel entry as per boot protocol
  arm64: remove __calc_phys_offset
  arm64: merge __enable_mmu and __turn_mmu_on
  ...
2015-04-16 13:58:29 -05:00
Richard Weinberger
9699a517e0 arm64: Remove signal translation and exec_domain
As execution domain support is gone we can remove
signal translation from the signal code and remove
exec_domain from thread_info.

Signed-off-by: Richard Weinberger <richard@nod.at>
2015-04-12 20:58:24 +02:00
Marc Zyngier
a591ede4cd arm64: Get rid of struct cpu_table
struct cpu_table is an artifact left from the (very) early days of
the arm64 port, and its only real use is to allow the most beautiful
"AArch64 Processor" string to be displayed at boot time.

Really? Yes, really.

Let's get rid of it. In order to avoid another BogoMips-gate, the
aforementioned string is preserved.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-03-19 19:46:00 +00:00
Linus Torvalds
b9085bcbf5 Fairly small update, but there are some interesting new features.
Common: Optional support for adding a small amount of polling on each HLT
 instruction executed in the guest (or equivalent for other architectures).
 This can improve latency up to 50% on some scenarios (e.g. O_DSYNC writes
 or TCP_RR netperf tests).  This also has to be enabled manually for now,
 but the plan is to auto-tune this in the future.
 
 ARM/ARM64: the highlights are support for GICv3 emulation and dirty page
 tracking
 
 s390: several optimizations and bugfixes.  Also a first: a feature
 exposed by KVM (UUID and long guest name in /proc/sysinfo) before
 it is available in IBM's hypervisor! :)
 
 MIPS: Bugfixes.
 
 x86: Support for PML (page modification logging, a new feature in
 Broadwell Xeons that speeds up dirty page tracking), nested virtualization
 improvements (nested APICv---a nice optimization), usual round of emulation
 fixes.  There is also a new option to reduce latency of the TSC deadline
 timer in the guest; this needs to be tuned manually.
 
 Some commits are common between this pull and Catalin's; I see you
 have already included his tree.
 
 ARM has other conflicts where functions are added in the same place
 by 3.19-rc and 3.20 patches.  These are not large though, and entirely
 within KVM.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJU28rkAAoJEL/70l94x66DXqQH/1TDOfJIjW7P2kb0Sw7Fy1wi
 cEX1KO/VFxAqc8R0E/0Wb55CXyPjQJM6xBXuFr5cUDaIjQ8ULSktL4pEwXyyv/s5
 DBDkN65mriry2w5VuEaRLVcuX9Wy+tqLQXWNkEySfyb4uhZChWWHvKEcgw5SqCyg
 NlpeHurYESIoNyov3jWqvBjr4OmaQENyv7t2c6q5ErIgG02V+iCux5QGbphM2IC9
 LFtPKxoqhfeB2xFxTOIt8HJiXrZNwflsTejIlCl/NSEiDVLLxxHCxK2tWK/tUXMn
 JfLD9ytXBWtNMwInvtFm4fPmDouv2VDyR0xnK2db+/axsJZnbxqjGu1um4Dqbak=
 =7gdx
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM update from Paolo Bonzini:
 "Fairly small update, but there are some interesting new features.

  Common:
     Optional support for adding a small amount of polling on each HLT
     instruction executed in the guest (or equivalent for other
     architectures).  This can improve latency up to 50% on some
     scenarios (e.g. O_DSYNC writes or TCP_RR netperf tests).  This
     also has to be enabled manually for now, but the plan is to
     auto-tune this in the future.

  ARM/ARM64:
     The highlights are support for GICv3 emulation and dirty page
     tracking

  s390:
     Several optimizations and bugfixes.  Also a first: a feature
     exposed by KVM (UUID and long guest name in /proc/sysinfo) before
     it is available in IBM's hypervisor! :)

  MIPS:
     Bugfixes.

  x86:
     Support for PML (page modification logging, a new feature in
     Broadwell Xeons that speeds up dirty page tracking), nested
     virtualization improvements (nested APICv---a nice optimization),
     usual round of emulation fixes.

     There is also a new option to reduce latency of the TSC deadline
     timer in the guest; this needs to be tuned manually.

     Some commits are common between this pull and Catalin's; I see you
     have already included his tree.

  Powerpc:
     Nothing yet.

     The KVM/PPC changes will come in through the PPC maintainers,
     because I haven't received them yet and I might end up being
     offline for some part of next week"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits)
  KVM: ia64: drop kvm.h from installed user headers
  KVM: x86: fix build with !CONFIG_SMP
  KVM: x86: emulate: correct page fault error code for NoWrite instructions
  KVM: Disable compat ioctl for s390
  KVM: s390: add cpu model support
  KVM: s390: use facilities and cpu_id per KVM
  KVM: s390/CPACF: Choose crypto control block format
  s390/kernel: Update /proc/sysinfo file with Extended Name and UUID
  KVM: s390: reenable LPP facility
  KVM: s390: floating irqs: fix user triggerable endless loop
  kvm: add halt_poll_ns module parameter
  kvm: remove KVM_MMIO_SIZE
  KVM: MIPS: Don't leak FPU/DSP to guest
  KVM: MIPS: Disable HTW while in guest
  KVM: nVMX: Enable nested posted interrupt processing
  KVM: nVMX: Enable nested virtual interrupt delivery
  KVM: nVMX: Enable nested apic register virtualization
  KVM: nVMX: Make nested control MSRs per-cpu
  KVM: nVMX: Enable nested virtualize x2apic mode
  KVM: nVMX: Prepare for using hardware MSR bitmap
  ...
2015-02-13 09:55:09 -08:00
Lorenzo Pieralisi
af3cfdbf56 arm64: kernel: remove ARM64_CPU_SUSPEND config option
ARM64_CPU_SUSPEND config option was introduced to make code providing
context save/restore selectable only on platforms requiring power
management capabilities.

Currently ARM64_CPU_SUSPEND depends on the PM_SLEEP config option which
in turn is set by the SUSPEND config option.

The introduction of CPU_IDLE for arm64 requires that code configured
by ARM64_CPU_SUSPEND (context save/restore) should be compiled in
in order to enable the CPU idle driver to rely on CPU operations
carrying out context save/restore.

The ARM64_CPUIDLE config option (ARM64 generic idle driver) is therefore
forced to select ARM64_CPU_SUSPEND, even if there may be (ie PM_SLEEP)
failed dependencies, which is not a clean way of handling the kernel
configuration option.

For these reasons, this patch removes the ARM64_CPU_SUSPEND config option
and makes the context save/restore dependent on CPU_PM, which is selected
whenever either SUSPEND or CPU_IDLE are configured, cleaning up dependencies
in the process.

This way, code previously configured through ARM64_CPU_SUSPEND is
compiled in whenever a power management subsystem requires it to be
present in the kernel (SUSPEND || CPU_IDLE), which is the behaviour
expected on ARM64 kernels.

The cpu_suspend and cpu_init_idle CPU operations are added only if
CPU_IDLE is selected, since they are CPU_IDLE specific methods and
should be grouped and defined accordingly.

PSCI CPU operations are updated to reflect the introduced changes.

Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-27 11:35:33 +00:00
Andre Przywara
2f5fa41a7a arm/arm64: KVM: make the value of ICC_SRE_EL1 a per-VM variable
ICC_SRE_EL1 is a system register allowing msr/mrs accesses to the
GIC CPU interface for EL1 (guests). Currently we force it to 0, but
for proper GICv3 support we have to allow guests to use it (depending
on their selected virtual GIC model).
So add ICC_SRE_EL1 to the list of saved/restored registers on a
world switch, but actually disallow a guest to change it by only
restoring a fixed, once-initialized value.
This value depends on the GIC model userland has chosen for a guest.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-01-20 18:25:28 +01:00
Marc Zyngier
b0e626b380 arm64: KVM: implement lazy world switch for debug registers
Implement switching of the debug registers. While the number
of registers is massive, CPUs usually don't implement them all
(A57 has 6 breakpoints and 4 watchpoints, which gives us a total
of 22 registers "only").

Also, we only save/restore them when MDSCR_EL1 has debug enabled,
or when we've flagged the debug registers as dirty. It means that
most of the time, we only save/restore MDSCR_EL1.

Reviewed-by: Anup Patel <anup.patel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:46 -07:00
Marc Zyngier
754d377260 arm64: KVM: vgic: add GICv3 world switch
Introduce the GICv3 world switch code used to save/restore the
GICv3 context.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:37 -07:00
Marc Zyngier
1a9b13056d arm64: KVM: split GICv2 world switch from hyp code
Move the GICv2 world switch code into its own file, and add the
necessary indirection to the arm64 switch code.

Also introduce a new type field to the vgic_params structure.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:36 -07:00
Marc Zyngier
eede821dbf KVM: arm/arm64: vgic: move GICv2 registers to their own structure
In order to make way for the GICv3 registers, move the v2-specific
registers to their own structure.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:31 -07:00
Lorenzo Pieralisi
95322526ef arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.

The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:

int cpu_suspend(unsigned long arg);

allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.

Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.

Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.

Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.

The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.

Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.

Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-12-16 17:17:31 +00:00
Marc Zyngier
c3eb5b1444 arm64: KVM: Kconfig integration
Finally plug KVM/arm64 into the config system, making it possible
to enable KVM support on AArch64 CPUs.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2013-07-04 14:40:26 +02:00
Marc Zyngier
55c7401d92 arm64: KVM: HYP mode world switch implementation
The HYP mode world switch in all its glory.

Implements save/restore of host/guest registers, EL2 trapping,
IPA resolution, and additional services (tlb invalidation).

Reviewed-by: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2013-06-12 16:39:55 +01:00
Catalin Marinas
0be7320a63 arm64: Assembly macros and definitions
This patch introduces several assembly macros and definitions used in
the .S files across arch/arm64/ like IRQ disabling/enabling, together
with asm-offsets.c.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
2012-09-17 10:24:44 +01:00