crypto: arm64/aes-xctr - Improve readability of XCTR and CTR modes

Added some clarifying comments, changed the register allocations to make
the code clearer, and added register aliases.

Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Nathan Huckleberry 2022-05-20 18:14:58 +00:00 committed by Herbert Xu
parent 23a251cc16
commit c0eb7591c1
2 changed files with 185 additions and 68 deletions

View File

@ -464,6 +464,14 @@ static int __maybe_unused xctr_encrypt(struct skcipher_request *req)
u8 *dst = walk.dst.virt.addr;
u8 buf[AES_BLOCK_SIZE];
/*
* If given less than 16 bytes, we must copy the partial block
* into a temporary buffer of 16 bytes to avoid out of bounds
* reads and writes. Furthermore, this code is somewhat unusual
* in that it expects the end of the data to be at the end of
* the temporary buffer, rather than the start of the data at
* the start of the temporary buffer.
*/
if (unlikely(nbytes < AES_BLOCK_SIZE))
src = dst = memcpy(buf + sizeof(buf) - nbytes,
src, nbytes);
@ -501,6 +509,14 @@ static int __maybe_unused ctr_encrypt(struct skcipher_request *req)
u8 *dst = walk.dst.virt.addr;
u8 buf[AES_BLOCK_SIZE];
/*
* If given less than 16 bytes, we must copy the partial block
* into a temporary buffer of 16 bytes to avoid out of bounds
* reads and writes. Furthermore, this code is somewhat unusual
* in that it expects the end of the data to be at the end of
* the temporary buffer, rather than the start of the data at
* the start of the temporary buffer.
*/
if (unlikely(nbytes < AES_BLOCK_SIZE))
src = dst = memcpy(buf + sizeof(buf) - nbytes,
src, nbytes);

View File

@ -322,32 +322,60 @@ AES_FUNC_END(aes_cbc_cts_decrypt)
* This macro generates the code for CTR and XCTR mode.
*/
.macro ctr_encrypt xctr
// Arguments
OUT .req x0
IN .req x1
KEY .req x2
ROUNDS_W .req w3
BYTES_W .req w4
IV .req x5
BYTE_CTR_W .req w6 // XCTR only
// Intermediate values
CTR_W .req w11 // XCTR only
CTR .req x11 // XCTR only
IV_PART .req x12
BLOCKS .req x13
BLOCKS_W .req w13
stp x29, x30, [sp, #-16]!
mov x29, sp
enc_prepare w3, x2, x12
ld1 {vctr.16b}, [x5]
enc_prepare ROUNDS_W, KEY, IV_PART
ld1 {vctr.16b}, [IV]
/*
* Keep 64 bits of the IV in a register. For CTR mode this lets us
* easily increment the IV. For XCTR mode this lets us efficiently XOR
* the 64-bit counter with the IV.
*/
.if \xctr
umov x12, vctr.d[0]
lsr w11, w6, #4
umov IV_PART, vctr.d[0]
lsr CTR_W, BYTE_CTR_W, #4
.else
umov x12, vctr.d[1] /* keep swabbed ctr in reg */
rev x12, x12
umov IV_PART, vctr.d[1]
rev IV_PART, IV_PART
.endif
.LctrloopNx\xctr:
add w7, w4, #15
sub w4, w4, #MAX_STRIDE << 4
lsr w7, w7, #4
add BLOCKS_W, BYTES_W, #15
sub BYTES_W, BYTES_W, #MAX_STRIDE << 4
lsr BLOCKS_W, BLOCKS_W, #4
mov w8, #MAX_STRIDE
cmp w7, w8
csel w7, w7, w8, lt
cmp BLOCKS_W, w8
csel BLOCKS_W, BLOCKS_W, w8, lt
/*
* Set up the counter values in v0-v{MAX_STRIDE-1}.
*
* If we are encrypting less than MAX_STRIDE blocks, the tail block
* handling code expects the last keystream block to be in
* v{MAX_STRIDE-1}. For example: if encrypting two blocks with
* MAX_STRIDE=5, then v3 and v4 should have the next two counter blocks.
*/
.if \xctr
add x11, x11, x7
add CTR, CTR, BLOCKS
.else
adds x12, x12, x7
adds IV_PART, IV_PART, BLOCKS
.endif
mov v0.16b, vctr.16b
mov v1.16b, vctr.16b
@ -355,16 +383,16 @@ AES_FUNC_END(aes_cbc_cts_decrypt)
mov v3.16b, vctr.16b
ST5( mov v4.16b, vctr.16b )
.if \xctr
sub x6, x11, #MAX_STRIDE - 1
sub x7, x11, #MAX_STRIDE - 2
sub x8, x11, #MAX_STRIDE - 3
sub x9, x11, #MAX_STRIDE - 4
ST5( sub x10, x11, #MAX_STRIDE - 5 )
eor x6, x6, x12
eor x7, x7, x12
eor x8, x8, x12
eor x9, x9, x12
ST5( eor x10, x10, x12 )
sub x6, CTR, #MAX_STRIDE - 1
sub x7, CTR, #MAX_STRIDE - 2
sub x8, CTR, #MAX_STRIDE - 3
sub x9, CTR, #MAX_STRIDE - 4
ST5( sub x10, CTR, #MAX_STRIDE - 5 )
eor x6, x6, IV_PART
eor x7, x7, IV_PART
eor x8, x8, IV_PART
eor x9, x9, IV_PART
ST5( eor x10, x10, IV_PART )
mov v0.d[0], x6
mov v1.d[0], x7
mov v2.d[0], x8
@ -373,17 +401,32 @@ ST5( mov v4.d[0], x10 )
.else
bcs 0f
.subsection 1
/* apply carry to outgoing counter */
/*
* This subsection handles carries.
*
* Conditional branching here is allowed with respect to time
* invariance since the branches are dependent on the IV instead
* of the plaintext or key. This code is rarely executed in
* practice anyway.
*/
/* Apply carry to outgoing counter. */
0: umov x8, vctr.d[0]
rev x8, x8
add x8, x8, #1
rev x8, x8
ins vctr.d[0], x8
/* apply carry to N counter blocks for N := x12 */
cbz x12, 2f
/*
* Apply carry to counter blocks if needed.
*
* Since the carry flag was set, we know 0 <= IV_PART <
* MAX_STRIDE. Using the value of IV_PART we can determine how
* many counter blocks need to be updated.
*/
cbz IV_PART, 2f
adr x16, 1f
sub x16, x16, x12, lsl #3
sub x16, x16, IV_PART, lsl #3
br x16
bti c
mov v0.d[0], vctr.d[0]
@ -398,71 +441,88 @@ ST5( mov v4.d[0], vctr.d[0] )
1: b 2f
.previous
2: rev x7, x12
2: rev x7, IV_PART
ins vctr.d[1], x7
sub x7, x12, #MAX_STRIDE - 1
sub x8, x12, #MAX_STRIDE - 2
sub x9, x12, #MAX_STRIDE - 3
sub x7, IV_PART, #MAX_STRIDE - 1
sub x8, IV_PART, #MAX_STRIDE - 2
sub x9, IV_PART, #MAX_STRIDE - 3
rev x7, x7
rev x8, x8
mov v1.d[1], x7
rev x9, x9
ST5( sub x10, x12, #MAX_STRIDE - 4 )
ST5( sub x10, IV_PART, #MAX_STRIDE - 4 )
mov v2.d[1], x8
ST5( rev x10, x10 )
mov v3.d[1], x9
ST5( mov v4.d[1], x10 )
.endif
tbnz w4, #31, .Lctrtail\xctr
ld1 {v5.16b-v7.16b}, [x1], #48
/*
* If there are at least MAX_STRIDE blocks left, XOR the data with
* keystream and store. Otherwise jump to tail handling.
*/
tbnz BYTES_W, #31, .Lctrtail\xctr
ld1 {v5.16b-v7.16b}, [IN], #48
ST4( bl aes_encrypt_block4x )
ST5( bl aes_encrypt_block5x )
eor v0.16b, v5.16b, v0.16b
ST4( ld1 {v5.16b}, [x1], #16 )
ST4( ld1 {v5.16b}, [IN], #16 )
eor v1.16b, v6.16b, v1.16b
ST5( ld1 {v5.16b-v6.16b}, [x1], #32 )
ST5( ld1 {v5.16b-v6.16b}, [IN], #32 )
eor v2.16b, v7.16b, v2.16b
eor v3.16b, v5.16b, v3.16b
ST5( eor v4.16b, v6.16b, v4.16b )
st1 {v0.16b-v3.16b}, [x0], #64
ST5( st1 {v4.16b}, [x0], #16 )
cbz w4, .Lctrout\xctr
st1 {v0.16b-v3.16b}, [OUT], #64
ST5( st1 {v4.16b}, [OUT], #16 )
cbz BYTES_W, .Lctrout\xctr
b .LctrloopNx\xctr
.Lctrout\xctr:
.if !\xctr
st1 {vctr.16b}, [x5] /* return next CTR value */
st1 {vctr.16b}, [IV] /* return next CTR value */
.endif
ldp x29, x30, [sp], #16
ret
.Lctrtail\xctr:
/*
* Handle up to MAX_STRIDE * 16 - 1 bytes of plaintext
*
* This code expects the last keystream block to be in v{MAX_STRIDE-1}.
* For example: if encrypting two blocks with MAX_STRIDE=5, then v3 and
* v4 should have the next two counter blocks.
*
* This allows us to store the ciphertext by writing to overlapping
* regions of memory. Any invalid ciphertext blocks get overwritten by
* correctly computed blocks. This approach greatly simplifies the
* logic for storing the ciphertext.
*/
mov x16, #16
ands x6, x4, #0xf
csel x13, x6, x16, ne
ands w7, BYTES_W, #0xf
csel x13, x7, x16, ne
ST5( cmp w4, #64 - (MAX_STRIDE << 4) )
ST5( cmp BYTES_W, #64 - (MAX_STRIDE << 4))
ST5( csel x14, x16, xzr, gt )
cmp w4, #48 - (MAX_STRIDE << 4)
cmp BYTES_W, #48 - (MAX_STRIDE << 4)
csel x15, x16, xzr, gt
cmp w4, #32 - (MAX_STRIDE << 4)
cmp BYTES_W, #32 - (MAX_STRIDE << 4)
csel x16, x16, xzr, gt
cmp w4, #16 - (MAX_STRIDE << 4)
cmp BYTES_W, #16 - (MAX_STRIDE << 4)
adr_l x12, .Lcts_permute_table
add x12, x12, x13
adr_l x9, .Lcts_permute_table
add x9, x9, x13
ble .Lctrtail1x\xctr
ST5( ld1 {v5.16b}, [x1], x14 )
ld1 {v6.16b}, [x1], x15
ld1 {v7.16b}, [x1], x16
ST5( ld1 {v5.16b}, [IN], x14 )
ld1 {v6.16b}, [IN], x15
ld1 {v7.16b}, [IN], x16
ST4( bl aes_encrypt_block4x )
ST5( bl aes_encrypt_block5x )
ld1 {v8.16b}, [x1], x13
ld1 {v9.16b}, [x1]
ld1 {v10.16b}, [x12]
ld1 {v8.16b}, [IN], x13
ld1 {v9.16b}, [IN]
ld1 {v10.16b}, [x9]
ST4( eor v6.16b, v6.16b, v0.16b )
ST4( eor v7.16b, v7.16b, v1.16b )
@ -477,35 +537,70 @@ ST5( eor v7.16b, v7.16b, v2.16b )
ST5( eor v8.16b, v8.16b, v3.16b )
ST5( eor v9.16b, v9.16b, v4.16b )
ST5( st1 {v5.16b}, [x0], x14 )
st1 {v6.16b}, [x0], x15
st1 {v7.16b}, [x0], x16
add x13, x13, x0
ST5( st1 {v5.16b}, [OUT], x14 )
st1 {v6.16b}, [OUT], x15
st1 {v7.16b}, [OUT], x16
add x13, x13, OUT
st1 {v9.16b}, [x13] // overlapping stores
st1 {v8.16b}, [x0]
st1 {v8.16b}, [OUT]
b .Lctrout\xctr
.Lctrtail1x\xctr:
sub x7, x6, #16
csel x6, x6, x7, eq
add x1, x1, x6
add x0, x0, x6
ld1 {v5.16b}, [x1]
ld1 {v6.16b}, [x0]
/*
* Handle <= 16 bytes of plaintext
*
* This code always reads and writes 16 bytes. To avoid out of bounds
* accesses, XCTR and CTR modes must use a temporary buffer when
* encrypting/decrypting less than 16 bytes.
*
* This code is unusual in that it loads the input and stores the output
* relative to the end of the buffers rather than relative to the start.
* This causes unusual behaviour when encrypting/decrypting less than 16
* bytes; the end of the data is expected to be at the end of the
* temporary buffer rather than the start of the data being at the start
* of the temporary buffer.
*/
sub x8, x7, #16
csel x7, x7, x8, eq
add IN, IN, x7
add OUT, OUT, x7
ld1 {v5.16b}, [IN]
ld1 {v6.16b}, [OUT]
ST5( mov v3.16b, v4.16b )
encrypt_block v3, w3, x2, x8, w7
ld1 {v10.16b-v11.16b}, [x12]
encrypt_block v3, ROUNDS_W, KEY, x8, w7
ld1 {v10.16b-v11.16b}, [x9]
tbl v3.16b, {v3.16b}, v10.16b
sshr v11.16b, v11.16b, #7
eor v5.16b, v5.16b, v3.16b
bif v5.16b, v6.16b, v11.16b
st1 {v5.16b}, [x0]
st1 {v5.16b}, [OUT]
b .Lctrout\xctr
// Arguments
.unreq OUT
.unreq IN
.unreq KEY
.unreq ROUNDS_W
.unreq BYTES_W
.unreq IV
.unreq BYTE_CTR_W // XCTR only
// Intermediate values
.unreq CTR_W // XCTR only
.unreq CTR // XCTR only
.unreq IV_PART
.unreq BLOCKS
.unreq BLOCKS_W
.endm
/*
* aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds,
* int bytes, u8 ctr[])
*
* The input and output buffers must always be at least 16 bytes even if
* encrypting/decrypting less than 16 bytes. Otherwise out of bounds
* accesses will occur. The data to be encrypted/decrypted is expected
* to be at the end of this 16-byte temporary buffer rather than the
* start.
*/
AES_FUNC_START(aes_ctr_encrypt)
@ -515,6 +610,12 @@ AES_FUNC_END(aes_ctr_encrypt)
/*
* aes_xctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds,
* int bytes, u8 const iv[], int byte_ctr)
*
* The input and output buffers must always be at least 16 bytes even if
* encrypting/decrypting less than 16 bytes. Otherwise out of bounds
* accesses will occur. The data to be encrypted/decrypted is expected
* to be at the end of this 16-byte temporary buffer rather than the
* start.
*/
AES_FUNC_START(aes_xctr_encrypt)