mirror of
https://github.com/torvalds/linux.git
synced 2024-11-24 13:11:40 +00:00
Documentation/protection-keys: add AArch64 to documentation
As POE support was recently added, update the documentation. Also note that kernel threads have a default protection key register value. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Jonathan Corbet <corbet@lwn.net> Link: https://lore.kernel.org/r/20241001133618.1547996-3-joey.gouly@arm.com [will: Adjusted wording based on feedback from Kevin] Signed-off-by: Will Deacon <will@kernel.org>
This commit is contained in:
parent
e3e8527133
commit
f56d8d2389
@ -12,7 +12,10 @@ Pkeys Userspace (PKU) is a feature which can be found on:
|
||||
* Intel server CPUs, Skylake and later
|
||||
* Intel client CPUs, Tiger Lake (11th Gen Core) and later
|
||||
* Future AMD CPUs
|
||||
* arm64 CPUs implementing the Permission Overlay Extension (FEAT_S1POE)
|
||||
|
||||
x86_64
|
||||
======
|
||||
Pkeys work by dedicating 4 previously Reserved bits in each page table entry to
|
||||
a "protection key", giving 16 possible keys.
|
||||
|
||||
@ -28,6 +31,22 @@ register. The feature is only available in 64-bit mode, even though there is
|
||||
theoretically space in the PAE PTEs. These permissions are enforced on data
|
||||
access only and have no effect on instruction fetches.
|
||||
|
||||
arm64
|
||||
=====
|
||||
|
||||
Pkeys use 3 bits in each page table entry, to encode a "protection key index",
|
||||
giving 8 possible keys.
|
||||
|
||||
Protections for each key are defined with a per-CPU user-writable system
|
||||
register (POR_EL0). This is a 64-bit register encoding read, write and execute
|
||||
overlay permissions for each protection key index.
|
||||
|
||||
Being a CPU register, POR_EL0 is inherently thread-local, potentially giving
|
||||
each thread a different set of protections from every other thread.
|
||||
|
||||
Unlike x86_64, the protection key permissions also apply to instruction
|
||||
fetches.
|
||||
|
||||
Syscalls
|
||||
========
|
||||
|
||||
@ -38,11 +57,10 @@ There are 3 system calls which directly interact with pkeys::
|
||||
int pkey_mprotect(unsigned long start, size_t len,
|
||||
unsigned long prot, int pkey);
|
||||
|
||||
Before a pkey can be used, it must first be allocated with
|
||||
pkey_alloc(). An application calls the WRPKRU instruction
|
||||
directly in order to change access permissions to memory covered
|
||||
with a key. In this example WRPKRU is wrapped by a C function
|
||||
called pkey_set().
|
||||
Before a pkey can be used, it must first be allocated with pkey_alloc(). An
|
||||
application writes to the architecture specific CPU register directly in order
|
||||
to change access permissions to memory covered with a key. In this example
|
||||
this is wrapped by a C function called pkey_set().
|
||||
::
|
||||
|
||||
int real_prot = PROT_READ|PROT_WRITE;
|
||||
@ -64,9 +82,9 @@ is no longer in use::
|
||||
munmap(ptr, PAGE_SIZE);
|
||||
pkey_free(pkey);
|
||||
|
||||
.. note:: pkey_set() is a wrapper for the RDPKRU and WRPKRU instructions.
|
||||
An example implementation can be found in
|
||||
tools/testing/selftests/x86/protection_keys.c.
|
||||
.. note:: pkey_set() is a wrapper around writing to the CPU register.
|
||||
Example implementations can be found in
|
||||
tools/testing/selftests/mm/pkey-{arm64,powerpc,x86}.h
|
||||
|
||||
Behavior
|
||||
========
|
||||
@ -96,3 +114,7 @@ with a read()::
|
||||
The kernel will send a SIGSEGV in both cases, but si_code will be set
|
||||
to SEGV_PKERR when violating protection keys versus SEGV_ACCERR when
|
||||
the plain mprotect() permissions are violated.
|
||||
|
||||
Note that kernel accesses from a kthread (such as io_uring) will use a default
|
||||
value for the protection key register and so will not be consistent with
|
||||
userspace's value of the register or mprotect().
|
||||
|
Loading…
Reference in New Issue
Block a user