Convert these calls to use the helpers, and clean up all these places
where the same variable can have different units depending on where it
is in the function.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create helpers to do unit conversions of rt block numbers to rt extent
numbers. There are three variations -- one to compute the rt extent
number from an rt block number; one to compute the offset of an rt block
within an rt extent; and one to extract both.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a helper to compute the realtime extent (xfs_rtxlen_t) from an
extent length (xfs_extlen_t) value.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a helper to compute the misalignment between a file extent
(xfs_extlen_t) and a realtime extent.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a helper to convert a realtime extent to a realtime block. Later
on we'll change the helper to use bit shifts when possible.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Further disambiguate the xfs_rtblock_t uses by creating a new type,
xfs_rtxnum_t, to store the position of an extent within the realtime
section, in units of rtextents.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This helper function validates that a range of *blocks* in the
realtime section is completely contained within the realtime section.
It does /not/ validate ranges of *rtextents*. Rename the function to
avoid suggesting that it does, and change the type of the @len parameter
since xfs_rtblock_t is a position unit, not a length unit.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
XFS uses xfs_rtblock_t for many different uses, which makes it much more
difficult to perform a unit analysis on the codebase. One of these
(ab)uses is when we need to store the length of a free space extent as
stored in the realtime bitmap. Because there can be up to 2^64 realtime
extents in a filesystem, we need a new type that is larger than
xfs_rtxlen_t for callers that are querying the bitmap directly. This
means scrub and growfs.
Create this type as "xfs_rtbxlen_t" and use it to store 64-bit rtx
lengths. 'b' stands for 'bitmap' or 'big'; reader's choice.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We should use xfs_fileoff_t to store the file block offset of any
location within the realtime bitmap or summary files.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In most of the filesystem, we use xfs_extlen_t to store the length of a
file (or AG) space mapping in units of fs blocks. Unfortunately, the
realtime allocator also uses it to store the length of a rt space
mapping in units of rt extents. This is confusing, since one rt extent
can consist of many fs blocks.
Separate the two by introducing a new type (xfs_rtxlen_t) to store the
length of a space mapping (in units of realtime extents) that would be
found in a file.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move all the declarations for functionality in xfs_rtbitmap.c into a
separate xfs_rtbitmap.h header file.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The unit conversions in this function do not make sense. First we
convert a block count to bytes, then divide that bytes value by
rextsize, which is in blocks, to get an rt extent count. You can't
divide bytes by blocks to get a (possibly multiblock) extent value.
Fortunately nobody uses delalloc on the rt volume so this hasn't
mattered.
Fixes: fa5c836ca8 ("xfs: refactor xfs_bunmapi_cow")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Currently, xfs_bmap_del_extent_real contains a bunch of code to convert
the physical extent of a data fork mapping for a realtime file into rt
extents and pass that to the rt extent freeing function. Since the
details of this aren't needed when CONFIG_XFS_REALTIME=n, move it to
xfs_rtbitmap.c to reduce code size when realtime isn't enabled.
This will (one day) enable realtime EFIs to reuse the same
unit-converting call with less code duplication.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The latest version of the fs geometry structure is v5. Bump this
constant so that xfs_db and mkfs calls to libxfs_fs_geometry will fill
out all the fields.
IOWs, this commit is a no-op for the kernel, but will be useful for
userspace reporting in later changes.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If we reduce the number of blocks in an AG, we must update the incore
geometry values as well.
Fixes: 0800169e3e ("xfs: Pre-calculate per-AG agbno geometry")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
* Fix an integer overflow bug when processing an fsmap call.
* Fix crash due to CPU hot remove event racing with filesystem mount
operation.
* During read-only mount, XFS does not allow the contents of the log to be
recovered when there are one or more unrecognized rcompat features in the
primary superblock, since the log might have intent items which the kernel
does not know how to process.
* During recovery of log intent items, XFS now reserves log space sufficient
for one cycle of a permanent transaction to execute. Otherwise, this could
lead to livelocks due to non-availability of log space.
* On an fs which has an ondisk unlinked inode list, trying to delete a file
or allocating an O_TMPFILE file can cause the fs to the shutdown if the
first inode in the ondisk inode list is not present in the inode cache.
The bug is solved by explicitly loading the first inode in the ondisk
unlinked inode list into the inode cache if it is not already cached.
A similar problem arises when the uncached inode is present in the middle
of the ondisk unlinked inode list. This second bug is triggered when
executing operations like quotacheck and bulkstat. In this case, XFS now
reads in the entire ondisk unlinked inode list.
* Enable LARP mode only on recent v5 filesystems.
* Fix a out of bounds memory access in scrub.
* Fix a performance bug when locating the tail of the log during mounting a
filesystem.
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQjMC4mbgVeU7MxEIYH7y4RirJu9AUCZQkx4QAKCRAH7y4RirJu
9HrTAQD6QhvHkS43vueGOb4WISZPG/jMKJ/FjvwLZrIZ0erbJwEAtRWhClwFv3NZ
exJFtsmxrKC6Vifuo0pvfoCiK5mUvQ8=
=SrJR
-----END PGP SIGNATURE-----
Merge tag 'xfs-6.6-fixes-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs fixes from Chandan Babu:
- Fix an integer overflow bug when processing an fsmap call
- Fix crash due to CPU hot remove event racing with filesystem mount
operation
- During read-only mount, XFS does not allow the contents of the log to
be recovered when there are one or more unrecognized rcompat features
in the primary superblock, since the log might have intent items
which the kernel does not know how to process
- During recovery of log intent items, XFS now reserves log space
sufficient for one cycle of a permanent transaction to execute.
Otherwise, this could lead to livelocks due to non-availability of
log space
- On an fs which has an ondisk unlinked inode list, trying to delete a
file or allocating an O_TMPFILE file can cause the fs to the shutdown
if the first inode in the ondisk inode list is not present in the
inode cache. The bug is solved by explicitly loading the first inode
in the ondisk unlinked inode list into the inode cache if it is not
already cached
A similar problem arises when the uncached inode is present in the
middle of the ondisk unlinked inode list. This second bug is
triggered when executing operations like quotacheck and bulkstat. In
this case, XFS now reads in the entire ondisk unlinked inode list
- Enable LARP mode only on recent v5 filesystems
- Fix a out of bounds memory access in scrub
- Fix a performance bug when locating the tail of the log during
mounting a filesystem
* tag 'xfs-6.6-fixes-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: use roundup_pow_of_two instead of ffs during xlog_find_tail
xfs: only call xchk_stats_merge after validating scrub inputs
xfs: require a relatively recent V5 filesystem for LARP mode
xfs: make inode unlinked bucket recovery work with quotacheck
xfs: load uncached unlinked inodes into memory on demand
xfs: reserve less log space when recovering log intent items
xfs: fix log recovery when unknown rocompat bits are set
xfs: reload entire unlinked bucket lists
xfs: allow inode inactivation during a ro mount log recovery
xfs: use i_prev_unlinked to distinguish inodes that are not on the unlinked list
xfs: remove CPU hotplug infrastructure
xfs: remove the all-mounts list
xfs: use per-mount cpumask to track nonempty percpu inodegc lists
xfs: fix an agbno overflow in __xfs_getfsmap_datadev
xfs: fix per-cpu CIL structure aggregation racing with dying cpus
xfs: fix select in config XFS_ONLINE_SCRUB_STATS
This reverts commit e44df26647.
Users reported regressions due to enabling multi-grained timestamps
unconditionally. As no clear consensus on a solution has come up and the
discussion has gone back to the drawing board revert the infrastructure
changes for. If it isn't code that's here to stay, make it go away.
Message-ID: <20230920-keine-eile-c9755b5825db@brauner>
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Wengang Wang reports that a customer's system was running a number of
truncate operations on a filesystem with a very small log. Contention
on the reserve heads lead to other threads stalling on smaller updates
(e.g. mtime updates) long enough to result in the node being rebooted
on account of the lack of responsivenes. The node failed to recover
because log recovery of an EFI became stuck waiting for a grant of
reserve space. From Wengang's report:
"For the file deletion, log bytes are reserved basing on
xfs_mount->tr_itruncate which is:
tr_logres = 175488,
tr_logcount = 2,
tr_logflags = XFS_TRANS_PERM_LOG_RES,
"You see it's a permanent log reservation with two log operations (two
transactions in rolling mode). After calculation (xlog_calc_unit_res()
adds space for various log headers), the final log space needed per
transaction changes from 175488 to 180208 bytes. So the total log
space needed is 360416 bytes (180208 * 2). [That quantity] of log space
(360416 bytes) needs to be reserved for both run time inode removing
(xfs_inactive_truncate()) and EFI recover (xfs_efi_item_recover())."
In other words, runtime pre-reserves 360K of space in anticipation of
running a chain of two transactions in which each transaction gets a
180K reservation.
Now that we've allocated the transaction, we delete the bmap mapping,
log an EFI to free the space, and roll the transaction as part of
finishing the deferops chain. Rolling creates a new xfs_trans which
shares its ticket with the old transaction. Next, xfs_trans_roll calls
__xfs_trans_commit with regrant == true, which calls xlog_cil_commit
with the same regrant parameter.
xlog_cil_commit calls xfs_log_ticket_regrant, which decrements t_cnt and
subtracts t_curr_res from the reservation and write heads.
If the filesystem is fresh and the first transaction only used (say)
20K, then t_curr_res will be 160K, and we give that much reservation
back to the reservation head. Or if the file is really fragmented and
the first transaction actually uses 170K, then t_curr_res will be 10K,
and that's what we give back to the reservation.
Having done that, we're now headed into the second transaction with an
EFI and 180K of reservation. Other threads apparently consumed all the
reservation for smaller transactions, such as timestamp updates.
Now let's say the first transaction gets written to disk and we crash
without ever completing the second transaction. Now we remount the fs,
log recovery finds the unfinished EFI, and calls xfs_efi_recover to
finish the EFI. However, xfs_efi_recover starts a new tr_itruncate
tranasction, which asks for 360K log reservation. This is a lot more
than the 180K that we had reserved at the time of the crash. If the
first EFI to be recovered is also pinning the tail of the log, we will
be unable to free any space in the log, and recovery livelocks.
Wengang confirmed this:
"Now we have the second transaction which has 180208 log bytes reserved
too. The second transaction is supposed to process intents including
extent freeing. With my hacking patch, I blocked the extent freeing 5
hours. So in that 5 hours, 180208 (NOT 360416) log bytes are reserved.
"With my test case, other transactions (update timestamps) then happen.
As my hacking patch pins the journal tail, those timestamp-updating
transactions finally use up (almost) all the left available log space
(in memory in on disk). And finally the on disk (and in memory)
available log space goes down near to 180208 bytes. Those 180208 bytes
are reserved by [the] second (extent-free) transaction [in the chain]."
Wengang and I noticed that EFI recovery starts a transaction, completes
one step of the chain, and commits the transaction without completing
any other steps of the chain. Those subsequent steps are completed by
xlog_finish_defer_ops, which allocates yet another transaction to
finish the rest of the chain. That transaction gets the same tr_logres
as the head transaction, but with tr_logcount = 1 to force regranting
with every roll to avoid livelocks.
In other words, we already figured this out in commit 929b92f640
("xfs: xfs_defer_capture should absorb remaining transaction
reservation"), but should have applied that logic to each intent item's
recovery function. For Wengang's case, the xfs_trans_alloc call in the
EFI recovery function should only be asking for a single transaction's
worth of log reservation -- 180K, not 360K.
Quoting Wengang again:
"With log recovery, during EFI recovery, we use tr_itruncate again to
reserve two transactions that needs 360416 log bytes. Reserving 360416
bytes fails [stalls] because we now only have about 180208 available.
"Actually during the EFI recover, we only need one transaction to free
the extents just like the 2nd transaction at RUNTIME. So it only needs
to reserve 180208 rather than 360416 bytes. We have (a bit) more than
180208 available log bytes on disk, so [if we decrease the reservation
to 180K] the reservation goes and the recovery [finishes]. That is to
say: we can fix the log recover part to fix the issue. We can introduce
a new xfs_trans_res xfs_mount->tr_ext_free
{
tr_logres = 175488,
tr_logcount = 0,
tr_logflags = 0,
}
"and use tr_ext_free instead of tr_itruncate in EFI recover."
However, I don't think it quite makes sense to create an entirely new
transaction reservation type to handle single-stepping during log
recovery. Instead, we should copy the transaction reservation
information in the xfs_mount, change tr_logcount to 1, and pass that
into xfs_trans_alloc. We know this won't risk changing the min log size
computation since we always ask for a fraction of the reservation for
all known transaction types.
This looks like it's been lurking in the codebase since commit
3d3c8b5222, which changed the xfs_trans_reserve call in
xlog_recover_process_efi to use the tr_logcount in tr_itruncate.
That changed the EFI recovery transaction from making a
non-XFS_TRANS_PERM_LOG_RES request for one transaction's worth of log
space to a XFS_TRANS_PERM_LOG_RES request for two transactions worth.
Fixes: 3d3c8b5222 ("xfs: refactor xfs_trans_reserve() interface")
Complements: 929b92f640 ("xfs: xfs_defer_capture should absorb remaining transaction reservation")
Suggested-by: Wengang Wang <wen.gang.wang@oracle.com>
Cc: Srikanth C S <srikanth.c.s@oracle.com>
[djwong: apply the same transformation to all log intent recovery]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Log recovery has always run on read only mounts, even where the primary
superblock advertises unknown rocompat bits. Due to a misunderstanding
between Eric and Darrick back in 2018, we accidentally changed the
superblock write verifier to shutdown the fs over that exact scenario.
As a result, the log cleaning that occurs at the end of the mounting
process fails if there are unknown rocompat bits set.
As we now allow writing of the superblock if there are unknown rocompat
bits set on a RO mount, we no longer want to turn off RO state to allow
log recovery to succeed on a RO mount. Hence we also remove all the
(now unnecessary) RO state toggling from the log recovery path.
Fixes: 9e037cb797 ("xfs: check for unknown v5 feature bits in superblock write verifier"
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
* Chandan Babu will be taking over as the XFS release manager. He has
reviewed all the patches that are in this branch, though I'm signing
the branch one last time since I'm still technically maintainer. :P
* Create a maintainer entry profile for XFS in which we lay out the
various roles that I have played for many years. Aside from release
manager, the remaining roles are as yet unfilled.
* Start merging online repair -- we now have in-memory pageable memory
for staging btrees, a bunch of pending fixes, and we've started the
process of refactoring the scrub support code to support more of
repair. In particular, reaping of old blocks from damaged structures.
* Scrub the realtime summary file.
* Fix a bug where scrub's quota iteration only ever returned the root
dquot. Oooops.
* Fix some typos.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZOQE2AAKCRBKO3ySh0YR
pvmZAQDe+KceaVx6Dv2f9ihckeS2dILSpDTo1bh9BeXnt005VwD/ceHTaJxEl8lp
u/dixFDkRgp9RYtoTAK2WNiUxYetsAc=
=oZN6
-----END PGP SIGNATURE-----
Merge tag 'xfs-6.6-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Chandan Babu:
- Chandan Babu will be taking over as the XFS release manager. He has
reviewed all the patches that are in this branch, though I'm signing
the branch one last time since I'm still technically maintainer. :P
- Create a maintainer entry profile for XFS in which we lay out the
various roles that I have played for many years. Aside from release
manager, the remaining roles are as yet unfilled.
- Start merging online repair -- we now have in-memory pageable memory
for staging btrees, a bunch of pending fixes, and we've started the
process of refactoring the scrub support code to support more of
repair. In particular, reaping of old blocks from damaged structures.
- Scrub the realtime summary file.
- Fix a bug where scrub's quota iteration only ever returned the root
dquot. Oooops.
- Fix some typos.
[ Pull request from Chandan Babu, but signed tag and description from
Darrick Wong, thus the first person singular above is Darrick, not
Chandan ]
* tag 'xfs-6.6-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (37 commits)
fs/xfs: Fix typos in comments
xfs: fix dqiterate thinko
xfs: don't check reflink iflag state when checking cow fork
xfs: simplify returns in xchk_bmap
xfs: rewrite xchk_inode_is_allocated to work properly
xfs: hide xfs_inode_is_allocated in scrub common code
xfs: fix agf_fllast when repairing an empty AGFL
xfs: allow userspace to rebuild metadata structures
xfs: clear pagf_agflreset when repairing the AGFL
xfs: allow the user to cancel repairs before we start writing
xfs: don't complain about unfixed metadata when repairs were injected
xfs: implement online scrubbing of rtsummary info
xfs: always rescan allegedly healthy per-ag metadata after repair
xfs: move the realtime summary file scrubber to a separate source file
xfs: wrap ilock/iunlock operations on sc->ip
xfs: get our own reference to inodes that we want to scrub
xfs: track usage statistics of online fsck
xfs: improve xfarray quicksort pivot
xfs: create scaffolding for creating debugfs entries
xfs: cache pages used for xfarray quicksort convergence
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZOXTKAAKCRCRxhvAZXjc
oifJAQCzi/p+AdQu8LA/0XvR7fTwaq64ZDCibU4BISuLGT2kEgEAuGbuoFZa0rs2
XYD/s4+gi64p9Z01MmXm2XO1pu3GPg0=
=eJz5
-----END PGP SIGNATURE-----
Merge tag 'v6.6-vfs.ctime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs timestamp updates from Christian Brauner:
"This adds VFS support for multi-grain timestamps and converts tmpfs,
xfs, ext4, and btrfs to use them. This carries acks from all relevant
filesystems.
The VFS always uses coarse-grained timestamps when updating the ctime
and mtime after a change. This has the benefit of allowing filesystems
to optimize away a lot of metadata updates, down to around 1 per
jiffy, even when a file is under heavy writes.
Unfortunately, this has always been an issue when we're exporting via
NFSv3, which relies on timestamps to validate caches. A lot of changes
can happen in a jiffy, so timestamps aren't sufficient to help the
client decide to invalidate the cache.
Even with NFSv4, a lot of exported filesystems don't properly support
a change attribute and are subject to the same problems with timestamp
granularity. Other applications have similar issues with timestamps
(e.g., backup applications).
If we were to always use fine-grained timestamps, that would improve
the situation, but that becomes rather expensive, as the underlying
filesystem would have to log a lot more metadata updates.
This introduces fine-grained timestamps that are used when they are
actively queried.
This uses the 31st bit of the ctime tv_nsec field to indicate that
something has queried the inode for the mtime or ctime. When this flag
is set, on the next mtime or ctime update, the kernel will fetch a
fine-grained timestamp instead of the usual coarse-grained one.
As POSIX generally mandates that when the mtime changes, the ctime
must also change the kernel always stores normalized ctime values, so
only the first 30 bits of the tv_nsec field are ever used.
Filesytems can opt into this behavior by setting the FS_MGTIME flag in
the fstype. Filesystems that don't set this flag will continue to use
coarse-grained timestamps.
Various preparatory changes, fixes and cleanups are included:
- Fixup all relevant places where POSIX requires updating ctime
together with mtime. This is a wide-range of places and all
maintainers provided necessary Acks.
- Add new accessors for inode->i_ctime directly and change all
callers to rely on them. Plain accesses to inode->i_ctime are now
gone and it is accordingly rename to inode->__i_ctime and commented
as requiring accessors.
- Extend generic_fillattr() to pass in a request mask mirroring in a
sense the statx() uapi. This allows callers to pass in a request
mask to only get a subset of attributes filled in.
- Rework timestamp updates so it's possible to drop the @now
parameter the update_time() inode operation and associated helpers.
- Add inode_update_timestamps() and convert all filesystems to it
removing a bunch of open-coding"
* tag 'v6.6-vfs.ctime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (107 commits)
btrfs: convert to multigrain timestamps
ext4: switch to multigrain timestamps
xfs: switch to multigrain timestamps
tmpfs: add support for multigrain timestamps
fs: add infrastructure for multigrain timestamps
fs: drop the timespec64 argument from update_time
xfs: have xfs_vn_update_time gets its own timestamp
fat: make fat_update_time get its own timestamp
fat: remove i_version handling from fat_update_time
ubifs: have ubifs_update_time use inode_update_timestamps
btrfs: have it use inode_update_timestamps
fs: drop the timespec64 arg from generic_update_time
fs: pass the request_mask to generic_fillattr
fs: remove silly warning from current_time
gfs2: fix timestamp handling on quota inodes
fs: rename i_ctime field to __i_ctime
selinux: convert to ctime accessor functions
security: convert to ctime accessor functions
apparmor: convert to ctime accessor functions
sunrpc: convert to ctime accessor functions
...
Enable multigrain timestamps, which should ensure that there is an
apparent change to the timestamp whenever it has been written after
being actively observed via getattr.
Also, anytime the mtime changes, the ctime must also change, and those
are now the only two options for xfs_trans_ichgtime. Have that function
unconditionally bump the ctime, and ASSERT that XFS_ICHGTIME_CHG is
always set.
Acked-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Message-Id: <20230807-mgctime-v7-11-d1dec143a704@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Add a new (superuser-only) flag to the online metadata repair ioctl to
force it to rebuild structures, even if they're not broken. We will use
this to move metadata structures out of the way during a free space
defragmentation operation.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In later patches, we're going to change how the inode's ctime field is
used. Switch to using accessor functions instead of raw accesses of
inode->i_ctime.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Message-Id: <20230705190309.579783-80-jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
As of 6.5-rc1, UBSAN trips over the ondisk extended attribute shortform
definitions using an array length of 1 to pretend to be a flex array.
Kernel compilers have to support unbounded array declarations, so let's
correct this.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
As of 6.5-rc1, UBSAN trips over the ondisk extended attribute leaf block
definitions using an array length of 1 to pretend to be a flex array.
Kernel compilers have to support unbounded array declarations, so let's
correct this.
================================================================================
UBSAN: array-index-out-of-bounds in fs/xfs/libxfs/xfs_attr_leaf.c:2535:24
index 2 is out of range for type '__u8 [1]'
Call Trace:
<TASK>
dump_stack_lvl+0x33/0x50
__ubsan_handle_out_of_bounds+0x9c/0xd0
xfs_attr3_leaf_getvalue+0x2ce/0x2e0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_attr_leaf_get+0x148/0x1c0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_attr_get_ilocked+0xae/0x110 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_attr_get+0xee/0x150 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_xattr_get+0x7d/0xc0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
__vfs_getxattr+0xa3/0x100
vfs_getxattr+0x87/0x1d0
do_getxattr+0x17a/0x220
getxattr+0x89/0xf0
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
As of 6.5-rc1, UBSAN trips over the attrlist ioctl definitions using an
array length of 1 to pretend to be a flex array. Kernel compilers have
to support unbounded array declarations, so let's correct this. This
may cause friction with userspace header declarations, but suck is life.
================================================================================
UBSAN: array-index-out-of-bounds in fs/xfs/xfs_ioctl.c:345:18
index 1 is out of range for type '__s32 [1]'
Call Trace:
<TASK>
dump_stack_lvl+0x33/0x50
__ubsan_handle_out_of_bounds+0x9c/0xd0
xfs_ioc_attr_put_listent+0x413/0x420 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_attr_list_ilocked+0x170/0x850 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_attr_list+0xb7/0x120 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_ioc_attr_list+0x13b/0x2e0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_attrlist_by_handle+0xab/0x120 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_file_ioctl+0x1ff/0x15e0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
vfs_ioctl+0x1f/0x60
The kernel and xfsprogs code that uses these structures will not have
problems, but the long tail of external user programs might.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
* Fix some ordering problems with log items during log recovery.
* Don't deadlock the system by trying to flush busy freed extents while
holding on to busy freed extents.
* Improve validation of log geometry parameters when reading the
primary superblock.
* Validate the length field in the AGF header.
* Fix recordset filtering bugs when re-calling GETFSMAP to return more
results when the resultset didn't previously fit in the caller's buffer.
* Fix integer overflows in GETFSMAP when working with rt volumes larger
than 2^32 fsblocks.
* Fix GETFSMAP reporting the undefined space beyond the last rtextent.
* Fix filtering bugs in GETFSMAP's log device backend if the log ever
becomes longer than 2^32 fsblocks.
* Improve validation of file offsets in the GETFSMAP range parameters.
* Fix an off by one bug in the pmem media failure notification
computation.
* Validate the length field in the AGI header too.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZKL9IwAKCRBKO3ySh0YR
prFLAQC+dp1bV5ShBPfYJMCSUS7gmZEge01QrLTqcpyu8mO5GgD/YLUdD2Iebc8t
AS1Awj1iec7AFtCWcd3bTeNZD7vL9w0=
=j/oi
-----END PGP SIGNATURE-----
Merge tag 'xfs-6.5-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull more xfs updates from Darrick Wong:
- Fix some ordering problems with log items during log recovery
- Don't deadlock the system by trying to flush busy freed extents while
holding on to busy freed extents
- Improve validation of log geometry parameters when reading the
primary superblock
- Validate the length field in the AGF header
- Fix recordset filtering bugs when re-calling GETFSMAP to return more
results when the resultset didn't previously fit in the caller's
buffer
- Fix integer overflows in GETFSMAP when working with rt volumes larger
than 2^32 fsblocks
- Fix GETFSMAP reporting the undefined space beyond the last rtextent
- Fix filtering bugs in GETFSMAP's log device backend if the log ever
becomes longer than 2^32 fsblocks
- Improve validation of file offsets in the GETFSMAP range parameters
- Fix an off by one bug in the pmem media failure notification
computation
- Validate the length field in the AGI header too
* tag 'xfs-6.5-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: Remove unneeded semicolon
xfs: AGI length should be bounds checked
xfs: fix the calculation for "end" and "length"
xfs: fix xfs_btree_query_range callers to initialize btree rec fully
xfs: validate fsmap offsets specified in the query keys
xfs: fix logdev fsmap query result filtering
xfs: clean up the rtbitmap fsmap backend
xfs: fix getfsmap reporting past the last rt extent
xfs: fix integer overflows in the fsmap rtbitmap and logdev backends
xfs: fix interval filtering in multi-step fsmap queries
xfs: fix bounds check in xfs_defer_agfl_block()
xfs: AGF length has never been bounds checked
xfs: journal geometry is not properly bounds checked
xfs: don't block in busy flushing when freeing extents
xfs: allow extent free intents to be retried
xfs: pass alloc flags through to xfs_extent_busy_flush()
xfs: use deferred frees for btree block freeing
xfs: don't reverse order of items in bulk AIL insertion
xfs: remove redundant initializations of pointers drop_leaf and save_leaf
Similar to the recent patch strengthening the AGF agf_length
verification, the AGI verifier does not check that the AGI length field
is within known good bounds. This isn't currently checked by runtime
kernel code, yet we assume in many places that it is correct and verify
other metadata against it.
Add length verification to the AGI verifier. Just like the AGF length
checking, the length of the AGI must be equal to the size of the AG
specified in the superblock, unless it is the last AG in the filesystem.
In that case, it must be less than or equal to sb->sb_agblocks and
greater than XFS_MIN_AG_BLOCKS, which is the smallest AG a growfs
operation will allow to exist.
There's only one place in the filesystem that actually uses agi_length,
but let's not leave it vulnerable to the same weird nonsense that
generates syzbot bugs, eh?
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Use struct initializers to ensure that the xfs_btree_irecs passed into
the query_range function are completely initialized. No functional
changes, just closing some sloppy hygiene.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
* Fix a problem where shrink would blow out the space reserve by
declining to shrink the filesystem.
* Drop the EXPERIMENTAL tag for the large extent counts feature.
* Set FMODE_CAN_ODIRECT and get rid of an address space op.
* Fix an AG count overflow bug in growfs if the new device size is
redonkulously large.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHQEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZIs45AAKCRBKO3ySh0YR
ps5NAP92oOaMlXeaxTTGLnbCe/sQhQiVfjE45sQL2BziHN/s2gD2OX01yn2w+Mpg
CdQ6HChUzL2fU3eleh1yMNR7McuaCA==
=hQX7
-----END PGP SIGNATURE-----
Merge tag 'xfs-6.5-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"There's not much going on this cycle -- the large extent counts
feature graduated, so now users can create more extremely fragmented
files! :P
The rest are bug fixes; and I'll be sending more next week.
- Fix a problem where shrink would blow out the space reserve by
declining to shrink the filesystem
- Drop the EXPERIMENTAL tag for the large extent counts feature
- Set FMODE_CAN_ODIRECT and get rid of an address space op
- Fix an AG count overflow bug in growfs if the new device size is
redonkulously large"
* tag 'xfs-6.5-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: fix ag count overflow during growfs
xfs: set FMODE_CAN_ODIRECT instead of a dummy direct_IO method
xfs: drop EXPERIMENTAL tag for large extent counts
xfs: don't deplete the reserve pool when trying to shrink the fs
Need to happen before we allocate and then leak the xefi. Found by
coverity via an xfsprogs libxfs scan.
[djwong: This also fixes the type of the @agbno argument.]
Fixes: 7dfee17b13 ("xfs: validate block number being freed before adding to xefi")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The AGF verifier does not check that the AGF length field is within
known good bounds. This has never been checked by runtime kernel
code (i.e. the lack of verification goes back to 1993) yet we assume
in many places that it is correct and verify other metdata against
it.
Add length verification to the AGF verifier. The length of the AGF
must be equal to the size of the AG specified in the superblock,
unless it is the last AG in the filesystem. In that case, it must be
less than or equal to sb->sb_agblocks and greater than
XFS_MIN_AG_BLOCKS, which is the smallest AG a growfs operation will
allow to exist.
This requires a bit of rework of the verifier function. We want to
verify metadata before we use it to verify other metadata. Hence
we need to verify the AGF sequence numbers before using them to
verify the length of the AGF. Then we can verify the AGF length
before we verify AGFL fields. Then we can verifier other fields that
are bounds limited by the AGF length.
And, finally, by calculating agf_length only once into a local
variable, we can collapse repeated "if (xfs_has_foo() &&"
conditionaly checks into single checks. This makes the code much
easier to follow as all the checks for a given feature are obviously
in the same place.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
If the journal geometry results in a sector or log stripe unit
validation problem, it indicates that we cannot set the log up to
safely write to the the journal. In these cases, we must abort the
mount because the corruption needs external intervention to resolve.
Similarly, a journal that is too large cannot be written to safely,
either, so we shouldn't allow those geometries to mount, either.
If the log is too small, we risk having transaction reservations
overruning the available log space and the system hanging waiting
for space it can never provide. This is purely a runtime hang issue,
not a corruption issue as per the first cases listed above. We abort
mounts of the log is too small for V5 filesystems, but we must allow
v4 filesystems to mount because, historically, there was no log size
validity checking and so some systems may still be out there with
undersized logs.
The problem is that on V4 filesystems, when we discover a log
geometry problem, we skip all the remaining checks and then allow
the log to continue mounting. This mean that if one of the log size
checks fails, we skip the log stripe unit check. i.e. we allow the
mount because a "non-fatal" geometry is violated, and then fail to
check the hard fail geometries that should fail the mount.
Move all these fatal checks to the superblock verifier, and add a
new check for the two log sector size geometry variables having the
same values. This will prevent any attempt to mount a log that has
invalid or inconsistent geometries long before we attempt to mount
the log.
However, for the minimum log size checks, we can only do that once
we've setup up the log and calculated all the iclog sizes and
roundoffs. Hence this needs to remain in the log mount code after
the log has been initialised. It is also the only case where we
should allow a v4 filesystem to continue running, so leave that
handling in place, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
If the current transaction holds a busy extent and we are trying to
allocate a new extent to fix up the free list, we can deadlock if
the AG is entirely empty except for the busy extent held by the
transaction.
This can occur at runtime processing an XEFI with multiple extents
in this path:
__schedule+0x22f at ffffffff81f75e8f
schedule+0x46 at ffffffff81f76366
xfs_extent_busy_flush+0x69 at ffffffff81477d99
xfs_alloc_ag_vextent_size+0x16a at ffffffff8141711a
xfs_alloc_ag_vextent+0x19b at ffffffff81417edb
xfs_alloc_fix_freelist+0x22f at ffffffff8141896f
xfs_free_extent_fix_freelist+0x6a at ffffffff8141939a
__xfs_free_extent+0x99 at ffffffff81419499
xfs_trans_free_extent+0x3e at ffffffff814a6fee
xfs_extent_free_finish_item+0x24 at ffffffff814a70d4
xfs_defer_finish_noroll+0x1f7 at ffffffff81441407
xfs_defer_finish+0x11 at ffffffff814417e1
xfs_itruncate_extents_flags+0x13d at ffffffff8148b7dd
xfs_inactive_truncate+0xb9 at ffffffff8148bb89
xfs_inactive+0x227 at ffffffff8148c4f7
xfs_fs_destroy_inode+0xb8 at ffffffff81496898
destroy_inode+0x3b at ffffffff8127d2ab
do_unlinkat+0x1d1 at ffffffff81270df1
do_syscall_64+0x40 at ffffffff81f6b5f0
entry_SYSCALL_64_after_hwframe+0x44 at ffffffff8200007c
This can also happen in log recovery when processing an EFI
with multiple extents through this path:
context_switch() kernel/sched/core.c:3881
__schedule() kernel/sched/core.c:5111
schedule() kernel/sched/core.c:5186
xfs_extent_busy_flush() fs/xfs/xfs_extent_busy.c:598
xfs_alloc_ag_vextent_size() fs/xfs/libxfs/xfs_alloc.c:1641
xfs_alloc_ag_vextent() fs/xfs/libxfs/xfs_alloc.c:828
xfs_alloc_fix_freelist() fs/xfs/libxfs/xfs_alloc.c:2362
xfs_free_extent_fix_freelist() fs/xfs/libxfs/xfs_alloc.c:3029
__xfs_free_extent() fs/xfs/libxfs/xfs_alloc.c:3067
xfs_trans_free_extent() fs/xfs/xfs_extfree_item.c:370
xfs_efi_recover() fs/xfs/xfs_extfree_item.c:626
xlog_recover_process_efi() fs/xfs/xfs_log_recover.c:4605
xlog_recover_process_intents() fs/xfs/xfs_log_recover.c:4893
xlog_recover_finish() fs/xfs/xfs_log_recover.c:5824
xfs_log_mount_finish() fs/xfs/xfs_log.c:764
xfs_mountfs() fs/xfs/xfs_mount.c:978
xfs_fs_fill_super() fs/xfs/xfs_super.c:1908
mount_bdev() fs/super.c:1417
xfs_fs_mount() fs/xfs/xfs_super.c:1985
legacy_get_tree() fs/fs_context.c:647
vfs_get_tree() fs/super.c:1547
do_new_mount() fs/namespace.c:2843
do_mount() fs/namespace.c:3163
ksys_mount() fs/namespace.c:3372
__do_sys_mount() fs/namespace.c:3386
__se_sys_mount() fs/namespace.c:3383
__x64_sys_mount() fs/namespace.c:3383
do_syscall_64() arch/x86/entry/common.c:296
entry_SYSCALL_64() arch/x86/entry/entry_64.S:180
To avoid this deadlock, we should not block in
xfs_extent_busy_flush() if we hold a busy extent in the current
transaction.
Now that the EFI processing code can handle requeuing a partially
completed EFI, we can detect this situation in
xfs_extent_busy_flush() and return -EAGAIN rather than going to
sleep forever. The -EAGAIN get propagated back out to the
xfs_trans_free_extent() context, where the EFD is populated and the
transaction is rolled, thereby moving the busy extents into the CIL.
At this point, we can retry the extent free operation again with a
clean transaction. If we hit the same "all free extents are busy"
situation when trying to fix up the free list, we can safely call
xfs_extent_busy_flush() and wait for the busy extents to resolve
and wake us. At this point, the allocation search can make progress
again and we can fix up the free list.
This deadlock was first reported by Chandan in mid-2021, but I
couldn't make myself understood during review, and didn't have time
to fix it myself.
It was reported again in March 2023, and again I have found myself
unable to explain the complexities of the solution needed during
review.
As such, I don't have hours more time to waste trying to get the
fix written the way it needs to be written, so I'm just doing it
myself. This patchset is largely based on Wengang Wang's last patch,
but with all the unnecessary stuff removed, split up into multiple
patches and cleaned up somewhat.
Reported-by: Chandan Babu R <chandanrlinux@gmail.com>
Reported-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
To avoid blocking in xfs_extent_busy_flush() when freeing extents
and the only busy extents are held by the current transaction, we
need to pass the XFS_ALLOC_FLAG_FREEING flag context all the way
into xfs_extent_busy_flush().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Btrees that aren't freespace management trees use the normal extent
allocation and freeing routines for their blocks. Hence when a btree
block is freed, a direct call to xfs_free_extent() is made and the
extent is immediately freed. This puts the entire free space
management btrees under this path, so we are stacking btrees on
btrees in the call stack. The inobt, finobt and refcount btrees
all do this.
However, the bmap btree does not do this - it calls
xfs_free_extent_later() to defer the extent free operation via an
XEFI and hence it gets processed in deferred operation processing
during the commit of the primary transaction (i.e. via intent
chaining).
We need to change xfs_free_extent() to behave in a non-blocking
manner so that we can avoid deadlocks with busy extents near ENOSPC
in transactions that free multiple extents. Inserting or removing a
record from a btree can cause a multi-level tree merge operation and
that will free multiple blocks from the btree in a single
transaction. i.e. we can call xfs_free_extent() multiple times, and
hence the btree manipulation transaction is vulnerable to this busy
extent deadlock vector.
To fix this, convert all the remaining callers of xfs_free_extent()
to use xfs_free_extent_later() to queue XEFIs and hence defer
processing of the extent frees to a context that can be safely
restarted if a deadlock condition is detected.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Pointers drop_leaf and save_leaf are initialized with values that are never
read, they are being re-assigned later on just before they are used. Remove
the redundant early initializations and keep the later assignments at the
point where they are used. Cleans up two clang scan build warnings:
fs/xfs/libxfs/xfs_attr_leaf.c:2288:29: warning: Value stored to 'drop_leaf'
during its initialization is never read [deadcode.DeadStores]
fs/xfs/libxfs/xfs_attr_leaf.c:2289:29: warning: Value stored to 'save_leaf'
during its initialization is never read [deadcode.DeadStores]
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
- Fix KMSAN vs FORTIFY in strlcpy/strlcat (Alexander Potapenko)
- Convert strreplace() to return string start (Andy Shevchenko)
- Flexible array conversions (Arnd Bergmann, Wyes Karny, Kees Cook)
- Add missing function prototypes seen with W=1 (Arnd Bergmann)
- Fix strscpy() kerndoc typo (Arne Welzel)
- Replace strlcpy() with strscpy() across many subsystems which were
either Acked by respective maintainers or were trivial changes that
went ignored for multiple weeks (Azeem Shaikh)
- Remove unneeded cc-option test for UBSAN_TRAP (Nick Desaulniers)
- Add KUnit tests for strcat()-family
- Enable KUnit tests of FORTIFY wrappers under UML
- Add more complete FORTIFY protections for strlcat()
- Add missed disabling of FORTIFY for all arch purgatories.
- Enable -fstrict-flex-arrays=3 globally
- Tightening UBSAN_BOUNDS when using GCC
- Improve checkpatch to check for strcpy, strncpy, and fake flex arrays
- Improve use of const variables in FORTIFY
- Add requested struct_size_t() helper for types not pointers
- Add __counted_by macro for annotating flexible array size members
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmSbftQWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJj0MD/9X9jzJzCmsAU+yNldeoAzC84Sk
GVU3RBxGcTNysL1gZXynkIgigw7DWc4htMGeSABHHwQRVP65JCH1Kw/VqIkyumbx
9LdX6IklMJb4pRT4PVU3azebV4eNmSjlur2UxMeW54Czm91/6I8RHbJOyAPnOUmo
2oomGdP/hpEHtKR7hgy8Axc6w5ySwQixh2V5sVZG3VbvCS5WKTmTXbs6puuRT5hz
iHt7v+7VtEg/Qf1W7J2oxfoghvVBsaRrSLrExWT/oZYh1ZxM7DsCAAoG/IsDgHGA
9LBXiRECgAFThbHVxLvvKZQMXdVk0i8iXLX43XMKC0wTA+NTyH7wlcQQ4RWNMuo8
sfA9Qm9gMArXaf64aymr3Uwn20Zan0391HdlbhOJZAE6v3PPJbleUnM58AzD2d3r
5Lz6AIFBxDImy+3f9iDWgacCT5/PkeiXTHzk9QnKhJyKKtRA58XJxj4q2+rPnGJP
n4haXqoxD5FJbxdXiGKk31RS0U5HBug7wkOcUrTqDHUbc/QNU2b7dxTKUx+zYtCU
uV5emPzpF4H4z+91WpO47n9gkMAfwV0lt9S2dwS8pxsgqctbmIan+Jgip7rsqZ2G
OgLXBsb43eEs+6WgO8tVt/ZHYj9ivGMdrcNcsIfikzNs/xweUJ53k2xSEn2xEa5J
cwANDmkL6QQK7yfeeg==
=s0j1
-----END PGP SIGNATURE-----
Merge tag 'hardening-v6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardening updates from Kees Cook:
"There are three areas of note:
A bunch of strlcpy()->strscpy() conversions ended up living in my tree
since they were either Acked by maintainers for me to carry, or got
ignored for multiple weeks (and were trivial changes).
The compiler option '-fstrict-flex-arrays=3' has been enabled
globally, and has been in -next for the entire devel cycle. This
changes compiler diagnostics (though mainly just -Warray-bounds which
is disabled) and potential UBSAN_BOUNDS and FORTIFY _warning_
coverage. In other words, there are no new restrictions, just
potentially new warnings. Any new FORTIFY warnings we've seen have
been fixed (usually in their respective subsystem trees). For more
details, see commit df8fc4e934.
The under-development compiler attribute __counted_by has been added
so that we can start annotating flexible array members with their
associated structure member that tracks the count of flexible array
elements at run-time. It is possible (likely?) that the exact syntax
of the attribute will change before it is finalized, but GCC and Clang
are working together to sort it out. Any changes can be made to the
macro while we continue to add annotations.
As an example of that last case, I have a treewide commit waiting with
such annotations found via Coccinelle:
https://git.kernel.org/linus/adc5b3cb48a049563dc673f348eab7b6beba8a9b
Also see commit dd06e72e68 for more details.
Summary:
- Fix KMSAN vs FORTIFY in strlcpy/strlcat (Alexander Potapenko)
- Convert strreplace() to return string start (Andy Shevchenko)
- Flexible array conversions (Arnd Bergmann, Wyes Karny, Kees Cook)
- Add missing function prototypes seen with W=1 (Arnd Bergmann)
- Fix strscpy() kerndoc typo (Arne Welzel)
- Replace strlcpy() with strscpy() across many subsystems which were
either Acked by respective maintainers or were trivial changes that
went ignored for multiple weeks (Azeem Shaikh)
- Remove unneeded cc-option test for UBSAN_TRAP (Nick Desaulniers)
- Add KUnit tests for strcat()-family
- Enable KUnit tests of FORTIFY wrappers under UML
- Add more complete FORTIFY protections for strlcat()
- Add missed disabling of FORTIFY for all arch purgatories.
- Enable -fstrict-flex-arrays=3 globally
- Tightening UBSAN_BOUNDS when using GCC
- Improve checkpatch to check for strcpy, strncpy, and fake flex
arrays
- Improve use of const variables in FORTIFY
- Add requested struct_size_t() helper for types not pointers
- Add __counted_by macro for annotating flexible array size members"
* tag 'hardening-v6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (54 commits)
netfilter: ipset: Replace strlcpy with strscpy
uml: Replace strlcpy with strscpy
um: Use HOST_DIR for mrproper
kallsyms: Replace all non-returning strlcpy with strscpy
sh: Replace all non-returning strlcpy with strscpy
of/flattree: Replace all non-returning strlcpy with strscpy
sparc64: Replace all non-returning strlcpy with strscpy
Hexagon: Replace all non-returning strlcpy with strscpy
kobject: Use return value of strreplace()
lib/string_helpers: Change returned value of the strreplace()
jbd2: Avoid printing outside the boundary of the buffer
checkpatch: Check for 0-length and 1-element arrays
riscv/purgatory: Do not use fortified string functions
s390/purgatory: Do not use fortified string functions
x86/purgatory: Do not use fortified string functions
acpi: Replace struct acpi_table_slit 1-element array with flex-array
clocksource: Replace all non-returning strlcpy with strscpy
string: use __builtin_memcpy() in strlcpy/strlcat
staging: most: Replace all non-returning strlcpy with strscpy
drm/i2c: tda998x: Replace all non-returning strlcpy with strscpy
...
I found a corruption during growfs:
XFS (loop0): Internal error agbno >= mp->m_sb.sb_agblocks at line 3661 of
file fs/xfs/libxfs/xfs_alloc.c. Caller __xfs_free_extent+0x28e/0x3c0
CPU: 0 PID: 573 Comm: xfs_growfs Not tainted 6.3.0-rc7-next-20230420-00001-gda8c95746257
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
__xfs_free_extent+0x2c1/0x3c0
xfs_ag_extend_space+0x291/0x3e0
xfs_growfs_data+0xd72/0xe90
xfs_file_ioctl+0x5f9/0x14a0
__x64_sys_ioctl+0x13e/0x1c0
do_syscall_64+0x39/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
XFS (loop0): Corruption detected. Unmount and run xfs_repair
XFS (loop0): Internal error xfs_trans_cancel at line 1097 of file
fs/xfs/xfs_trans.c. Caller xfs_growfs_data+0x691/0xe90
CPU: 0 PID: 573 Comm: xfs_growfs Not tainted 6.3.0-rc7-next-20230420-00001-gda8c95746257
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_error_report+0x93/0xc0
xfs_trans_cancel+0x2c0/0x350
xfs_growfs_data+0x691/0xe90
xfs_file_ioctl+0x5f9/0x14a0
__x64_sys_ioctl+0x13e/0x1c0
do_syscall_64+0x39/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f2d86706577
The bug can be reproduced with the following sequence:
# truncate -s 1073741824 xfs_test.img
# mkfs.xfs -f -b size=1024 -d agcount=4 xfs_test.img
# truncate -s 2305843009213693952 xfs_test.img
# mount -o loop xfs_test.img /mnt/test
# xfs_growfs -D 1125899907891200 /mnt/test
The root cause is that during growfs, user space passed in a large value
of newblcoks to xfs_growfs_data_private(), due to current sb_agblocks is
too small, new AG count will exceed UINT_MAX. Because of AG number type
is unsigned int and it would overflow, that caused nagcount much smaller
than the actual value. During AG extent space, delta blocks in
xfs_resizefs_init_new_ags() will much larger than the actual value due to
incorrect nagcount, even exceed UINT_MAX. This will cause corruption and
be detected in __xfs_free_extent. Fix it by growing the filesystem to up
to the maximally allowed AGs and not return EINVAL when new AG count
overflow.
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Bad things happen in defered extent freeing operations if it is
passed a bad block number in the xefi. This can come from a bogus
agno/agbno pair from deferred agfl freeing, or just a bad fsbno
being passed to __xfs_free_extent_later(). Either way, it's very
difficult to diagnose where a null perag oops in EFI creation
is coming from when the operation that queued the xefi has already
been completed and there's no longer any trace of it around....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If the agfl or the indexing in the AGF has been corrupted, getting a
block form the AGFL could return an invalid block number. If this
happens, bad things happen. Check the agbno we pull off the AGFL
and return -EFSCORRUPTED if we find somethign bad.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When a v4 filesystem has fl_last - fl_first != fl_count, we do not
not detect the corruption and allow the AGF to be used as it if was
fully valid. On V5 filesystems, we reset the AGFL to empty in these
cases and avoid the corruption at a small cost of leaked blocks.
If we don't catch the corruption on V4 filesystems, bad things
happen later when an allocation attempts to trim the free list
and either double-frees stale entries in the AGFl or tries to free
NULLAGBNO entries.
Either way, this is bad. Prevent this from happening by using the
AGFL_NEED_RESET logic for v4 filesysetms, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Lock order in XFS is AGI -> AGF, hence for operations involving
inode unlinked list operations we always lock the AGI first. Inode
unlinked list operations operate on the inode cluster buffer,
so the lock order there is AGI -> inode cluster buffer.
For O_TMPFILE operations, this now means the lock order set down in
xfs_rename and xfs_link is AGI -> inode cluster buffer -> AGF as the
unlinked ops are done before the directory modifications that may
allocate space and lock the AGF.
Unfortunately, we also now lock the inode cluster buffer when
logging an inode so that we can attach the inode to the cluster
buffer and pin it in memory. This creates a lock order of AGF ->
inode cluster buffer in directory operations as we have to log the
inode after we've allocated new space for it.
This creates a lock inversion between the AGF and the inode cluster
buffer. Because the inode cluster buffer is shared across multiple
inodes, the inversion is not specific to individual inodes but can
occur when inodes in the same cluster buffer are accessed in
different orders.
To fix this we need move all the inode log item cluster buffer
interactions to the end of the current transaction. Unfortunately,
xfs_trans_log_inode() calls are littered throughout the transactions
with no thought to ordering against other items or locking. This
makes it difficult to do anything that involves changing the call
sites of xfs_trans_log_inode() to change locking orders.
However, we do now have a mechanism that allows is to postpone dirty
item processing to just before we commit the transaction: the
->iop_precommit method. This will be called after all the
modifications are done and high level objects like AGI and AGF
buffers have been locked and modified, thereby providing a mechanism
that guarantees we don't lock the inode cluster buffer before those
high level objects are locked.
This change is largely moving the guts of xfs_trans_log_inode() to
xfs_inode_item_precommit() and providing an extra flag context in
the inode log item to track the dirty state of the inode in the
current transaction. This also means we do a lot less repeated work
in xfs_trans_log_inode() by only doing it once per transaction when
all the work is done.
Fixes: 298f7bec50 ("xfs: pin inode backing buffer to the inode log item")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
It was accidentally dropped when refactoring the allocation code,
resulting in the AG iteration always doing blocking AG iteration.
This results in a small performance regression for a specific fsmark
test that runs more user data writer threads than there are AGs.
Reported-by: kernel test robot <oliver.sang@intel.com>
Fixes: 2edf06a50f ("xfs: factor xfs_alloc_vextent_this_ag() for _iterate_ags()")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
While struct_size() is normally used in situations where the structure
type already has a pointer instance, there are places where no variable
is available. In the past, this has been worked around by using a typed
NULL first argument, but this is a bit ugly. Add a helper to do this,
and replace the handful of instances of the code pattern with it.
Instances were found with this Coccinelle script:
@struct_size_t@
identifier STRUCT, MEMBER;
expression COUNT;
@@
- struct_size((struct STRUCT *)\(0\|NULL\),
+ struct_size_t(struct STRUCT,
MEMBER, COUNT)
Suggested-by: Christoph Hellwig <hch@infradead.org>
Cc: Jesse Brandeburg <jesse.brandeburg@intel.com>
Cc: Tony Nguyen <anthony.l.nguyen@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Paolo Abeni <pabeni@redhat.com>
Cc: James Smart <james.smart@broadcom.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Sagi Grimberg <sagi@grimberg.me>
Cc: HighPoint Linux Team <linux@highpoint-tech.com>
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Kashyap Desai <kashyap.desai@broadcom.com>
Cc: Sumit Saxena <sumit.saxena@broadcom.com>
Cc: Shivasharan S <shivasharan.srikanteshwara@broadcom.com>
Cc: Don Brace <don.brace@microchip.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Guo Xuenan <guoxuenan@huawei.com>
Cc: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Daniel Latypov <dlatypov@google.com>
Cc: kernel test robot <lkp@intel.com>
Cc: intel-wired-lan@lists.osuosl.org
Cc: netdev@vger.kernel.org
Cc: linux-nvme@lists.infradead.org
Cc: linux-scsi@vger.kernel.org
Cc: megaraidlinux.pdl@broadcom.com
Cc: storagedev@microchip.com
Cc: linux-xfs@vger.kernel.org
Cc: linux-hardening@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Link: https://lore.kernel.org/r/20230522211810.never.421-kees@kernel.org
Through generic/300, I discovered that mkfs.xfs creates corrupt
filesystems when given these parameters:
# mkfs.xfs -d size=512M /dev/sda -f -d su=128k,sw=4 --unsupported
Filesystems formatted with --unsupported are not supported!!
meta-data=/dev/sda isize=512 agcount=8, agsize=16352 blks
= sectsz=512 attr=2, projid32bit=1
= crc=1 finobt=1, sparse=1, rmapbt=1
= reflink=1 bigtime=1 inobtcount=1 nrext64=1
data = bsize=4096 blocks=130816, imaxpct=25
= sunit=32 swidth=128 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=8192, version=2
= sectsz=512 sunit=32 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0
= rgcount=0 rgsize=0 blks
Discarding blocks...Done.
# xfs_repair -n /dev/sda
Phase 1 - find and verify superblock...
- reporting progress in intervals of 15 minutes
Phase 2 - using internal log
- zero log...
- 16:30:50: zeroing log - 16320 of 16320 blocks done
- scan filesystem freespace and inode maps...
agf_freeblks 25, counted 0 in ag 4
sb_fdblocks 8823, counted 8798
The root cause of this problem is the numrecs handling in
xfs_freesp_init_recs, which is used to initialize a new AG. Prior to
calling the function, we set up the new bnobt block with numrecs == 1
and rely on _freesp_init_recs to format that new record. If the last
record created has a blockcount of zero, then it sets numrecs = 0.
That last bit isn't correct if the AG contains the log, the start of the
log is not immediately after the initial blocks due to stripe alignment,
and the end of the log is perfectly aligned with the end of the AG. For
this case, we actually formatted a single bnobt record to handle the
free space before the start of the (stripe aligned) log, and incremented
arec to try to format a second record. That second record turned out to
be unnecessary, so what we really want is to leave numrecs at 1.
The numrecs handling itself is overly complicated because a different
function sets numrecs == 1. Change the bnobt creation code to start
with numrecs set to zero and only increment it after successfully
formatting a free space extent into the btree block.
Fixes: f327a00745 ("xfs: account for log space when formatting new AGs")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
On a filesystem with a non-zero stripe unit and a large sequential
write, delayed allocation will set a minimum allocation length of
the stripe unit. If allocation fails because there are no extents
long enough for an aligned minlen allocation, it is supposed to
fall back to unaligned allocation which allows single block extents
to be allocated.
When the allocator code was rewritting in the 6.3 cycle, this
fallback was broken - the old code used args->fsbno as the both the
allocation target and the allocation result, the new code passes the
target as a separate parameter. The conversion didn't handle the
aligned->unaligned fallback path correctly - it reset args->fsbno to
the target fsbno on failure which broke allocation failure detection
in the high level code and so it never fell back to unaligned
allocations.
This resulted in a loop in writeback trying to allocate an aligned
block, getting a false positive success, trying to insert the result
in the BMBT. This did nothing because the extent already was in the
BMBT (merge results in an unchanged extent) and so it returned the
prior extent to the conversion code as the current iomap.
Because the iomap returned didn't cover the offset we tried to map,
xfs_convert_blocks() then retries the allocation, which fails in the
same way and now we have a livelock.
Reported-and-tested-by: Brian Foster <bfoster@redhat.com>
Fixes: 8584332709 ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Last week, I was fiddling around with the metadump name obfuscation code
while writing a debugger command to generate directories full of names
that all have the same hash name. I had a few questions about how well
all that worked with ascii-ci mode, and discovered a nasty discrepancy
between the kernel and glibc's implementations of the tolower()
function.
I discovered that I could create a directory that is large enough to
require separate leaf index blocks. The hashes stored in the dabtree
use the ascii-ci specific hash function, which uses a library function
to convert the name to lowercase before hashing. If the kernel and C
library's versions of tolower do not behave exactly identically,
xfs_ascii_ci_hashname will not produce the same results for the same
inputs. xfs_repair will deem the leaf information corrupt and rebuild
the directory. After that, lookups in the kernel will fail because the
hash index doesn't work.
The kernel's tolower function will convert extended ascii uppercase
letters (e.g. A-with-umlaut) to extended ascii lowercase letters (e.g.
a-with-umlaut), whereas glibc's will only do that if you force LANG to
ascii. Tiny embedded libc implementations just plain won't do it at
all, and the result is a mess. Stabilize the behavior of the hash
function by encoding the name transformation function in libxfs, add it
to the selftest, and fix all the userspace tools, none of which handle
this transformation correctly.
The v1 series generated a /lot/ of discussion, in which several things
became very clear: (1) Linus is not enamored of case folding of any
kind; (2) Dave and Christoph don't seem to agree on whether the feature
is supposed to work for 7-bit ascii or latin1; (3) it trashes UTF8
encoded names if those happen to show up; and (4) I don't want to
maintain this mess any longer than I have to. Kill it in 2030.
v2: rename the functions to make it clear we're moving away from the
letters t, o, l, o, w, e, and r; and deprecate the whole feature once
we've fixed the bugs and added tests.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdqwAKCRBKO3ySh0YR
pi33AQC4MFCz0uP1aF64zRgE+wtU2YBGw5cGps7nWIljVptbkAEAubfoY88wAop8
/KHIgZ8pHIb7ooPrYKpPZL5m0udtMw8=
=3Up6
-----END PGP SIGNATURE-----
Merge tag 'fix-asciici-bugs-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next
xfs: fix ascii-ci problems, then kill it [v2]
Last week, I was fiddling around with the metadump name obfuscation code
while writing a debugger command to generate directories full of names
that all have the same hash name. I had a few questions about how well
all that worked with ascii-ci mode, and discovered a nasty discrepancy
between the kernel and glibc's implementations of the tolower()
function.
I discovered that I could create a directory that is large enough to
require separate leaf index blocks. The hashes stored in the dabtree
use the ascii-ci specific hash function, which uses a library function
to convert the name to lowercase before hashing. If the kernel and C
library's versions of tolower do not behave exactly identically,
xfs_ascii_ci_hashname will not produce the same results for the same
inputs. xfs_repair will deem the leaf information corrupt and rebuild
the directory. After that, lookups in the kernel will fail because the
hash index doesn't work.
The kernel's tolower function will convert extended ascii uppercase
letters (e.g. A-with-umlaut) to extended ascii lowercase letters (e.g.
a-with-umlaut), whereas glibc's will only do that if you force LANG to
ascii. Tiny embedded libc implementations just plain won't do it at
all, and the result is a mess. Stabilize the behavior of the hash
function by encoding the name transformation function in libxfs, add it
to the selftest, and fix all the userspace tools, none of which handle
this transformation correctly.
The v1 series generated a /lot/ of discussion, in which several things
became very clear: (1) Linus is not enamored of case folding of any
kind; (2) Dave and Christoph don't seem to agree on whether the feature
is supposed to work for 7-bit ascii or latin1; (3) it trashes UTF8
encoded names if those happen to show up; and (4) I don't want to
maintain this mess any longer than I have to. Kill it in 2030.
v2: rename the functions to make it clear we're moving away from the
letters t, o, l, o, w, e, and r; and deprecate the whole feature once
we've fixed the bugs and added tests.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>