xen: Complete pagetable pinning

Xen requires all active pagetables to be marked read-only.  When the
base of the pagetable is loaded into %cr3, the hypervisor validates
the entire pagetable and only allows the load to proceed if it all
checks out.

This is pretty slow, so to mitigate this cost Xen has a notion of
pinned pagetables.  Pinned pagetables are pagetables which are
considered to be active even if no processor's cr3 is pointing to is.
This means that it must remain read-only and all updates are validated
by the hypervisor.  This makes context switches much cheaper, because
the hypervisor doesn't need to revalidate the pagetable each time.

This also adds a new paravirt hook which is called during setup once
the zones and memory allocator have been initialized.  When the
init_mm pagetable is first built, the struct page array does not yet
exist, and so there's nowhere to put he init_mm pagetable's PG_pinned
flags.  Once the zones are initialized and the struct page array
exists, we can set the PG_pinned flags for those pages.

This patch also adds the Xen support for pte pages allocated out of
highmem (highpte) by implementing xen_kmap_atomic_pte.

Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Cc: Zach Amsden <zach@vmware.com>
This commit is contained in:
Jeremy Fitzhardinge 2007-07-17 18:37:05 -07:00 committed by Jeremy Fitzhardinge
parent c85b04c374
commit f4f97b3ea9
4 changed files with 246 additions and 113 deletions

View File

@ -21,6 +21,9 @@
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/bootmem.h> #include <linux/bootmem.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/highmem.h>
#include <xen/interface/xen.h> #include <xen/interface/xen.h>
#include <xen/interface/physdev.h> #include <xen/interface/physdev.h>
@ -500,32 +503,59 @@ static void xen_write_cr3(unsigned long cr3)
} }
} }
/* Early in boot, while setting up the initial pagetable, assume
everything is pinned. */
static void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
{
BUG_ON(mem_map); /* should only be used early */
make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}
/* This needs to make sure the new pte page is pinned iff its being
attached to a pinned pagetable. */
static void xen_alloc_pt(struct mm_struct *mm, u32 pfn) static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
{ {
/* XXX pfn isn't necessarily a lowmem page */ struct page *page = pfn_to_page(pfn);
make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
} if (PagePinned(virt_to_page(mm->pgd))) {
SetPagePinned(page);
static void xen_alloc_pd(u32 pfn)
{ if (!PageHighMem(page))
make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
} else
/* make sure there are no stray mappings of
static void xen_release_pd(u32 pfn) this page */
{ kmap_flush_unused();
make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); }
} }
/* This should never happen until we're OK to use struct page */
static void xen_release_pt(u32 pfn) static void xen_release_pt(u32 pfn)
{ {
make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); struct page *page = pfn_to_page(pfn);
if (PagePinned(page)) {
if (!PageHighMem(page))
make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
}
} }
static void xen_alloc_pd_clone(u32 pfn, u32 clonepfn, #ifdef CONFIG_HIGHPTE
u32 start, u32 count) static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
{ {
xen_alloc_pd(pfn); pgprot_t prot = PAGE_KERNEL;
if (PagePinned(page))
prot = PAGE_KERNEL_RO;
if (0 && PageHighMem(page))
printk("mapping highpte %lx type %d prot %s\n",
page_to_pfn(page), type,
(unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
return kmap_atomic_prot(page, type, prot);
} }
#endif
static __init void xen_pagetable_setup_start(pgd_t *base) static __init void xen_pagetable_setup_start(pgd_t *base)
{ {
@ -553,7 +583,7 @@ static __init void xen_pagetable_setup_start(pgd_t *base)
memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]), memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
PAGE_SIZE); PAGE_SIZE);
xen_alloc_pd(PFN_DOWN(__pa(pmd))); make_lowmem_page_readonly(pmd);
set_pgd(&base[i], __pgd(1 + __pa(pmd))); set_pgd(&base[i], __pgd(1 + __pa(pmd)));
} else } else
@ -574,6 +604,10 @@ static __init void xen_pagetable_setup_start(pgd_t *base)
static __init void xen_pagetable_setup_done(pgd_t *base) static __init void xen_pagetable_setup_done(pgd_t *base)
{ {
/* This will work as long as patching hasn't happened yet
(which it hasn't) */
paravirt_ops.alloc_pt = xen_alloc_pt;
if (!xen_feature(XENFEAT_auto_translated_physmap)) { if (!xen_feature(XENFEAT_auto_translated_physmap)) {
/* /*
* Create a mapping for the shared info page. * Create a mapping for the shared info page.
@ -591,7 +625,19 @@ static __init void xen_pagetable_setup_done(pgd_t *base)
HYPERVISOR_shared_info = HYPERVISOR_shared_info =
(struct shared_info *)__va(xen_start_info->shared_info); (struct shared_info *)__va(xen_start_info->shared_info);
xen_pgd_pin(base); /* Actually pin the pagetable down, but we can't set PG_pinned
yet because the page structures don't exist yet. */
{
struct mmuext_op op;
#ifdef CONFIG_X86_PAE
op.cmd = MMUEXT_PIN_L3_TABLE;
#else
op.cmd = MMUEXT_PIN_L3_TABLE;
#endif
op.arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(base)));
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
BUG();
}
xen_vcpu_setup(smp_processor_id()); xen_vcpu_setup(smp_processor_id());
} }
@ -608,6 +654,7 @@ static const struct paravirt_ops xen_paravirt_ops __initdata = {
.memory_setup = xen_memory_setup, .memory_setup = xen_memory_setup,
.arch_setup = xen_arch_setup, .arch_setup = xen_arch_setup,
.init_IRQ = xen_init_IRQ, .init_IRQ = xen_init_IRQ,
.post_allocator_init = xen_mark_init_mm_pinned,
.time_init = xen_time_init, .time_init = xen_time_init,
.set_wallclock = xen_set_wallclock, .set_wallclock = xen_set_wallclock,
@ -688,11 +735,15 @@ static const struct paravirt_ops xen_paravirt_ops __initdata = {
.pagetable_setup_start = xen_pagetable_setup_start, .pagetable_setup_start = xen_pagetable_setup_start,
.pagetable_setup_done = xen_pagetable_setup_done, .pagetable_setup_done = xen_pagetable_setup_done,
.alloc_pt = xen_alloc_pt, .alloc_pt = xen_alloc_pt_init,
.alloc_pd = xen_alloc_pd,
.alloc_pd_clone = xen_alloc_pd_clone,
.release_pd = xen_release_pd,
.release_pt = xen_release_pt, .release_pt = xen_release_pt,
.alloc_pd = paravirt_nop,
.alloc_pd_clone = paravirt_nop,
.release_pd = paravirt_nop,
#ifdef CONFIG_HIGHPTE
.kmap_atomic_pte = xen_kmap_atomic_pte,
#endif
.set_pte = xen_set_pte, .set_pte = xen_set_pte,
.set_pte_at = xen_set_pte_at, .set_pte_at = xen_set_pte_at,

View File

@ -38,19 +38,22 @@
* *
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
*/ */
#include <linux/highmem.h>
#include <linux/bug.h> #include <linux/bug.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <asm/pgtable.h> #include <asm/pgtable.h>
#include <asm/tlbflush.h> #include <asm/tlbflush.h>
#include <asm/mmu_context.h> #include <asm/mmu_context.h>
#include <asm/paravirt.h>
#include <asm/xen/hypercall.h> #include <asm/xen/hypercall.h>
#include <asm/paravirt.h> #include <asm/xen/hypervisor.h>
#include <xen/page.h> #include <xen/page.h>
#include <xen/interface/xen.h> #include <xen/interface/xen.h>
#include "multicalls.h"
#include "mmu.h" #include "mmu.h"
xmaddr_t arbitrary_virt_to_machine(unsigned long address) xmaddr_t arbitrary_virt_to_machine(unsigned long address)
@ -92,16 +95,6 @@ void make_lowmem_page_readwrite(void *vaddr)
} }
void xen_set_pte(pte_t *ptep, pte_t pte)
{
struct mmu_update u;
u.ptr = virt_to_machine(ptep).maddr;
u.val = pte_val_ma(pte);
if (HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF) < 0)
BUG();
}
void xen_set_pmd(pmd_t *ptr, pmd_t val) void xen_set_pmd(pmd_t *ptr, pmd_t val)
{ {
struct mmu_update u; struct mmu_update u;
@ -112,18 +105,6 @@ void xen_set_pmd(pmd_t *ptr, pmd_t val)
BUG(); BUG();
} }
#ifdef CONFIG_X86_PAE
void xen_set_pud(pud_t *ptr, pud_t val)
{
struct mmu_update u;
u.ptr = virt_to_machine(ptr).maddr;
u.val = pud_val_ma(val);
if (HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF) < 0)
BUG();
}
#endif
/* /*
* Associate a virtual page frame with a given physical page frame * Associate a virtual page frame with a given physical page frame
* and protection flags for that frame. * and protection flags for that frame.
@ -170,6 +151,23 @@ void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
} }
#ifdef CONFIG_X86_PAE #ifdef CONFIG_X86_PAE
void xen_set_pud(pud_t *ptr, pud_t val)
{
struct mmu_update u;
u.ptr = virt_to_machine(ptr).maddr;
u.val = pud_val_ma(val);
if (HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF) < 0)
BUG();
}
void xen_set_pte(pte_t *ptep, pte_t pte)
{
ptep->pte_high = pte.pte_high;
smp_wmb();
ptep->pte_low = pte.pte_low;
}
void xen_set_pte_atomic(pte_t *ptep, pte_t pte) void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
{ {
set_64bit((u64 *)ptep, pte_val_ma(pte)); set_64bit((u64 *)ptep, pte_val_ma(pte));
@ -239,6 +237,11 @@ pgd_t xen_make_pgd(unsigned long long pgd)
return (pgd_t){ pgd }; return (pgd_t){ pgd };
} }
#else /* !PAE */ #else /* !PAE */
void xen_set_pte(pte_t *ptep, pte_t pte)
{
*ptep = pte;
}
unsigned long xen_pte_val(pte_t pte) unsigned long xen_pte_val(pte_t pte)
{ {
unsigned long ret = pte.pte_low; unsigned long ret = pte.pte_low;
@ -249,13 +252,6 @@ unsigned long xen_pte_val(pte_t pte)
return ret; return ret;
} }
unsigned long xen_pmd_val(pmd_t pmd)
{
/* a BUG here is a lot easier to track down than a NULL eip */
BUG();
return 0;
}
unsigned long xen_pgd_val(pgd_t pgd) unsigned long xen_pgd_val(pgd_t pgd)
{ {
unsigned long ret = pgd.pgd; unsigned long ret = pgd.pgd;
@ -272,13 +268,6 @@ pte_t xen_make_pte(unsigned long pte)
return (pte_t){ pte }; return (pte_t){ pte };
} }
pmd_t xen_make_pmd(unsigned long pmd)
{
/* a BUG here is a lot easier to track down than a NULL eip */
BUG();
return __pmd(0);
}
pgd_t xen_make_pgd(unsigned long pgd) pgd_t xen_make_pgd(unsigned long pgd)
{ {
if (pgd & _PAGE_PRESENT) if (pgd & _PAGE_PRESENT)
@ -290,108 +279,199 @@ pgd_t xen_make_pgd(unsigned long pgd)
static void pgd_walk_set_prot(void *pt, pgprot_t flags) /*
{ (Yet another) pagetable walker. This one is intended for pinning a
unsigned long pfn = PFN_DOWN(__pa(pt)); pagetable. This means that it walks a pagetable and calls the
callback function on each page it finds making up the page table,
if (HYPERVISOR_update_va_mapping((unsigned long)pt, at every level. It walks the entire pagetable, but it only bothers
pfn_pte(pfn, flags), 0) < 0) pinning pte pages which are below pte_limit. In the normal case
BUG(); this will be TASK_SIZE, but at boot we need to pin up to
} FIXADDR_TOP. But the important bit is that we don't pin beyond
there, because then we start getting into Xen's ptes.
static void pgd_walk(pgd_t *pgd_base, pgprot_t flags) */
static int pgd_walk(pgd_t *pgd_base, int (*func)(struct page *, unsigned),
unsigned long limit)
{ {
pgd_t *pgd = pgd_base; pgd_t *pgd = pgd_base;
pud_t *pud; int flush = 0;
pmd_t *pmd; unsigned long addr = 0;
pte_t *pte; unsigned long pgd_next;
int g, u, m;
BUG_ON(limit > FIXADDR_TOP);
if (xen_feature(XENFEAT_auto_translated_physmap)) if (xen_feature(XENFEAT_auto_translated_physmap))
return; return 0;
for (g = 0; g < USER_PTRS_PER_PGD; g++, pgd++) { for (; addr != FIXADDR_TOP; pgd++, addr = pgd_next) {
if (pgd_none(*pgd)) pud_t *pud;
unsigned long pud_limit, pud_next;
pgd_next = pud_limit = pgd_addr_end(addr, FIXADDR_TOP);
if (!pgd_val(*pgd))
continue; continue;
pud = pud_offset(pgd, 0); pud = pud_offset(pgd, 0);
if (PTRS_PER_PUD > 1) /* not folded */ if (PTRS_PER_PUD > 1) /* not folded */
pgd_walk_set_prot(pud, flags); flush |= (*func)(virt_to_page(pud), 0);
for (; addr != pud_limit; pud++, addr = pud_next) {
pmd_t *pmd;
unsigned long pmd_limit;
pud_next = pud_addr_end(addr, pud_limit);
if (pud_next < limit)
pmd_limit = pud_next;
else
pmd_limit = limit;
for (u = 0; u < PTRS_PER_PUD; u++, pud++) {
if (pud_none(*pud)) if (pud_none(*pud))
continue; continue;
pmd = pmd_offset(pud, 0); pmd = pmd_offset(pud, 0);
if (PTRS_PER_PMD > 1) /* not folded */ if (PTRS_PER_PMD > 1) /* not folded */
pgd_walk_set_prot(pmd, flags); flush |= (*func)(virt_to_page(pmd), 0);
for (; addr != pmd_limit; pmd++) {
addr += (PAGE_SIZE * PTRS_PER_PTE);
if ((pmd_limit-1) < (addr-1)) {
addr = pmd_limit;
break;
}
for (m = 0; m < PTRS_PER_PMD; m++, pmd++) {
if (pmd_none(*pmd)) if (pmd_none(*pmd))
continue; continue;
/* This can get called before mem_map flush |= (*func)(pmd_page(*pmd), 0);
is set up, so we assume nothing is
highmem at that point. */
if (mem_map == NULL ||
!PageHighMem(pmd_page(*pmd))) {
pte = pte_offset_kernel(pmd, 0);
pgd_walk_set_prot(pte, flags);
}
} }
} }
} }
if (HYPERVISOR_update_va_mapping((unsigned long)pgd_base, flush |= (*func)(virt_to_page(pgd_base), UVMF_TLB_FLUSH);
pfn_pte(PFN_DOWN(__pa(pgd_base)),
flags), return flush;
UVMF_TLB_FLUSH) < 0)
BUG();
} }
static int pin_page(struct page *page, unsigned flags)
{
unsigned pgfl = test_and_set_bit(PG_pinned, &page->flags);
int flush;
/* This is called just after a mm has been duplicated from its parent, if (pgfl)
but it has not been used yet. We need to make sure that its flush = 0; /* already pinned */
pagetable is all read-only, and can be pinned. */ else if (PageHighMem(page))
/* kmaps need flushing if we found an unpinned
highpage */
flush = 1;
else {
void *pt = lowmem_page_address(page);
unsigned long pfn = page_to_pfn(page);
struct multicall_space mcs = __xen_mc_entry(0);
flush = 0;
MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
pfn_pte(pfn, PAGE_KERNEL_RO),
flags);
}
return flush;
}
/* This is called just after a mm has been created, but it has not
been used yet. We need to make sure that its pagetable is all
read-only, and can be pinned. */
void xen_pgd_pin(pgd_t *pgd) void xen_pgd_pin(pgd_t *pgd)
{ {
struct mmuext_op op; struct multicall_space mcs;
struct mmuext_op *op;
pgd_walk(pgd, PAGE_KERNEL_RO); xen_mc_batch();
#if defined(CONFIG_X86_PAE) if (pgd_walk(pgd, pin_page, TASK_SIZE))
op.cmd = MMUEXT_PIN_L3_TABLE; kmap_flush_unused();
mcs = __xen_mc_entry(sizeof(*op));
op = mcs.args;
#ifdef CONFIG_X86_PAE
op->cmd = MMUEXT_PIN_L3_TABLE;
#else #else
op.cmd = MMUEXT_PIN_L2_TABLE; op->cmd = MMUEXT_PIN_L2_TABLE;
#endif #endif
op.arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(pgd))); op->arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(pgd)));
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
BUG();
xen_mc_issue(0);
}
/* The init_mm pagetable is really pinned as soon as its created, but
that's before we have page structures to store the bits. So do all
the book-keeping now. */
static __init int mark_pinned(struct page *page, unsigned flags)
{
SetPagePinned(page);
return 0;
}
void __init xen_mark_init_mm_pinned(void)
{
pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
}
static int unpin_page(struct page *page, unsigned flags)
{
unsigned pgfl = test_and_clear_bit(PG_pinned, &page->flags);
if (pgfl && !PageHighMem(page)) {
void *pt = lowmem_page_address(page);
unsigned long pfn = page_to_pfn(page);
struct multicall_space mcs = __xen_mc_entry(0);
MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
pfn_pte(pfn, PAGE_KERNEL),
flags);
}
return 0; /* never need to flush on unpin */
} }
/* Release a pagetables pages back as normal RW */ /* Release a pagetables pages back as normal RW */
void xen_pgd_unpin(pgd_t *pgd) static void xen_pgd_unpin(pgd_t *pgd)
{ {
struct mmuext_op op; struct mmuext_op *op;
struct multicall_space mcs;
op.cmd = MMUEXT_UNPIN_TABLE; xen_mc_batch();
op.arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(pgd)));
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) mcs = __xen_mc_entry(sizeof(*op));
BUG();
pgd_walk(pgd, PAGE_KERNEL); op = mcs.args;
op->cmd = MMUEXT_UNPIN_TABLE;
op->arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(pgd)));
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
pgd_walk(pgd, unpin_page, TASK_SIZE);
xen_mc_issue(0);
} }
void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
{ {
spin_lock(&next->page_table_lock);
xen_pgd_pin(next->pgd); xen_pgd_pin(next->pgd);
spin_unlock(&next->page_table_lock);
} }
void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
{ {
spin_lock(&mm->page_table_lock);
xen_pgd_pin(mm->pgd); xen_pgd_pin(mm->pgd);
spin_unlock(&mm->page_table_lock);
} }
void xen_exit_mmap(struct mm_struct *mm) void xen_exit_mmap(struct mm_struct *mm)

View File

@ -15,7 +15,7 @@ void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm);
void xen_exit_mmap(struct mm_struct *mm); void xen_exit_mmap(struct mm_struct *mm);
void xen_pgd_pin(pgd_t *pgd); void xen_pgd_pin(pgd_t *pgd);
void xen_pgd_unpin(pgd_t *pgd); //void xen_pgd_unpin(pgd_t *pgd);
#ifdef CONFIG_X86_PAE #ifdef CONFIG_X86_PAE
unsigned long long xen_pte_val(pte_t); unsigned long long xen_pte_val(pte_t);

View File

@ -20,6 +20,8 @@ unsigned long xen_get_wallclock(void);
int xen_set_wallclock(unsigned long time); int xen_set_wallclock(unsigned long time);
cycle_t xen_clocksource_read(void); cycle_t xen_clocksource_read(void);
void xen_mark_init_mm_pinned(void);
DECLARE_PER_CPU(enum paravirt_lazy_mode, xen_lazy_mode); DECLARE_PER_CPU(enum paravirt_lazy_mode, xen_lazy_mode);
static inline unsigned xen_get_lazy_mode(void) static inline unsigned xen_get_lazy_mode(void)