mirror of
https://github.com/torvalds/linux.git
synced 2024-11-21 19:41:42 +00:00
bpf: Introduce range_tree data structure and use it in bpf arena
Introduce range_tree data structure and use it in bpf arena to track ranges of allocated pages. range_tree is a large bitmap that is implemented as interval tree plus rbtree. The contiguous sequence of bits represents unallocated pages. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/bpf/20241108025616.17625-2-alexei.starovoitov@gmail.com
This commit is contained in:
parent
8714381703
commit
b795379757
@ -16,7 +16,7 @@ obj-$(CONFIG_BPF_SYSCALL) += disasm.o mprog.o
|
||||
obj-$(CONFIG_BPF_JIT) += trampoline.o
|
||||
obj-$(CONFIG_BPF_SYSCALL) += btf.o memalloc.o
|
||||
ifeq ($(CONFIG_MMU)$(CONFIG_64BIT),yy)
|
||||
obj-$(CONFIG_BPF_SYSCALL) += arena.o
|
||||
obj-$(CONFIG_BPF_SYSCALL) += arena.o range_tree.o
|
||||
endif
|
||||
obj-$(CONFIG_BPF_JIT) += dispatcher.o
|
||||
ifeq ($(CONFIG_NET),y)
|
||||
|
@ -6,6 +6,7 @@
|
||||
#include <linux/btf_ids.h>
|
||||
#include <linux/vmalloc.h>
|
||||
#include <linux/pagemap.h>
|
||||
#include "range_tree.h"
|
||||
|
||||
/*
|
||||
* bpf_arena is a sparsely populated shared memory region between bpf program and
|
||||
@ -45,7 +46,7 @@ struct bpf_arena {
|
||||
u64 user_vm_start;
|
||||
u64 user_vm_end;
|
||||
struct vm_struct *kern_vm;
|
||||
struct maple_tree mt;
|
||||
struct range_tree rt;
|
||||
struct list_head vma_list;
|
||||
struct mutex lock;
|
||||
};
|
||||
@ -132,7 +133,8 @@ static struct bpf_map *arena_map_alloc(union bpf_attr *attr)
|
||||
|
||||
INIT_LIST_HEAD(&arena->vma_list);
|
||||
bpf_map_init_from_attr(&arena->map, attr);
|
||||
mt_init_flags(&arena->mt, MT_FLAGS_ALLOC_RANGE);
|
||||
range_tree_init(&arena->rt);
|
||||
range_tree_set(&arena->rt, 0, attr->max_entries);
|
||||
mutex_init(&arena->lock);
|
||||
|
||||
return &arena->map;
|
||||
@ -183,7 +185,7 @@ static void arena_map_free(struct bpf_map *map)
|
||||
apply_to_existing_page_range(&init_mm, bpf_arena_get_kern_vm_start(arena),
|
||||
KERN_VM_SZ - GUARD_SZ, existing_page_cb, NULL);
|
||||
free_vm_area(arena->kern_vm);
|
||||
mtree_destroy(&arena->mt);
|
||||
range_tree_destroy(&arena->rt);
|
||||
bpf_map_area_free(arena);
|
||||
}
|
||||
|
||||
@ -274,20 +276,20 @@ static vm_fault_t arena_vm_fault(struct vm_fault *vmf)
|
||||
/* User space requested to segfault when page is not allocated by bpf prog */
|
||||
return VM_FAULT_SIGSEGV;
|
||||
|
||||
ret = mtree_insert(&arena->mt, vmf->pgoff, MT_ENTRY, GFP_KERNEL);
|
||||
ret = range_tree_clear(&arena->rt, vmf->pgoff, 1);
|
||||
if (ret)
|
||||
return VM_FAULT_SIGSEGV;
|
||||
|
||||
/* Account into memcg of the process that created bpf_arena */
|
||||
ret = bpf_map_alloc_pages(map, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 1, &page);
|
||||
if (ret) {
|
||||
mtree_erase(&arena->mt, vmf->pgoff);
|
||||
range_tree_set(&arena->rt, vmf->pgoff, 1);
|
||||
return VM_FAULT_SIGSEGV;
|
||||
}
|
||||
|
||||
ret = vm_area_map_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE, &page);
|
||||
if (ret) {
|
||||
mtree_erase(&arena->mt, vmf->pgoff);
|
||||
range_tree_set(&arena->rt, vmf->pgoff, 1);
|
||||
__free_page(page);
|
||||
return VM_FAULT_SIGSEGV;
|
||||
}
|
||||
@ -444,12 +446,16 @@ static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt
|
||||
|
||||
guard(mutex)(&arena->lock);
|
||||
|
||||
if (uaddr)
|
||||
ret = mtree_insert_range(&arena->mt, pgoff, pgoff + page_cnt - 1,
|
||||
MT_ENTRY, GFP_KERNEL);
|
||||
else
|
||||
ret = mtree_alloc_range(&arena->mt, &pgoff, MT_ENTRY,
|
||||
page_cnt, 0, page_cnt_max - 1, GFP_KERNEL);
|
||||
if (uaddr) {
|
||||
ret = is_range_tree_set(&arena->rt, pgoff, page_cnt);
|
||||
if (ret)
|
||||
goto out_free_pages;
|
||||
ret = range_tree_clear(&arena->rt, pgoff, page_cnt);
|
||||
} else {
|
||||
ret = pgoff = range_tree_find(&arena->rt, page_cnt);
|
||||
if (pgoff >= 0)
|
||||
ret = range_tree_clear(&arena->rt, pgoff, page_cnt);
|
||||
}
|
||||
if (ret)
|
||||
goto out_free_pages;
|
||||
|
||||
@ -476,7 +482,7 @@ static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt
|
||||
kvfree(pages);
|
||||
return clear_lo32(arena->user_vm_start) + uaddr32;
|
||||
out:
|
||||
mtree_erase(&arena->mt, pgoff);
|
||||
range_tree_set(&arena->rt, pgoff, page_cnt);
|
||||
out_free_pages:
|
||||
kvfree(pages);
|
||||
return 0;
|
||||
@ -516,7 +522,7 @@ static void arena_free_pages(struct bpf_arena *arena, long uaddr, long page_cnt)
|
||||
|
||||
pgoff = compute_pgoff(arena, uaddr);
|
||||
/* clear range */
|
||||
mtree_store_range(&arena->mt, pgoff, pgoff + page_cnt - 1, NULL, GFP_KERNEL);
|
||||
range_tree_set(&arena->rt, pgoff, page_cnt);
|
||||
|
||||
if (page_cnt > 1)
|
||||
/* bulk zap if multiple pages being freed */
|
||||
|
262
kernel/bpf/range_tree.c
Normal file
262
kernel/bpf/range_tree.c
Normal file
@ -0,0 +1,262 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */
|
||||
#include <linux/interval_tree_generic.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/bpf_mem_alloc.h>
|
||||
#include <linux/bpf.h>
|
||||
#include "range_tree.h"
|
||||
|
||||
/*
|
||||
* struct range_tree is a data structure used to allocate contiguous memory
|
||||
* ranges in bpf arena. It's a large bitmap. The contiguous sequence of bits is
|
||||
* represented by struct range_node or 'rn' for short.
|
||||
* rn->rn_rbnode links it into an interval tree while
|
||||
* rn->rb_range_size links it into a second rbtree sorted by size of the range.
|
||||
* __find_range() performs binary search and best fit algorithm to find the
|
||||
* range less or equal requested size.
|
||||
* range_tree_clear/set() clears or sets a range of bits in this bitmap. The
|
||||
* adjacent ranges are merged or split at the same time.
|
||||
*
|
||||
* The split/merge logic is based/borrowed from XFS's xbitmap32 added
|
||||
* in commit 6772fcc8890a ("xfs: convert xbitmap to interval tree").
|
||||
*
|
||||
* The implementation relies on external lock to protect rbtree-s.
|
||||
* The alloc/free of range_node-s is done via bpf_mem_alloc.
|
||||
*
|
||||
* bpf arena is using range_tree to represent unallocated slots.
|
||||
* At init time:
|
||||
* range_tree_set(rt, 0, max);
|
||||
* Then:
|
||||
* start = range_tree_find(rt, len);
|
||||
* if (start >= 0)
|
||||
* range_tree_clear(rt, start, len);
|
||||
* to find free range and mark slots as allocated and later:
|
||||
* range_tree_set(rt, start, len);
|
||||
* to mark as unallocated after use.
|
||||
*/
|
||||
struct range_node {
|
||||
struct rb_node rn_rbnode;
|
||||
struct rb_node rb_range_size;
|
||||
u32 rn_start;
|
||||
u32 rn_last; /* inclusive */
|
||||
u32 __rn_subtree_last;
|
||||
};
|
||||
|
||||
static struct range_node *rb_to_range_node(struct rb_node *rb)
|
||||
{
|
||||
return rb_entry(rb, struct range_node, rb_range_size);
|
||||
}
|
||||
|
||||
static u32 rn_size(struct range_node *rn)
|
||||
{
|
||||
return rn->rn_last - rn->rn_start + 1;
|
||||
}
|
||||
|
||||
/* Find range that fits best to requested size */
|
||||
static inline struct range_node *__find_range(struct range_tree *rt, u32 len)
|
||||
{
|
||||
struct rb_node *rb = rt->range_size_root.rb_root.rb_node;
|
||||
struct range_node *best = NULL;
|
||||
|
||||
while (rb) {
|
||||
struct range_node *rn = rb_to_range_node(rb);
|
||||
|
||||
if (len <= rn_size(rn)) {
|
||||
best = rn;
|
||||
rb = rb->rb_right;
|
||||
} else {
|
||||
rb = rb->rb_left;
|
||||
}
|
||||
}
|
||||
|
||||
return best;
|
||||
}
|
||||
|
||||
s64 range_tree_find(struct range_tree *rt, u32 len)
|
||||
{
|
||||
struct range_node *rn;
|
||||
|
||||
rn = __find_range(rt, len);
|
||||
if (!rn)
|
||||
return -ENOENT;
|
||||
return rn->rn_start;
|
||||
}
|
||||
|
||||
/* Insert the range into rbtree sorted by the range size */
|
||||
static inline void __range_size_insert(struct range_node *rn,
|
||||
struct rb_root_cached *root)
|
||||
{
|
||||
struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
|
||||
u64 size = rn_size(rn);
|
||||
bool leftmost = true;
|
||||
|
||||
while (*link) {
|
||||
rb = *link;
|
||||
if (size > rn_size(rb_to_range_node(rb))) {
|
||||
link = &rb->rb_left;
|
||||
} else {
|
||||
link = &rb->rb_right;
|
||||
leftmost = false;
|
||||
}
|
||||
}
|
||||
|
||||
rb_link_node(&rn->rb_range_size, rb, link);
|
||||
rb_insert_color_cached(&rn->rb_range_size, root, leftmost);
|
||||
}
|
||||
|
||||
#define START(node) ((node)->rn_start)
|
||||
#define LAST(node) ((node)->rn_last)
|
||||
|
||||
INTERVAL_TREE_DEFINE(struct range_node, rn_rbnode, u32,
|
||||
__rn_subtree_last, START, LAST,
|
||||
static inline __maybe_unused,
|
||||
__range_it)
|
||||
|
||||
static inline __maybe_unused void
|
||||
range_it_insert(struct range_node *rn, struct range_tree *rt)
|
||||
{
|
||||
__range_size_insert(rn, &rt->range_size_root);
|
||||
__range_it_insert(rn, &rt->it_root);
|
||||
}
|
||||
|
||||
static inline __maybe_unused void
|
||||
range_it_remove(struct range_node *rn, struct range_tree *rt)
|
||||
{
|
||||
rb_erase_cached(&rn->rb_range_size, &rt->range_size_root);
|
||||
RB_CLEAR_NODE(&rn->rb_range_size);
|
||||
__range_it_remove(rn, &rt->it_root);
|
||||
}
|
||||
|
||||
static inline __maybe_unused struct range_node *
|
||||
range_it_iter_first(struct range_tree *rt, u32 start, u32 last)
|
||||
{
|
||||
return __range_it_iter_first(&rt->it_root, start, last);
|
||||
}
|
||||
|
||||
/* Clear the range in this range tree */
|
||||
int range_tree_clear(struct range_tree *rt, u32 start, u32 len)
|
||||
{
|
||||
u32 last = start + len - 1;
|
||||
struct range_node *new_rn;
|
||||
struct range_node *rn;
|
||||
|
||||
while ((rn = range_it_iter_first(rt, start, last))) {
|
||||
if (rn->rn_start < start && rn->rn_last > last) {
|
||||
u32 old_last = rn->rn_last;
|
||||
|
||||
/* Overlaps with the entire clearing range */
|
||||
range_it_remove(rn, rt);
|
||||
rn->rn_last = start - 1;
|
||||
range_it_insert(rn, rt);
|
||||
|
||||
/* Add a range */
|
||||
new_rn = bpf_mem_alloc(&bpf_global_ma, sizeof(struct range_node));
|
||||
if (!new_rn)
|
||||
return -ENOMEM;
|
||||
new_rn->rn_start = last + 1;
|
||||
new_rn->rn_last = old_last;
|
||||
range_it_insert(new_rn, rt);
|
||||
} else if (rn->rn_start < start) {
|
||||
/* Overlaps with the left side of the clearing range */
|
||||
range_it_remove(rn, rt);
|
||||
rn->rn_last = start - 1;
|
||||
range_it_insert(rn, rt);
|
||||
} else if (rn->rn_last > last) {
|
||||
/* Overlaps with the right side of the clearing range */
|
||||
range_it_remove(rn, rt);
|
||||
rn->rn_start = last + 1;
|
||||
range_it_insert(rn, rt);
|
||||
break;
|
||||
} else {
|
||||
/* in the middle of the clearing range */
|
||||
range_it_remove(rn, rt);
|
||||
bpf_mem_free(&bpf_global_ma, rn);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Is the whole range set ? */
|
||||
int is_range_tree_set(struct range_tree *rt, u32 start, u32 len)
|
||||
{
|
||||
u32 last = start + len - 1;
|
||||
struct range_node *left;
|
||||
|
||||
/* Is this whole range set ? */
|
||||
left = range_it_iter_first(rt, start, last);
|
||||
if (left && left->rn_start <= start && left->rn_last >= last)
|
||||
return 0;
|
||||
return -ESRCH;
|
||||
}
|
||||
|
||||
/* Set the range in this range tree */
|
||||
int range_tree_set(struct range_tree *rt, u32 start, u32 len)
|
||||
{
|
||||
u32 last = start + len - 1;
|
||||
struct range_node *right;
|
||||
struct range_node *left;
|
||||
int err;
|
||||
|
||||
/* Is this whole range already set ? */
|
||||
left = range_it_iter_first(rt, start, last);
|
||||
if (left && left->rn_start <= start && left->rn_last >= last)
|
||||
return 0;
|
||||
|
||||
/* Clear out everything in the range we want to set. */
|
||||
err = range_tree_clear(rt, start, len);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
/* Do we have a left-adjacent range ? */
|
||||
left = range_it_iter_first(rt, start - 1, start - 1);
|
||||
if (left && left->rn_last + 1 != start)
|
||||
return -EFAULT;
|
||||
|
||||
/* Do we have a right-adjacent range ? */
|
||||
right = range_it_iter_first(rt, last + 1, last + 1);
|
||||
if (right && right->rn_start != last + 1)
|
||||
return -EFAULT;
|
||||
|
||||
if (left && right) {
|
||||
/* Combine left and right adjacent ranges */
|
||||
range_it_remove(left, rt);
|
||||
range_it_remove(right, rt);
|
||||
left->rn_last = right->rn_last;
|
||||
range_it_insert(left, rt);
|
||||
bpf_mem_free(&bpf_global_ma, right);
|
||||
} else if (left) {
|
||||
/* Combine with the left range */
|
||||
range_it_remove(left, rt);
|
||||
left->rn_last = last;
|
||||
range_it_insert(left, rt);
|
||||
} else if (right) {
|
||||
/* Combine with the right range */
|
||||
range_it_remove(right, rt);
|
||||
right->rn_start = start;
|
||||
range_it_insert(right, rt);
|
||||
} else {
|
||||
left = bpf_mem_alloc(&bpf_global_ma, sizeof(struct range_node));
|
||||
if (!left)
|
||||
return -ENOMEM;
|
||||
left->rn_start = start;
|
||||
left->rn_last = last;
|
||||
range_it_insert(left, rt);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void range_tree_destroy(struct range_tree *rt)
|
||||
{
|
||||
struct range_node *rn;
|
||||
|
||||
while ((rn = range_it_iter_first(rt, 0, -1U))) {
|
||||
range_it_remove(rn, rt);
|
||||
bpf_mem_free(&bpf_global_ma, rn);
|
||||
}
|
||||
}
|
||||
|
||||
void range_tree_init(struct range_tree *rt)
|
||||
{
|
||||
rt->it_root = RB_ROOT_CACHED;
|
||||
rt->range_size_root = RB_ROOT_CACHED;
|
||||
}
|
21
kernel/bpf/range_tree.h
Normal file
21
kernel/bpf/range_tree.h
Normal file
@ -0,0 +1,21 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */
|
||||
#ifndef _RANGE_TREE_H
|
||||
#define _RANGE_TREE_H 1
|
||||
|
||||
struct range_tree {
|
||||
/* root of interval tree */
|
||||
struct rb_root_cached it_root;
|
||||
/* root of rbtree of interval sizes */
|
||||
struct rb_root_cached range_size_root;
|
||||
};
|
||||
|
||||
void range_tree_init(struct range_tree *rt);
|
||||
void range_tree_destroy(struct range_tree *rt);
|
||||
|
||||
int range_tree_clear(struct range_tree *rt, u32 start, u32 len);
|
||||
int range_tree_set(struct range_tree *rt, u32 start, u32 len);
|
||||
int is_range_tree_set(struct range_tree *rt, u32 start, u32 len);
|
||||
s64 range_tree_find(struct range_tree *rt, u32 len);
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user