bpf, docs: Fix small typo and define semantics of sign extension

Add additional precision on the semantics of the sign extension
operations in BPF. In addition, fix a very minor typo.

Signed-off-by: Will Hawkins <hawkinsw@obs.cr>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230808212503.197834-1-hawkinsw@obs.cr
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
This commit is contained in:
Will Hawkins 2023-08-08 17:25:01 -04:00 committed by Martin KaFai Lau
parent eb62e6aef9
commit e546a11980

View File

@ -76,6 +76,27 @@ Functions
format and returns the equivalent number with the same bit width but
opposite endianness.
Definitions
-----------
.. glossary::
Sign Extend
To `sign extend an` ``X`` `-bit number, A, to a` ``Y`` `-bit number, B ,` means to
#. Copy all ``X`` bits from `A` to the lower ``X`` bits of `B`.
#. Set the value of the remaining ``Y`` - ``X`` bits of `B` to the value of
the most-significant bit of `A`.
.. admonition:: Example
Sign extend an 8-bit number ``A`` to a 16-bit number ``B`` on a big-endian platform:
::
A: 10000110
B: 11111111 10000110
Registers and calling convention
================================
@ -234,7 +255,7 @@ BPF_SMOD 0x90 1 dst = (src != 0) ? (dst s% src) : dst
BPF_XOR 0xa0 0 dst ^= src
BPF_MOV 0xb0 0 dst = src
BPF_MOVSX 0xb0 8/16/32 dst = (s8,s16,s32)src
BPF_ARSH 0xc0 0 sign extending dst >>= (src & mask)
BPF_ARSH 0xc0 0 :term:`sign extending<Sign Extend>` dst >>= (src & mask)
BPF_END 0xd0 0 byte swap operations (see `Byte swap instructions`_ below)
========= ===== ======= ==========================================================
@ -266,22 +287,22 @@ where '(u32)' indicates that the upper 32 bits are zeroed.
Note that most instructions have instruction offset of 0. Only three instructions
(``BPF_SDIV``, ``BPF_SMOD``, ``BPF_MOVSX``) have a non-zero offset.
The devision and modulo operations support both unsigned and signed flavors.
The division and modulo operations support both unsigned and signed flavors.
For unsigned operations (``BPF_DIV`` and ``BPF_MOD``), for ``BPF_ALU``,
'imm' is interpreted as a 32-bit unsigned value. For ``BPF_ALU64``,
'imm' is first sign extended from 32 to 64 bits, and then interpreted as
a 64-bit unsigned value.
'imm' is first :term:`sign extended<Sign Extend>` from 32 to 64 bits, and then
interpreted as a 64-bit unsigned value.
For signed operations (``BPF_SDIV`` and ``BPF_SMOD``), for ``BPF_ALU``,
'imm' is interpreted as a 32-bit signed value. For ``BPF_ALU64``, 'imm'
is first sign extended from 32 to 64 bits, and then interpreted as a
64-bit signed value.
is first :term:`sign extended<Sign Extend>` from 32 to 64 bits, and then
interpreted as a 64-bit signed value.
The ``BPF_MOVSX`` instruction does a move operation with sign extension.
``BPF_ALU | BPF_MOVSX`` sign extends 8-bit and 16-bit operands into 32
``BPF_ALU | BPF_MOVSX`` :term:`sign extends<Sign Extend>` 8-bit and 16-bit operands into 32
bit operands, and zeroes the remaining upper 32 bits.
``BPF_ALU64 | BPF_MOVSX`` sign extends 8-bit, 16-bit, and 32-bit
``BPF_ALU64 | BPF_MOVSX`` :term:`sign extends<Sign Extend>` 8-bit, 16-bit, and 32-bit
operands into 64 bit operands.
Shift operations use a mask of 0x3F (63) for 64-bit operations and 0x1F (31)
@ -466,7 +487,7 @@ Where size is one of: ``BPF_B``, ``BPF_H``, ``BPF_W``, or ``BPF_DW`` and
Sign-extension load operations
------------------------------
The ``BPF_MEMSX`` mode modifier is used to encode sign-extension load
The ``BPF_MEMSX`` mode modifier is used to encode :term:`sign-extension<Sign Extend>` load
instructions that transfer data between a register and memory.
``BPF_MEMSX | <size> | BPF_LDX`` means::