diff --git a/fs/ext3/super.c b/fs/ext3/super.c index bd29894c8fbc..17ae5c83d234 100644 --- a/fs/ext3/super.c +++ b/fs/ext3/super.c @@ -980,7 +980,7 @@ static int parse_options (char *options, struct super_block *sb, * Initialize args struct so we know whether arg was * found; some options take optional arguments. */ - args[0].to = args[0].from = 0; + args[0].to = args[0].from = NULL; token = match_token(p, tokens, args); switch (token) { case Opt_bsd_df: @@ -1484,10 +1484,12 @@ static void ext3_orphan_cleanup (struct super_block * sb, } if (EXT3_SB(sb)->s_mount_state & EXT3_ERROR_FS) { - if (es->s_last_orphan) + /* don't clear list on RO mount w/ errors */ + if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { jbd_debug(1, "Errors on filesystem, " "clearing orphan list.\n"); - es->s_last_orphan = 0; + es->s_last_orphan = 0; + } jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); return; } diff --git a/fs/jbd/commit.c b/fs/jbd/commit.c index 52c15c776029..86b39b167c23 100644 --- a/fs/jbd/commit.c +++ b/fs/jbd/commit.c @@ -86,7 +86,12 @@ nope: static void release_data_buffer(struct buffer_head *bh) { if (buffer_freed(bh)) { + WARN_ON_ONCE(buffer_dirty(bh)); clear_buffer_freed(bh); + clear_buffer_mapped(bh); + clear_buffer_new(bh); + clear_buffer_req(bh); + bh->b_bdev = NULL; release_buffer_page(bh); } else put_bh(bh); @@ -866,17 +871,35 @@ restart_loop: * there's no point in keeping a checkpoint record for * it. */ - /* A buffer which has been freed while still being - * journaled by a previous transaction may end up still - * being dirty here, but we want to avoid writing back - * that buffer in the future after the "add to orphan" - * operation been committed, That's not only a performance - * gain, it also stops aliasing problems if the buffer is - * left behind for writeback and gets reallocated for another - * use in a different page. */ - if (buffer_freed(bh) && !jh->b_next_transaction) { - clear_buffer_freed(bh); - clear_buffer_jbddirty(bh); + /* + * A buffer which has been freed while still being journaled by + * a previous transaction. + */ + if (buffer_freed(bh)) { + /* + * If the running transaction is the one containing + * "add to orphan" operation (b_next_transaction != + * NULL), we have to wait for that transaction to + * commit before we can really get rid of the buffer. + * So just clear b_modified to not confuse transaction + * credit accounting and refile the buffer to + * BJ_Forget of the running transaction. If the just + * committed transaction contains "add to orphan" + * operation, we can completely invalidate the buffer + * now. We are rather throughout in that since the + * buffer may be still accessible when blocksize < + * pagesize and it is attached to the last partial + * page. + */ + jh->b_modified = 0; + if (!jh->b_next_transaction) { + clear_buffer_freed(bh); + clear_buffer_jbddirty(bh); + clear_buffer_mapped(bh); + clear_buffer_new(bh); + clear_buffer_req(bh); + bh->b_bdev = NULL; + } } if (buffer_jbddirty(bh)) { diff --git a/fs/jbd/transaction.c b/fs/jbd/transaction.c index febc10db5ced..78b7f84241d4 100644 --- a/fs/jbd/transaction.c +++ b/fs/jbd/transaction.c @@ -1843,15 +1843,16 @@ static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) * We're outside-transaction here. Either or both of j_running_transaction * and j_committing_transaction may be NULL. */ -static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) +static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, + int partial_page) { transaction_t *transaction; struct journal_head *jh; int may_free = 1; - int ret; BUFFER_TRACE(bh, "entry"); +retry: /* * It is safe to proceed here without the j_list_lock because the * buffers cannot be stolen by try_to_free_buffers as long as we are @@ -1879,10 +1880,18 @@ static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) * clear the buffer dirty bit at latest at the moment when the * transaction marking the buffer as freed in the filesystem * structures is committed because from that moment on the - * buffer can be reallocated and used by a different page. + * block can be reallocated and used by a different page. * Since the block hasn't been freed yet but the inode has * already been added to orphan list, it is safe for us to add * the buffer to BJ_Forget list of the newest transaction. + * + * Also we have to clear buffer_mapped flag of a truncated buffer + * because the buffer_head may be attached to the page straddling + * i_size (can happen only when blocksize < pagesize) and thus the + * buffer_head can be reused when the file is extended again. So we end + * up keeping around invalidated buffers attached to transactions' + * BJ_Forget list just to stop checkpointing code from cleaning up + * the transaction this buffer was modified in. */ transaction = jh->b_transaction; if (transaction == NULL) { @@ -1909,13 +1918,9 @@ static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) * committed, the buffer won't be needed any * longer. */ JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); - ret = __dispose_buffer(jh, + may_free = __dispose_buffer(jh, journal->j_running_transaction); - journal_put_journal_head(jh); - spin_unlock(&journal->j_list_lock); - jbd_unlock_bh_state(bh); - spin_unlock(&journal->j_state_lock); - return ret; + goto zap_buffer; } else { /* There is no currently-running transaction. So the * orphan record which we wrote for this file must have @@ -1923,13 +1928,9 @@ static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) * the committing transaction, if it exists. */ if (journal->j_committing_transaction) { JBUFFER_TRACE(jh, "give to committing trans"); - ret = __dispose_buffer(jh, + may_free = __dispose_buffer(jh, journal->j_committing_transaction); - journal_put_journal_head(jh); - spin_unlock(&journal->j_list_lock); - jbd_unlock_bh_state(bh); - spin_unlock(&journal->j_state_lock); - return ret; + goto zap_buffer; } else { /* The orphan record's transaction has * committed. We can cleanse this buffer */ @@ -1950,10 +1951,24 @@ static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) } /* * The buffer is committing, we simply cannot touch - * it. So we just set j_next_transaction to the - * running transaction (if there is one) and mark - * buffer as freed so that commit code knows it should - * clear dirty bits when it is done with the buffer. + * it. If the page is straddling i_size we have to wait + * for commit and try again. + */ + if (partial_page) { + tid_t tid = journal->j_committing_transaction->t_tid; + + journal_put_journal_head(jh); + spin_unlock(&journal->j_list_lock); + jbd_unlock_bh_state(bh); + spin_unlock(&journal->j_state_lock); + log_wait_commit(journal, tid); + goto retry; + } + /* + * OK, buffer won't be reachable after truncate. We just set + * j_next_transaction to the running transaction (if there is + * one) and mark buffer as freed so that commit code knows it + * should clear dirty bits when it is done with the buffer. */ set_buffer_freed(bh); if (journal->j_running_transaction && buffer_jbddirty(bh)) @@ -1976,6 +1991,14 @@ static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) } zap_buffer: + /* + * This is tricky. Although the buffer is truncated, it may be reused + * if blocksize < pagesize and it is attached to the page straddling + * EOF. Since the buffer might have been added to BJ_Forget list of the + * running transaction, journal_get_write_access() won't clear + * b_modified and credit accounting gets confused. So clear b_modified + * here. */ + jh->b_modified = 0; journal_put_journal_head(jh); zap_buffer_no_jh: spin_unlock(&journal->j_list_lock); @@ -2024,7 +2047,8 @@ void journal_invalidatepage(journal_t *journal, if (offset <= curr_off) { /* This block is wholly outside the truncation point */ lock_buffer(bh); - may_free &= journal_unmap_buffer(journal, bh); + may_free &= journal_unmap_buffer(journal, bh, + offset > 0); unlock_buffer(bh); } curr_off = next_off; diff --git a/fs/reiserfs/xattr.c b/fs/reiserfs/xattr.c index d319963aeb11..c196369fe408 100644 --- a/fs/reiserfs/xattr.c +++ b/fs/reiserfs/xattr.c @@ -896,7 +896,7 @@ static int create_privroot(struct dentry *dentry) { return 0; } #endif /* Actual operations that are exported to VFS-land */ -const struct xattr_handler *reiserfs_xattr_handlers[] = { +static const struct xattr_handler *reiserfs_xattr_handlers[] = { #ifdef CONFIG_REISERFS_FS_XATTR &reiserfs_xattr_user_handler, &reiserfs_xattr_trusted_handler, diff --git a/fs/udf/file.c b/fs/udf/file.c index d1c6093fd3d3..77b5953eaac8 100644 --- a/fs/udf/file.c +++ b/fs/udf/file.c @@ -118,11 +118,20 @@ static int udf_adinicb_write_end(struct file *file, return simple_write_end(file, mapping, pos, len, copied, page, fsdata); } +static ssize_t udf_adinicb_direct_IO(int rw, struct kiocb *iocb, + const struct iovec *iov, + loff_t offset, unsigned long nr_segs) +{ + /* Fallback to buffered I/O. */ + return 0; +} + const struct address_space_operations udf_adinicb_aops = { .readpage = udf_adinicb_readpage, .writepage = udf_adinicb_writepage, .write_begin = udf_adinicb_write_begin, .write_end = udf_adinicb_write_end, + .direct_IO = udf_adinicb_direct_IO, }; static ssize_t udf_file_aio_write(struct kiocb *iocb, const struct iovec *iov, diff --git a/fs/udf/inode.c b/fs/udf/inode.c index 287ef9f587b7..df88b957ccf0 100644 --- a/fs/udf/inode.c +++ b/fs/udf/inode.c @@ -95,11 +95,33 @@ void udf_evict_inode(struct inode *inode) } } +static void udf_write_failed(struct address_space *mapping, loff_t to) +{ + struct inode *inode = mapping->host; + struct udf_inode_info *iinfo = UDF_I(inode); + loff_t isize = inode->i_size; + + if (to > isize) { + truncate_pagecache(inode, to, isize); + if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { + down_write(&iinfo->i_data_sem); + udf_truncate_extents(inode); + up_write(&iinfo->i_data_sem); + } + } +} + static int udf_writepage(struct page *page, struct writeback_control *wbc) { return block_write_full_page(page, udf_get_block, wbc); } +static int udf_writepages(struct address_space *mapping, + struct writeback_control *wbc) +{ + return mpage_writepages(mapping, wbc, udf_get_block); +} + static int udf_readpage(struct file *file, struct page *page) { return mpage_readpage(page, udf_get_block); @@ -118,21 +140,24 @@ static int udf_write_begin(struct file *file, struct address_space *mapping, int ret; ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); - if (unlikely(ret)) { - struct inode *inode = mapping->host; - struct udf_inode_info *iinfo = UDF_I(inode); - loff_t isize = inode->i_size; + if (unlikely(ret)) + udf_write_failed(mapping, pos + len); + return ret; +} - if (pos + len > isize) { - truncate_pagecache(inode, pos + len, isize); - if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { - down_write(&iinfo->i_data_sem); - udf_truncate_extents(inode); - up_write(&iinfo->i_data_sem); - } - } - } +static ssize_t udf_direct_IO(int rw, struct kiocb *iocb, + const struct iovec *iov, + loff_t offset, unsigned long nr_segs) +{ + struct file *file = iocb->ki_filp; + struct address_space *mapping = file->f_mapping; + struct inode *inode = mapping->host; + ssize_t ret; + ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs, + udf_get_block); + if (unlikely(ret < 0 && (rw & WRITE))) + udf_write_failed(mapping, offset + iov_length(iov, nr_segs)); return ret; } @@ -145,8 +170,10 @@ const struct address_space_operations udf_aops = { .readpage = udf_readpage, .readpages = udf_readpages, .writepage = udf_writepage, - .write_begin = udf_write_begin, - .write_end = generic_write_end, + .writepages = udf_writepages, + .write_begin = udf_write_begin, + .write_end = generic_write_end, + .direct_IO = udf_direct_IO, .bmap = udf_bmap, };