mirror of
https://github.com/torvalds/linux.git
synced 2024-12-01 08:31:37 +00:00
metag: DMA
Add DMA mapping code. Signed-off-by: James Hogan <james.hogan@imgtec.com>
This commit is contained in:
parent
42682c6c42
commit
f507758ccb
183
arch/metag/include/asm/dma-mapping.h
Normal file
183
arch/metag/include/asm/dma-mapping.h
Normal file
@ -0,0 +1,183 @@
|
||||
#ifndef _ASM_METAG_DMA_MAPPING_H
|
||||
#define _ASM_METAG_DMA_MAPPING_H
|
||||
|
||||
#include <linux/mm.h>
|
||||
|
||||
#include <asm/cache.h>
|
||||
#include <asm/io.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <asm/bug.h>
|
||||
|
||||
#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
|
||||
#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
|
||||
|
||||
void *dma_alloc_coherent(struct device *dev, size_t size,
|
||||
dma_addr_t *dma_handle, gfp_t flag);
|
||||
|
||||
void dma_free_coherent(struct device *dev, size_t size,
|
||||
void *vaddr, dma_addr_t dma_handle);
|
||||
|
||||
void dma_sync_for_device(void *vaddr, size_t size, int dma_direction);
|
||||
void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction);
|
||||
|
||||
int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
|
||||
void *cpu_addr, dma_addr_t dma_addr, size_t size);
|
||||
|
||||
int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
|
||||
void *cpu_addr, dma_addr_t dma_addr, size_t size);
|
||||
|
||||
static inline dma_addr_t
|
||||
dma_map_single(struct device *dev, void *ptr, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
{
|
||||
BUG_ON(!valid_dma_direction(direction));
|
||||
WARN_ON(size == 0);
|
||||
dma_sync_for_device(ptr, size, direction);
|
||||
return virt_to_phys(ptr);
|
||||
}
|
||||
|
||||
static inline void
|
||||
dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
{
|
||||
BUG_ON(!valid_dma_direction(direction));
|
||||
dma_sync_for_cpu(phys_to_virt(dma_addr), size, direction);
|
||||
}
|
||||
|
||||
static inline int
|
||||
dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
|
||||
enum dma_data_direction direction)
|
||||
{
|
||||
struct scatterlist *sg;
|
||||
int i;
|
||||
|
||||
BUG_ON(!valid_dma_direction(direction));
|
||||
WARN_ON(nents == 0 || sglist[0].length == 0);
|
||||
|
||||
for_each_sg(sglist, sg, nents, i) {
|
||||
BUG_ON(!sg_page(sg));
|
||||
|
||||
sg->dma_address = sg_phys(sg);
|
||||
dma_sync_for_device(sg_virt(sg), sg->length, direction);
|
||||
}
|
||||
|
||||
return nents;
|
||||
}
|
||||
|
||||
static inline dma_addr_t
|
||||
dma_map_page(struct device *dev, struct page *page, unsigned long offset,
|
||||
size_t size, enum dma_data_direction direction)
|
||||
{
|
||||
BUG_ON(!valid_dma_direction(direction));
|
||||
dma_sync_for_device((void *)(page_to_phys(page) + offset), size,
|
||||
direction);
|
||||
return page_to_phys(page) + offset;
|
||||
}
|
||||
|
||||
static inline void
|
||||
dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
{
|
||||
BUG_ON(!valid_dma_direction(direction));
|
||||
dma_sync_for_cpu(phys_to_virt(dma_address), size, direction);
|
||||
}
|
||||
|
||||
|
||||
static inline void
|
||||
dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nhwentries,
|
||||
enum dma_data_direction direction)
|
||||
{
|
||||
struct scatterlist *sg;
|
||||
int i;
|
||||
|
||||
BUG_ON(!valid_dma_direction(direction));
|
||||
WARN_ON(nhwentries == 0 || sglist[0].length == 0);
|
||||
|
||||
for_each_sg(sglist, sg, nhwentries, i) {
|
||||
BUG_ON(!sg_page(sg));
|
||||
|
||||
sg->dma_address = sg_phys(sg);
|
||||
dma_sync_for_cpu(sg_virt(sg), sg->length, direction);
|
||||
}
|
||||
}
|
||||
|
||||
static inline void
|
||||
dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
{
|
||||
dma_sync_for_cpu(phys_to_virt(dma_handle), size, direction);
|
||||
}
|
||||
|
||||
static inline void
|
||||
dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
|
||||
size_t size, enum dma_data_direction direction)
|
||||
{
|
||||
dma_sync_for_device(phys_to_virt(dma_handle), size, direction);
|
||||
}
|
||||
|
||||
static inline void
|
||||
dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
|
||||
unsigned long offset, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
{
|
||||
dma_sync_for_cpu(phys_to_virt(dma_handle)+offset, size,
|
||||
direction);
|
||||
}
|
||||
|
||||
static inline void
|
||||
dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle,
|
||||
unsigned long offset, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
{
|
||||
dma_sync_for_device(phys_to_virt(dma_handle)+offset, size,
|
||||
direction);
|
||||
}
|
||||
|
||||
static inline void
|
||||
dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
|
||||
enum dma_data_direction direction)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < nelems; i++, sg++)
|
||||
dma_sync_for_cpu(sg_virt(sg), sg->length, direction);
|
||||
}
|
||||
|
||||
static inline void
|
||||
dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
|
||||
enum dma_data_direction direction)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < nelems; i++, sg++)
|
||||
dma_sync_for_device(sg_virt(sg), sg->length, direction);
|
||||
}
|
||||
|
||||
static inline int
|
||||
dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define dma_supported(dev, mask) (1)
|
||||
|
||||
static inline int
|
||||
dma_set_mask(struct device *dev, u64 mask)
|
||||
{
|
||||
if (!dev->dma_mask || !dma_supported(dev, mask))
|
||||
return -EIO;
|
||||
|
||||
*dev->dma_mask = mask;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* dma_alloc_noncoherent() returns non-cacheable memory, so there's no need to
|
||||
* do any flushing here.
|
||||
*/
|
||||
static inline void
|
||||
dma_cache_sync(struct device *dev, void *vaddr, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
{
|
||||
}
|
||||
|
||||
#endif
|
507
arch/metag/kernel/dma.c
Normal file
507
arch/metag/kernel/dma.c
Normal file
@ -0,0 +1,507 @@
|
||||
/*
|
||||
* Meta version derived from arch/powerpc/lib/dma-noncoherent.c
|
||||
* Copyright (C) 2008 Imagination Technologies Ltd.
|
||||
*
|
||||
* PowerPC version derived from arch/arm/mm/consistent.c
|
||||
* Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
|
||||
*
|
||||
* Copyright (C) 2000 Russell King
|
||||
*
|
||||
* Consistent memory allocators. Used for DMA devices that want to
|
||||
* share uncached memory with the processor core. The function return
|
||||
* is the virtual address and 'dma_handle' is the physical address.
|
||||
* Mostly stolen from the ARM port, with some changes for PowerPC.
|
||||
* -- Dan
|
||||
*
|
||||
* Reorganized to get rid of the arch-specific consistent_* functions
|
||||
* and provide non-coherent implementations for the DMA API. -Matt
|
||||
*
|
||||
* Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
|
||||
* implementation. This is pulled straight from ARM and barely
|
||||
* modified. -Matt
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/sched.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/export.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/highmem.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include <asm/tlbflush.h>
|
||||
#include <asm/mmu.h>
|
||||
|
||||
#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_START) \
|
||||
>> PAGE_SHIFT)
|
||||
|
||||
static u64 get_coherent_dma_mask(struct device *dev)
|
||||
{
|
||||
u64 mask = ~0ULL;
|
||||
|
||||
if (dev) {
|
||||
mask = dev->coherent_dma_mask;
|
||||
|
||||
/*
|
||||
* Sanity check the DMA mask - it must be non-zero, and
|
||||
* must be able to be satisfied by a DMA allocation.
|
||||
*/
|
||||
if (mask == 0) {
|
||||
dev_warn(dev, "coherent DMA mask is unset\n");
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return mask;
|
||||
}
|
||||
/*
|
||||
* This is the page table (2MB) covering uncached, DMA consistent allocations
|
||||
*/
|
||||
static pte_t *consistent_pte;
|
||||
static DEFINE_SPINLOCK(consistent_lock);
|
||||
|
||||
/*
|
||||
* VM region handling support.
|
||||
*
|
||||
* This should become something generic, handling VM region allocations for
|
||||
* vmalloc and similar (ioremap, module space, etc).
|
||||
*
|
||||
* I envisage vmalloc()'s supporting vm_struct becoming:
|
||||
*
|
||||
* struct vm_struct {
|
||||
* struct metag_vm_region region;
|
||||
* unsigned long flags;
|
||||
* struct page **pages;
|
||||
* unsigned int nr_pages;
|
||||
* unsigned long phys_addr;
|
||||
* };
|
||||
*
|
||||
* get_vm_area() would then call metag_vm_region_alloc with an appropriate
|
||||
* struct metag_vm_region head (eg):
|
||||
*
|
||||
* struct metag_vm_region vmalloc_head = {
|
||||
* .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list),
|
||||
* .vm_start = VMALLOC_START,
|
||||
* .vm_end = VMALLOC_END,
|
||||
* };
|
||||
*
|
||||
* However, vmalloc_head.vm_start is variable (typically, it is dependent on
|
||||
* the amount of RAM found at boot time.) I would imagine that get_vm_area()
|
||||
* would have to initialise this each time prior to calling
|
||||
* metag_vm_region_alloc().
|
||||
*/
|
||||
struct metag_vm_region {
|
||||
struct list_head vm_list;
|
||||
unsigned long vm_start;
|
||||
unsigned long vm_end;
|
||||
struct page *vm_pages;
|
||||
int vm_active;
|
||||
};
|
||||
|
||||
static struct metag_vm_region consistent_head = {
|
||||
.vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
|
||||
.vm_start = CONSISTENT_START,
|
||||
.vm_end = CONSISTENT_END,
|
||||
};
|
||||
|
||||
static struct metag_vm_region *metag_vm_region_alloc(struct metag_vm_region
|
||||
*head, size_t size,
|
||||
gfp_t gfp)
|
||||
{
|
||||
unsigned long addr = head->vm_start, end = head->vm_end - size;
|
||||
unsigned long flags;
|
||||
struct metag_vm_region *c, *new;
|
||||
|
||||
new = kmalloc(sizeof(struct metag_vm_region), gfp);
|
||||
if (!new)
|
||||
goto out;
|
||||
|
||||
spin_lock_irqsave(&consistent_lock, flags);
|
||||
|
||||
list_for_each_entry(c, &head->vm_list, vm_list) {
|
||||
if ((addr + size) < addr)
|
||||
goto nospc;
|
||||
if ((addr + size) <= c->vm_start)
|
||||
goto found;
|
||||
addr = c->vm_end;
|
||||
if (addr > end)
|
||||
goto nospc;
|
||||
}
|
||||
|
||||
found:
|
||||
/*
|
||||
* Insert this entry _before_ the one we found.
|
||||
*/
|
||||
list_add_tail(&new->vm_list, &c->vm_list);
|
||||
new->vm_start = addr;
|
||||
new->vm_end = addr + size;
|
||||
new->vm_active = 1;
|
||||
|
||||
spin_unlock_irqrestore(&consistent_lock, flags);
|
||||
return new;
|
||||
|
||||
nospc:
|
||||
spin_unlock_irqrestore(&consistent_lock, flags);
|
||||
kfree(new);
|
||||
out:
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static struct metag_vm_region *metag_vm_region_find(struct metag_vm_region
|
||||
*head, unsigned long addr)
|
||||
{
|
||||
struct metag_vm_region *c;
|
||||
|
||||
list_for_each_entry(c, &head->vm_list, vm_list) {
|
||||
if (c->vm_active && c->vm_start == addr)
|
||||
goto out;
|
||||
}
|
||||
c = NULL;
|
||||
out:
|
||||
return c;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate DMA-coherent memory space and return both the kernel remapped
|
||||
* virtual and bus address for that space.
|
||||
*/
|
||||
void *dma_alloc_coherent(struct device *dev, size_t size,
|
||||
dma_addr_t *handle, gfp_t gfp)
|
||||
{
|
||||
struct page *page;
|
||||
struct metag_vm_region *c;
|
||||
unsigned long order;
|
||||
u64 mask = get_coherent_dma_mask(dev);
|
||||
u64 limit;
|
||||
|
||||
if (!consistent_pte) {
|
||||
pr_err("%s: not initialised\n", __func__);
|
||||
dump_stack();
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!mask)
|
||||
goto no_page;
|
||||
size = PAGE_ALIGN(size);
|
||||
limit = (mask + 1) & ~mask;
|
||||
if ((limit && size >= limit)
|
||||
|| size >= (CONSISTENT_END - CONSISTENT_START)) {
|
||||
pr_warn("coherent allocation too big (requested %#x mask %#Lx)\n",
|
||||
size, mask);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
order = get_order(size);
|
||||
|
||||
if (mask != 0xffffffff)
|
||||
gfp |= GFP_DMA;
|
||||
|
||||
page = alloc_pages(gfp, order);
|
||||
if (!page)
|
||||
goto no_page;
|
||||
|
||||
/*
|
||||
* Invalidate any data that might be lurking in the
|
||||
* kernel direct-mapped region for device DMA.
|
||||
*/
|
||||
{
|
||||
void *kaddr = page_address(page);
|
||||
memset(kaddr, 0, size);
|
||||
flush_dcache_region(kaddr, size);
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate a virtual address in the consistent mapping region.
|
||||
*/
|
||||
c = metag_vm_region_alloc(&consistent_head, size,
|
||||
gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
|
||||
if (c) {
|
||||
unsigned long vaddr = c->vm_start;
|
||||
pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr);
|
||||
struct page *end = page + (1 << order);
|
||||
|
||||
c->vm_pages = page;
|
||||
split_page(page, order);
|
||||
|
||||
/*
|
||||
* Set the "dma handle"
|
||||
*/
|
||||
*handle = page_to_bus(page);
|
||||
|
||||
do {
|
||||
BUG_ON(!pte_none(*pte));
|
||||
|
||||
SetPageReserved(page);
|
||||
set_pte_at(&init_mm, vaddr,
|
||||
pte, mk_pte(page,
|
||||
pgprot_writecombine
|
||||
(PAGE_KERNEL)));
|
||||
page++;
|
||||
pte++;
|
||||
vaddr += PAGE_SIZE;
|
||||
} while (size -= PAGE_SIZE);
|
||||
|
||||
/*
|
||||
* Free the otherwise unused pages.
|
||||
*/
|
||||
while (page < end) {
|
||||
__free_page(page);
|
||||
page++;
|
||||
}
|
||||
|
||||
return (void *)c->vm_start;
|
||||
}
|
||||
|
||||
if (page)
|
||||
__free_pages(page, order);
|
||||
no_page:
|
||||
return NULL;
|
||||
}
|
||||
EXPORT_SYMBOL(dma_alloc_coherent);
|
||||
|
||||
/*
|
||||
* free a page as defined by the above mapping.
|
||||
*/
|
||||
void dma_free_coherent(struct device *dev, size_t size,
|
||||
void *vaddr, dma_addr_t dma_handle)
|
||||
{
|
||||
struct metag_vm_region *c;
|
||||
unsigned long flags, addr;
|
||||
pte_t *ptep;
|
||||
|
||||
size = PAGE_ALIGN(size);
|
||||
|
||||
spin_lock_irqsave(&consistent_lock, flags);
|
||||
|
||||
c = metag_vm_region_find(&consistent_head, (unsigned long)vaddr);
|
||||
if (!c)
|
||||
goto no_area;
|
||||
|
||||
c->vm_active = 0;
|
||||
if ((c->vm_end - c->vm_start) != size) {
|
||||
pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
|
||||
__func__, c->vm_end - c->vm_start, size);
|
||||
dump_stack();
|
||||
size = c->vm_end - c->vm_start;
|
||||
}
|
||||
|
||||
ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
|
||||
addr = c->vm_start;
|
||||
do {
|
||||
pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
|
||||
unsigned long pfn;
|
||||
|
||||
ptep++;
|
||||
addr += PAGE_SIZE;
|
||||
|
||||
if (!pte_none(pte) && pte_present(pte)) {
|
||||
pfn = pte_pfn(pte);
|
||||
|
||||
if (pfn_valid(pfn)) {
|
||||
struct page *page = pfn_to_page(pfn);
|
||||
ClearPageReserved(page);
|
||||
|
||||
__free_page(page);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
pr_crit("%s: bad page in kernel page table\n",
|
||||
__func__);
|
||||
} while (size -= PAGE_SIZE);
|
||||
|
||||
flush_tlb_kernel_range(c->vm_start, c->vm_end);
|
||||
|
||||
list_del(&c->vm_list);
|
||||
|
||||
spin_unlock_irqrestore(&consistent_lock, flags);
|
||||
|
||||
kfree(c);
|
||||
return;
|
||||
|
||||
no_area:
|
||||
spin_unlock_irqrestore(&consistent_lock, flags);
|
||||
pr_err("%s: trying to free invalid coherent area: %p\n",
|
||||
__func__, vaddr);
|
||||
dump_stack();
|
||||
}
|
||||
EXPORT_SYMBOL(dma_free_coherent);
|
||||
|
||||
|
||||
static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
||||
void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
||||
{
|
||||
int ret = -ENXIO;
|
||||
|
||||
unsigned long flags, user_size, kern_size;
|
||||
struct metag_vm_region *c;
|
||||
|
||||
user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
|
||||
|
||||
spin_lock_irqsave(&consistent_lock, flags);
|
||||
c = metag_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
|
||||
spin_unlock_irqrestore(&consistent_lock, flags);
|
||||
|
||||
if (c) {
|
||||
unsigned long off = vma->vm_pgoff;
|
||||
|
||||
kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
|
||||
|
||||
if (off < kern_size &&
|
||||
user_size <= (kern_size - off)) {
|
||||
ret = remap_pfn_range(vma, vma->vm_start,
|
||||
page_to_pfn(c->vm_pages) + off,
|
||||
user_size << PAGE_SHIFT,
|
||||
vma->vm_page_prot);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
|
||||
void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
||||
{
|
||||
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
||||
return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
|
||||
}
|
||||
EXPORT_SYMBOL(dma_mmap_coherent);
|
||||
|
||||
int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
|
||||
void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
||||
{
|
||||
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
|
||||
return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
|
||||
}
|
||||
EXPORT_SYMBOL(dma_mmap_writecombine);
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Initialise the consistent memory allocation.
|
||||
*/
|
||||
static int __init dma_alloc_init(void)
|
||||
{
|
||||
pgd_t *pgd, *pgd_k;
|
||||
pud_t *pud, *pud_k;
|
||||
pmd_t *pmd, *pmd_k;
|
||||
pte_t *pte;
|
||||
int ret = 0;
|
||||
|
||||
do {
|
||||
int offset = pgd_index(CONSISTENT_START);
|
||||
pgd = pgd_offset(&init_mm, CONSISTENT_START);
|
||||
pud = pud_alloc(&init_mm, pgd, CONSISTENT_START);
|
||||
pmd = pmd_alloc(&init_mm, pud, CONSISTENT_START);
|
||||
if (!pmd) {
|
||||
pr_err("%s: no pmd tables\n", __func__);
|
||||
ret = -ENOMEM;
|
||||
break;
|
||||
}
|
||||
WARN_ON(!pmd_none(*pmd));
|
||||
|
||||
pte = pte_alloc_kernel(pmd, CONSISTENT_START);
|
||||
if (!pte) {
|
||||
pr_err("%s: no pte tables\n", __func__);
|
||||
ret = -ENOMEM;
|
||||
break;
|
||||
}
|
||||
|
||||
pgd_k = ((pgd_t *) mmu_get_base()) + offset;
|
||||
pud_k = pud_offset(pgd_k, CONSISTENT_START);
|
||||
pmd_k = pmd_offset(pud_k, CONSISTENT_START);
|
||||
set_pmd(pmd_k, *pmd);
|
||||
|
||||
consistent_pte = pte;
|
||||
} while (0);
|
||||
|
||||
return ret;
|
||||
}
|
||||
early_initcall(dma_alloc_init);
|
||||
|
||||
/*
|
||||
* make an area consistent to devices.
|
||||
*/
|
||||
void dma_sync_for_device(void *vaddr, size_t size, int dma_direction)
|
||||
{
|
||||
/*
|
||||
* Ensure any writes get through the write combiner. This is necessary
|
||||
* even with DMA_FROM_DEVICE, or the write may dirty the cache after
|
||||
* we've invalidated it and get written back during the DMA.
|
||||
*/
|
||||
|
||||
barrier();
|
||||
|
||||
switch (dma_direction) {
|
||||
case DMA_BIDIRECTIONAL:
|
||||
/*
|
||||
* Writeback to ensure the device can see our latest changes and
|
||||
* so that we have no dirty lines, and invalidate the cache
|
||||
* lines too in preparation for receiving the buffer back
|
||||
* (dma_sync_for_cpu) later.
|
||||
*/
|
||||
flush_dcache_region(vaddr, size);
|
||||
break;
|
||||
case DMA_TO_DEVICE:
|
||||
/*
|
||||
* Writeback to ensure the device can see our latest changes.
|
||||
* There's no need to invalidate as the device shouldn't write
|
||||
* to the buffer.
|
||||
*/
|
||||
writeback_dcache_region(vaddr, size);
|
||||
break;
|
||||
case DMA_FROM_DEVICE:
|
||||
/*
|
||||
* Invalidate to ensure we have no dirty lines that could get
|
||||
* written back during the DMA. It's also safe to flush
|
||||
* (writeback) here if necessary.
|
||||
*/
|
||||
invalidate_dcache_region(vaddr, size);
|
||||
break;
|
||||
case DMA_NONE:
|
||||
BUG();
|
||||
}
|
||||
|
||||
wmb();
|
||||
}
|
||||
EXPORT_SYMBOL(dma_sync_for_device);
|
||||
|
||||
/*
|
||||
* make an area consistent to the core.
|
||||
*/
|
||||
void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction)
|
||||
{
|
||||
/*
|
||||
* Hardware L2 cache prefetch doesn't occur across 4K physical
|
||||
* boundaries, however according to Documentation/DMA-API-HOWTO.txt
|
||||
* kmalloc'd memory is DMA'able, so accesses in nearby memory could
|
||||
* trigger a cache fill in the DMA buffer.
|
||||
*
|
||||
* This should never cause dirty lines, so a flush or invalidate should
|
||||
* be safe to allow us to see data from the device.
|
||||
*/
|
||||
if (_meta_l2c_pf_is_enabled()) {
|
||||
switch (dma_direction) {
|
||||
case DMA_BIDIRECTIONAL:
|
||||
case DMA_FROM_DEVICE:
|
||||
invalidate_dcache_region(vaddr, size);
|
||||
break;
|
||||
case DMA_TO_DEVICE:
|
||||
/* The device shouldn't have written to the buffer */
|
||||
break;
|
||||
case DMA_NONE:
|
||||
BUG();
|
||||
}
|
||||
}
|
||||
|
||||
rmb();
|
||||
}
|
||||
EXPORT_SYMBOL(dma_sync_for_cpu);
|
Loading…
Reference in New Issue
Block a user