sched/fair: Fix external p->on_rq users

Sean noted that ever since commit 152e11f6df ("sched/fair: Implement
delayed dequeue") KVM's preemption notifiers have started
mis-classifying preemption vs blocking.

Notably p->on_rq is no longer sufficient to determine if a task is
runnable or blocked -- the aforementioned commit introduces tasks that
remain on the runqueue even through they will not run again, and
should be considered blocked for many cases.

Add the task_is_runnable() helper to classify things and audit all
external users of the p->on_rq state. Also add a few comments.

Fixes: 152e11f6df ("sched/fair: Implement delayed dequeue")
Reported-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20241010091843.GK33184@noisy.programming.kicks-ass.net
This commit is contained in:
Peter Zijlstra 2024-10-10 11:38:10 +02:00 committed by Ingo Molnar
parent c650812419
commit cd9626e9eb
8 changed files with 38 additions and 7 deletions

View File

@ -2133,6 +2133,11 @@ static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
#endif /* CONFIG_SMP */
static inline bool task_is_runnable(struct task_struct *p)
{
return p->on_rq && !p->se.sched_delayed;
}
extern bool sched_task_on_rq(struct task_struct *p);
extern unsigned long get_wchan(struct task_struct *p);
extern struct task_struct *cpu_curr_snapshot(int cpu);

View File

@ -9251,7 +9251,7 @@ static void perf_event_switch(struct task_struct *task,
},
};
if (!sched_in && task->on_rq) {
if (!sched_in && task_is_runnable(task)) {
switch_event.event_id.header.misc |=
PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
}

View File

@ -109,7 +109,12 @@ static int __set_task_frozen(struct task_struct *p, void *arg)
{
unsigned int state = READ_ONCE(p->__state);
if (p->on_rq)
/*
* Allow freezing the sched_delayed tasks; they will not execute until
* ttwu() fixes them up, so it is safe to swap their state now, instead
* of waiting for them to get fully dequeued.
*/
if (task_is_runnable(p))
return 0;
if (p != current && task_curr(p))

View File

@ -985,6 +985,15 @@ static bool rcu_tasks_is_holdout(struct task_struct *t)
if (!READ_ONCE(t->on_rq))
return false;
/*
* t->on_rq && !t->se.sched_delayed *could* be considered sleeping but
* since it is a spurious state (it will transition into the
* traditional blocked state or get woken up without outside
* dependencies), not considering it such should only affect timing.
*
* Be conservative for now and not include it.
*/
/*
* Idle tasks (or idle injection) within the idle loop are RCU-tasks
* quiescent states. But CPU boot code performed by the idle task

View File

@ -548,6 +548,11 @@ sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
* ON_RQ_MIGRATING state is used for migration without holding both
* rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
*
* Additionally it is possible to be ->on_rq but still be considered not
* runnable when p->se.sched_delayed is true. These tasks are on the runqueue
* but will be dequeued as soon as they get picked again. See the
* task_is_runnable() helper.
*
* p->on_cpu <- { 0, 1 }:
*
* is set by prepare_task() and cleared by finish_task() such that it will be
@ -4317,9 +4322,10 @@ static bool __task_needs_rq_lock(struct task_struct *p)
* @arg: Argument to function.
*
* Fix the task in it's current state by avoiding wakeups and or rq operations
* and call @func(@arg) on it. This function can use ->on_rq and task_curr()
* to work out what the state is, if required. Given that @func can be invoked
* with a runqueue lock held, it had better be quite lightweight.
* and call @func(@arg) on it. This function can use task_is_runnable() and
* task_curr() to work out what the state is, if required. Given that @func
* can be invoked with a runqueue lock held, it had better be quite
* lightweight.
*
* Returns:
* Whatever @func returns

View File

@ -434,6 +434,12 @@ static void tick_nohz_kick_task(struct task_struct *tsk)
* smp_mb__after_spin_lock()
* tick_nohz_task_switch()
* LOAD p->tick_dep_mask
*
* XXX given a task picks up the dependency on schedule(), should we
* only care about tasks that are currently on the CPU instead of all
* that are on the runqueue?
*
* That is, does this want to be: task_on_cpu() / task_curr()?
*/
if (!sched_task_on_rq(tsk))
return;

View File

@ -1485,7 +1485,7 @@ trace_selftest_startup_wakeup(struct tracer *trace, struct trace_array *tr)
/* reset the max latency */
tr->max_latency = 0;
while (p->on_rq) {
while (task_is_runnable(p)) {
/*
* Sleep to make sure the -deadline thread is asleep too.
* On virtual machines we can't rely on timings,

View File

@ -6387,7 +6387,7 @@ static void kvm_sched_out(struct preempt_notifier *pn,
WRITE_ONCE(vcpu->scheduled_out, true);
if (current->on_rq && vcpu->wants_to_run) {
if (task_is_runnable(current) && vcpu->wants_to_run) {
WRITE_ONCE(vcpu->preempted, true);
WRITE_ONCE(vcpu->ready, true);
}