crypto: lib - implement library version of AES in CFB mode

Implement AES in CFB mode using the existing, mostly constant-time
generic AES library implementation. This will be used by the TPM code
to encrypt communications with TPM hardware, which is often a discrete
component connected using sniffable wires or traces.

While a CFB template does exist, using a skcipher is a major pain for
non-performance critical synchronous crypto where the algorithm is known
at compile time and the data is in contiguous buffers with valid kernel
virtual addresses.

Tested-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lore.kernel.org/all/20230216201410.15010-1-James.Bottomley@HansenPartnership.com/
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
This commit is contained in:
Ard Biesheuvel 2024-04-29 16:27:58 -04:00 committed by Jarkko Sakkinen
parent 40813f1879
commit f135440447
4 changed files with 270 additions and 0 deletions

View File

@ -87,4 +87,9 @@ void aes_decrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in);
extern const u8 crypto_aes_sbox[]; extern const u8 crypto_aes_sbox[];
extern const u8 crypto_aes_inv_sbox[]; extern const u8 crypto_aes_inv_sbox[];
void aescfb_encrypt(const struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src,
int len, const u8 iv[AES_BLOCK_SIZE]);
void aescfb_decrypt(const struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src,
int len, const u8 iv[AES_BLOCK_SIZE]);
#endif #endif

View File

@ -8,6 +8,11 @@ config CRYPTO_LIB_UTILS
config CRYPTO_LIB_AES config CRYPTO_LIB_AES
tristate tristate
config CRYPTO_LIB_AESCFB
tristate
select CRYPTO_LIB_AES
select CRYPTO_LIB_UTILS
config CRYPTO_LIB_AESGCM config CRYPTO_LIB_AESGCM
tristate tristate
select CRYPTO_LIB_AES select CRYPTO_LIB_AES

View File

@ -10,6 +10,9 @@ obj-$(CONFIG_CRYPTO_LIB_CHACHA_GENERIC) += libchacha.o
obj-$(CONFIG_CRYPTO_LIB_AES) += libaes.o obj-$(CONFIG_CRYPTO_LIB_AES) += libaes.o
libaes-y := aes.o libaes-y := aes.o
obj-$(CONFIG_CRYPTO_LIB_AESCFB) += libaescfb.o
libaescfb-y := aescfb.o
obj-$(CONFIG_CRYPTO_LIB_AESGCM) += libaesgcm.o obj-$(CONFIG_CRYPTO_LIB_AESGCM) += libaesgcm.o
libaesgcm-y := aesgcm.o libaesgcm-y := aesgcm.o

257
lib/crypto/aescfb.c Normal file
View File

@ -0,0 +1,257 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Minimal library implementation of AES in CFB mode
*
* Copyright 2023 Google LLC
*/
#include <linux/module.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <asm/irqflags.h>
static void aescfb_encrypt_block(const struct crypto_aes_ctx *ctx, void *dst,
const void *src)
{
unsigned long flags;
/*
* In AES-CFB, the AES encryption operates on known 'plaintext' (the IV
* and ciphertext), making it susceptible to timing attacks on the
* encryption key. The AES library already mitigates this risk to some
* extent by pulling the entire S-box into the caches before doing any
* substitutions, but this strategy is more effective when running with
* interrupts disabled.
*/
local_irq_save(flags);
aes_encrypt(ctx, dst, src);
local_irq_restore(flags);
}
/**
* aescfb_encrypt - Perform AES-CFB encryption on a block of data
*
* @ctx: The AES-CFB key schedule
* @dst: Pointer to the ciphertext output buffer
* @src: Pointer the plaintext (may equal @dst for encryption in place)
* @len: The size in bytes of the plaintext and ciphertext.
* @iv: The initialization vector (IV) to use for this block of data
*/
void aescfb_encrypt(const struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src,
int len, const u8 iv[AES_BLOCK_SIZE])
{
u8 ks[AES_BLOCK_SIZE];
const u8 *v = iv;
while (len > 0) {
aescfb_encrypt_block(ctx, ks, v);
crypto_xor_cpy(dst, src, ks, min(len, AES_BLOCK_SIZE));
v = dst;
dst += AES_BLOCK_SIZE;
src += AES_BLOCK_SIZE;
len -= AES_BLOCK_SIZE;
}
memzero_explicit(ks, sizeof(ks));
}
EXPORT_SYMBOL(aescfb_encrypt);
/**
* aescfb_decrypt - Perform AES-CFB decryption on a block of data
*
* @ctx: The AES-CFB key schedule
* @dst: Pointer to the plaintext output buffer
* @src: Pointer the ciphertext (may equal @dst for decryption in place)
* @len: The size in bytes of the plaintext and ciphertext.
* @iv: The initialization vector (IV) to use for this block of data
*/
void aescfb_decrypt(const struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src,
int len, const u8 iv[AES_BLOCK_SIZE])
{
u8 ks[2][AES_BLOCK_SIZE];
aescfb_encrypt_block(ctx, ks[0], iv);
for (int i = 0; len > 0; i ^= 1) {
if (len > AES_BLOCK_SIZE)
/*
* Generate the keystream for the next block before
* performing the XOR, as that may update in place and
* overwrite the ciphertext.
*/
aescfb_encrypt_block(ctx, ks[!i], src);
crypto_xor_cpy(dst, src, ks[i], min(len, AES_BLOCK_SIZE));
dst += AES_BLOCK_SIZE;
src += AES_BLOCK_SIZE;
len -= AES_BLOCK_SIZE;
}
memzero_explicit(ks, sizeof(ks));
}
EXPORT_SYMBOL(aescfb_decrypt);
MODULE_DESCRIPTION("Generic AES-CFB library");
MODULE_AUTHOR("Ard Biesheuvel <ardb@kernel.org>");
MODULE_LICENSE("GPL");
#ifndef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS
/*
* Test code below. Vectors taken from crypto/testmgr.h
*/
static struct {
u8 ptext[64];
u8 ctext[64];
u8 key[AES_MAX_KEY_SIZE];
u8 iv[AES_BLOCK_SIZE];
int klen;
int len;
} const aescfb_tv[] __initconst = {
{ /* From NIST SP800-38A */
.key = "\x2b\x7e\x15\x16\x28\xae\xd2\xa6"
"\xab\xf7\x15\x88\x09\xcf\x4f\x3c",
.klen = 16,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
"\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
"\xae\x2d\x8a\x57\x1e\x03\xac\x9c"
"\x9e\xb7\x6f\xac\x45\xaf\x8e\x51"
"\x30\xc8\x1c\x46\xa3\x5c\xe4\x11"
"\xe5\xfb\xc1\x19\x1a\x0a\x52\xef"
"\xf6\x9f\x24\x45\xdf\x4f\x9b\x17"
"\xad\x2b\x41\x7b\xe6\x6c\x37\x10",
.ctext = "\x3b\x3f\xd9\x2e\xb7\x2d\xad\x20"
"\x33\x34\x49\xf8\xe8\x3c\xfb\x4a"
"\xc8\xa6\x45\x37\xa0\xb3\xa9\x3f"
"\xcd\xe3\xcd\xad\x9f\x1c\xe5\x8b"
"\x26\x75\x1f\x67\xa3\xcb\xb1\x40"
"\xb1\x80\x8c\xf1\x87\xa4\xf4\xdf"
"\xc0\x4b\x05\x35\x7c\x5d\x1c\x0e"
"\xea\xc4\xc6\x6f\x9f\xf7\xf2\xe6",
.len = 64,
}, {
.key = "\x8e\x73\xb0\xf7\xda\x0e\x64\x52"
"\xc8\x10\xf3\x2b\x80\x90\x79\xe5"
"\x62\xf8\xea\xd2\x52\x2c\x6b\x7b",
.klen = 24,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
"\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
"\xae\x2d\x8a\x57\x1e\x03\xac\x9c"
"\x9e\xb7\x6f\xac\x45\xaf\x8e\x51"
"\x30\xc8\x1c\x46\xa3\x5c\xe4\x11"
"\xe5\xfb\xc1\x19\x1a\x0a\x52\xef"
"\xf6\x9f\x24\x45\xdf\x4f\x9b\x17"
"\xad\x2b\x41\x7b\xe6\x6c\x37\x10",
.ctext = "\xcd\xc8\x0d\x6f\xdd\xf1\x8c\xab"
"\x34\xc2\x59\x09\xc9\x9a\x41\x74"
"\x67\xce\x7f\x7f\x81\x17\x36\x21"
"\x96\x1a\x2b\x70\x17\x1d\x3d\x7a"
"\x2e\x1e\x8a\x1d\xd5\x9b\x88\xb1"
"\xc8\xe6\x0f\xed\x1e\xfa\xc4\xc9"
"\xc0\x5f\x9f\x9c\xa9\x83\x4f\xa0"
"\x42\xae\x8f\xba\x58\x4b\x09\xff",
.len = 64,
}, {
.key = "\x60\x3d\xeb\x10\x15\xca\x71\xbe"
"\x2b\x73\xae\xf0\x85\x7d\x77\x81"
"\x1f\x35\x2c\x07\x3b\x61\x08\xd7"
"\x2d\x98\x10\xa3\x09\x14\xdf\xf4",
.klen = 32,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
"\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
"\xae\x2d\x8a\x57\x1e\x03\xac\x9c"
"\x9e\xb7\x6f\xac\x45\xaf\x8e\x51"
"\x30\xc8\x1c\x46\xa3\x5c\xe4\x11"
"\xe5\xfb\xc1\x19\x1a\x0a\x52\xef"
"\xf6\x9f\x24\x45\xdf\x4f\x9b\x17"
"\xad\x2b\x41\x7b\xe6\x6c\x37\x10",
.ctext = "\xdc\x7e\x84\xbf\xda\x79\x16\x4b"
"\x7e\xcd\x84\x86\x98\x5d\x38\x60"
"\x39\xff\xed\x14\x3b\x28\xb1\xc8"
"\x32\x11\x3c\x63\x31\xe5\x40\x7b"
"\xdf\x10\x13\x24\x15\xe5\x4b\x92"
"\xa1\x3e\xd0\xa8\x26\x7a\xe2\xf9"
"\x75\xa3\x85\x74\x1a\xb9\xce\xf8"
"\x20\x31\x62\x3d\x55\xb1\xe4\x71",
.len = 64,
}, { /* > 16 bytes, not a multiple of 16 bytes */
.key = "\x2b\x7e\x15\x16\x28\xae\xd2\xa6"
"\xab\xf7\x15\x88\x09\xcf\x4f\x3c",
.klen = 16,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
"\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
"\xae",
.ctext = "\x3b\x3f\xd9\x2e\xb7\x2d\xad\x20"
"\x33\x34\x49\xf8\xe8\x3c\xfb\x4a"
"\xc8",
.len = 17,
}, { /* < 16 bytes */
.key = "\x2b\x7e\x15\x16\x28\xae\xd2\xa6"
"\xab\xf7\x15\x88\x09\xcf\x4f\x3c",
.klen = 16,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f",
.ctext = "\x3b\x3f\xd9\x2e\xb7\x2d\xad",
.len = 7,
},
};
static int __init libaescfb_init(void)
{
for (int i = 0; i < ARRAY_SIZE(aescfb_tv); i++) {
struct crypto_aes_ctx ctx;
u8 buf[64];
if (aes_expandkey(&ctx, aescfb_tv[i].key, aescfb_tv[i].klen)) {
pr_err("aes_expandkey() failed on vector %d\n", i);
return -ENODEV;
}
aescfb_encrypt(&ctx, buf, aescfb_tv[i].ptext, aescfb_tv[i].len,
aescfb_tv[i].iv);
if (memcmp(buf, aescfb_tv[i].ctext, aescfb_tv[i].len)) {
pr_err("aescfb_encrypt() #1 failed on vector %d\n", i);
return -ENODEV;
}
/* decrypt in place */
aescfb_decrypt(&ctx, buf, buf, aescfb_tv[i].len, aescfb_tv[i].iv);
if (memcmp(buf, aescfb_tv[i].ptext, aescfb_tv[i].len)) {
pr_err("aescfb_decrypt() failed on vector %d\n", i);
return -ENODEV;
}
/* encrypt in place */
aescfb_encrypt(&ctx, buf, buf, aescfb_tv[i].len, aescfb_tv[i].iv);
if (memcmp(buf, aescfb_tv[i].ctext, aescfb_tv[i].len)) {
pr_err("aescfb_encrypt() #2 failed on vector %d\n", i);
return -ENODEV;
}
}
return 0;
}
module_init(libaescfb_init);
static void __exit libaescfb_exit(void)
{
}
module_exit(libaescfb_exit);
#endif