[media] cx2341x.rst: add the contents of fw-calling.txt

Convert it to ReST and add its contents at this file.

Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
This commit is contained in:
Mauro Carvalho Chehab 2016-07-18 13:26:30 -03:00
parent 91e71c2ba8
commit d9b8a3f099
2 changed files with 75 additions and 69 deletions

View File

@ -1,6 +1,81 @@
The cx2341x driver
==================
How to call the firmware API
----------------------------
The preferred calling convention is known as the firmware mailbox. The
mailboxes are basically a fixed length array that serves as the call-stack.
Firmware mailboxes can be located by searching the encoder and decoder memory
for a 16 byte signature. That signature will be located on a 256-byte boundary.
Signature:
.. code-block:: none
0x78, 0x56, 0x34, 0x12, 0x12, 0x78, 0x56, 0x34,
0x34, 0x12, 0x78, 0x56, 0x56, 0x34, 0x12, 0x78
The firmware implements 20 mailboxes of 20 32-bit words. The first 10 are
reserved for API calls. The second 10 are used by the firmware for event
notification.
====== =================
Index Name
====== =================
0 Flags
1 Command
2 Return value
3 Timeout
4-19 Parameter/Result
====== =================
The flags are defined in the following table. The direction is from the
perspective of the firmware.
==== ========== ============================================
Bit Direction Purpose
==== ========== ============================================
2 O Firmware has processed the command.
1 I Driver has finished setting the parameters.
0 I Driver is using this mailbox.
==== ========== ============================================
The command is a 32-bit enumerator. The API specifics may be found in this
chapter.
The return value is a 32-bit enumerator. Only two values are currently defined:
- 0=success
- -1=command undefined.
There are 16 parameters/results 32-bit fields. The driver populates these fields
with values for all the parameters required by the call. The driver overwrites
these fields with result values returned by the call.
The timeout value protects the card from a hung driver thread. If the driver
doesn't handle the completed call within the timeout specified, the firmware
will reset that mailbox.
To make an API call, the driver iterates over each mailbox looking for the
first one available (bit 0 has been cleared). The driver sets that bit, fills
in the command enumerator, the timeout value and any required parameters. The
driver then sets the parameter ready bit (bit 1). The firmware scans the
mailboxes for pending commands, processes them, sets the result code, populates
the result value array with that call's return values and sets the call
complete bit (bit 2). Once bit 2 is set, the driver should retrieve the results
and clear all the flags. If the driver does not perform this task within the
time set in the timeout register, the firmware will reset that mailbox.
Event notifications are sent from the firmware to the host. The host tells the
firmware which events it is interested in via an API call. That call tells the
firmware which notification mailbox to use. The firmware signals the host via
an interrupt. Only the 16 Results fields are used, the Flags, Command, Return
value and Timeout words are not used.
Encoder firmware API description
--------------------------------

View File

@ -1,69 +0,0 @@
This page describes how to make calls to the firmware api.
How to call
===========
The preferred calling convention is known as the firmware mailbox. The
mailboxes are basically a fixed length array that serves as the call-stack.
Firmware mailboxes can be located by searching the encoder and decoder memory
for a 16 byte signature. That signature will be located on a 256-byte boundary.
Signature:
0x78, 0x56, 0x34, 0x12, 0x12, 0x78, 0x56, 0x34,
0x34, 0x12, 0x78, 0x56, 0x56, 0x34, 0x12, 0x78
The firmware implements 20 mailboxes of 20 32-bit words. The first 10 are
reserved for API calls. The second 10 are used by the firmware for event
notification.
Index Name
----- ----
0 Flags
1 Command
2 Return value
3 Timeout
4-19 Parameter/Result
The flags are defined in the following table. The direction is from the
perspective of the firmware.
Bit Direction Purpose
--- --------- -------
2 O Firmware has processed the command.
1 I Driver has finished setting the parameters.
0 I Driver is using this mailbox.
The command is a 32-bit enumerator. The API specifics may be found in the
fw-*-api.txt documents.
The return value is a 32-bit enumerator. Only two values are currently defined:
0=success and -1=command undefined.
There are 16 parameters/results 32-bit fields. The driver populates these fields
with values for all the parameters required by the call. The driver overwrites
these fields with result values returned by the call. The API specifics may be
found in the fw-*-api.txt documents.
The timeout value protects the card from a hung driver thread. If the driver
doesn't handle the completed call within the timeout specified, the firmware
will reset that mailbox.
To make an API call, the driver iterates over each mailbox looking for the
first one available (bit 0 has been cleared). The driver sets that bit, fills
in the command enumerator, the timeout value and any required parameters. The
driver then sets the parameter ready bit (bit 1). The firmware scans the
mailboxes for pending commands, processes them, sets the result code, populates
the result value array with that call's return values and sets the call
complete bit (bit 2). Once bit 2 is set, the driver should retrieve the results
and clear all the flags. If the driver does not perform this task within the
time set in the timeout register, the firmware will reset that mailbox.
Event notifications are sent from the firmware to the host. The host tells the
firmware which events it is interested in via an API call. That call tells the
firmware which notification mailbox to use. The firmware signals the host via
an interrupt. Only the 16 Results fields are used, the Flags, Command, Return
value and Timeout words are not used.