mirror of
https://github.com/torvalds/linux.git
synced 2024-11-24 13:11:40 +00:00
dm: add verity target
This device-mapper target creates a read-only device that transparently validates the data on one underlying device against a pre-generated tree of cryptographic checksums stored on a second device. Two checksum device formats are supported: version 0 which is already shipping in Chromium OS and version 1 which incorporates some improvements. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Mandeep Singh Baines <msb@chromium.org> Signed-off-by: Will Drewry <wad@chromium.org> Signed-off-by: Elly Jones <ellyjones@chromium.org> Cc: Milan Broz <mbroz@redhat.com> Cc: Olof Johansson <olofj@chromium.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This commit is contained in:
parent
a66cc28f53
commit
a4ffc15219
194
Documentation/device-mapper/verity.txt
Normal file
194
Documentation/device-mapper/verity.txt
Normal file
@ -0,0 +1,194 @@
|
||||
dm-verity
|
||||
==========
|
||||
|
||||
Device-Mapper's "verity" target provides transparent integrity checking of
|
||||
block devices using a cryptographic digest provided by the kernel crypto API.
|
||||
This target is read-only.
|
||||
|
||||
Construction Parameters
|
||||
=======================
|
||||
<version> <dev> <hash_dev> <hash_start>
|
||||
<data_block_size> <hash_block_size>
|
||||
<num_data_blocks> <hash_start_block>
|
||||
<algorithm> <digest> <salt>
|
||||
|
||||
<version>
|
||||
This is the version number of the on-disk format.
|
||||
|
||||
0 is the original format used in the Chromium OS.
|
||||
The salt is appended when hashing, digests are stored continuously and
|
||||
the rest of the block is padded with zeros.
|
||||
|
||||
1 is the current format that should be used for new devices.
|
||||
The salt is prepended when hashing and each digest is
|
||||
padded with zeros to the power of two.
|
||||
|
||||
<dev>
|
||||
This is the device containing the data the integrity of which needs to be
|
||||
checked. It may be specified as a path, like /dev/sdaX, or a device number,
|
||||
<major>:<minor>.
|
||||
|
||||
<hash_dev>
|
||||
This is the device that that supplies the hash tree data. It may be
|
||||
specified similarly to the device path and may be the same device. If the
|
||||
same device is used, the hash_start should be outside of the dm-verity
|
||||
configured device size.
|
||||
|
||||
<data_block_size>
|
||||
The block size on a data device. Each block corresponds to one digest on
|
||||
the hash device.
|
||||
|
||||
<hash_block_size>
|
||||
The size of a hash block.
|
||||
|
||||
<num_data_blocks>
|
||||
The number of data blocks on the data device. Additional blocks are
|
||||
inaccessible. You can place hashes to the same partition as data, in this
|
||||
case hashes are placed after <num_data_blocks>.
|
||||
|
||||
<hash_start_block>
|
||||
This is the offset, in <hash_block_size>-blocks, from the start of hash_dev
|
||||
to the root block of the hash tree.
|
||||
|
||||
<algorithm>
|
||||
The cryptographic hash algorithm used for this device. This should
|
||||
be the name of the algorithm, like "sha1".
|
||||
|
||||
<digest>
|
||||
The hexadecimal encoding of the cryptographic hash of the root hash block
|
||||
and the salt. This hash should be trusted as there is no other authenticity
|
||||
beyond this point.
|
||||
|
||||
<salt>
|
||||
The hexadecimal encoding of the salt value.
|
||||
|
||||
Theory of operation
|
||||
===================
|
||||
|
||||
dm-verity is meant to be setup as part of a verified boot path. This
|
||||
may be anything ranging from a boot using tboot or trustedgrub to just
|
||||
booting from a known-good device (like a USB drive or CD).
|
||||
|
||||
When a dm-verity device is configured, it is expected that the caller
|
||||
has been authenticated in some way (cryptographic signatures, etc).
|
||||
After instantiation, all hashes will be verified on-demand during
|
||||
disk access. If they cannot be verified up to the root node of the
|
||||
tree, the root hash, then the I/O will fail. This should identify
|
||||
tampering with any data on the device and the hash data.
|
||||
|
||||
Cryptographic hashes are used to assert the integrity of the device on a
|
||||
per-block basis. This allows for a lightweight hash computation on first read
|
||||
into the page cache. Block hashes are stored linearly-aligned to the nearest
|
||||
block the size of a page.
|
||||
|
||||
Hash Tree
|
||||
---------
|
||||
|
||||
Each node in the tree is a cryptographic hash. If it is a leaf node, the hash
|
||||
is of some block data on disk. If it is an intermediary node, then the hash is
|
||||
of a number of child nodes.
|
||||
|
||||
Each entry in the tree is a collection of neighboring nodes that fit in one
|
||||
block. The number is determined based on block_size and the size of the
|
||||
selected cryptographic digest algorithm. The hashes are linearly-ordered in
|
||||
this entry and any unaligned trailing space is ignored but included when
|
||||
calculating the parent node.
|
||||
|
||||
The tree looks something like:
|
||||
|
||||
alg = sha256, num_blocks = 32768, block_size = 4096
|
||||
|
||||
[ root ]
|
||||
/ . . . \
|
||||
[entry_0] [entry_1]
|
||||
/ . . . \ . . . \
|
||||
[entry_0_0] . . . [entry_0_127] . . . . [entry_1_127]
|
||||
/ ... \ / . . . \ / \
|
||||
blk_0 ... blk_127 blk_16256 blk_16383 blk_32640 . . . blk_32767
|
||||
|
||||
|
||||
On-disk format
|
||||
==============
|
||||
|
||||
Below is the recommended on-disk format. The verity kernel code does not
|
||||
read the on-disk header. It only reads the hash blocks which directly
|
||||
follow the header. It is expected that a user-space tool will verify the
|
||||
integrity of the verity_header and then call dmsetup with the correct
|
||||
parameters. Alternatively, the header can be omitted and the dmsetup
|
||||
parameters can be passed via the kernel command-line in a rooted chain
|
||||
of trust where the command-line is verified.
|
||||
|
||||
The on-disk format is especially useful in cases where the hash blocks
|
||||
are on a separate partition. The magic number allows easy identification
|
||||
of the partition contents. Alternatively, the hash blocks can be stored
|
||||
in the same partition as the data to be verified. In such a configuration
|
||||
the filesystem on the partition would be sized a little smaller than
|
||||
the full-partition, leaving room for the hash blocks.
|
||||
|
||||
struct superblock {
|
||||
uint8_t signature[8]
|
||||
"verity\0\0";
|
||||
|
||||
uint8_t version;
|
||||
1 - current format
|
||||
|
||||
uint8_t data_block_bits;
|
||||
log2(data block size)
|
||||
|
||||
uint8_t hash_block_bits;
|
||||
log2(hash block size)
|
||||
|
||||
uint8_t pad1[1];
|
||||
zero padding
|
||||
|
||||
uint16_t salt_size;
|
||||
big-endian salt size
|
||||
|
||||
uint8_t pad2[2];
|
||||
zero padding
|
||||
|
||||
uint32_t data_blocks_hi;
|
||||
big-endian high 32 bits of the 64-bit number of data blocks
|
||||
|
||||
uint32_t data_blocks_lo;
|
||||
big-endian low 32 bits of the 64-bit number of data blocks
|
||||
|
||||
uint8_t algorithm[16];
|
||||
cryptographic algorithm
|
||||
|
||||
uint8_t salt[384];
|
||||
salt (the salt size is specified above)
|
||||
|
||||
uint8_t pad3[88];
|
||||
zero padding to 512-byte boundary
|
||||
}
|
||||
|
||||
Directly following the header (and with sector number padded to the next hash
|
||||
block boundary) are the hash blocks which are stored a depth at a time
|
||||
(starting from the root), sorted in order of increasing index.
|
||||
|
||||
Status
|
||||
======
|
||||
V (for Valid) is returned if every check performed so far was valid.
|
||||
If any check failed, C (for Corruption) is returned.
|
||||
|
||||
Example
|
||||
=======
|
||||
|
||||
Setup a device:
|
||||
dmsetup create vroot --table \
|
||||
"0 2097152 "\
|
||||
"verity 1 /dev/sda1 /dev/sda2 4096 4096 2097152 1 "\
|
||||
"4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076 "\
|
||||
"1234000000000000000000000000000000000000000000000000000000000000"
|
||||
|
||||
A command line tool veritysetup is available to compute or verify
|
||||
the hash tree or activate the kernel driver. This is available from
|
||||
the LVM2 upstream repository and may be supplied as a package called
|
||||
device-mapper-verity-tools:
|
||||
git://sources.redhat.com/git/lvm2
|
||||
http://sourceware.org/git/?p=lvm2.git
|
||||
http://sourceware.org/cgi-bin/cvsweb.cgi/LVM2/verity?cvsroot=lvm2
|
||||
|
||||
veritysetup -a vroot /dev/sda1 /dev/sda2 \
|
||||
4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
|
@ -370,4 +370,24 @@ config DM_FLAKEY
|
||||
---help---
|
||||
A target that intermittently fails I/O for debugging purposes.
|
||||
|
||||
config DM_VERITY
|
||||
tristate "Verity target support (EXPERIMENTAL)"
|
||||
depends on BLK_DEV_DM && EXPERIMENTAL
|
||||
select CRYPTO
|
||||
select CRYPTO_HASH
|
||||
select DM_BUFIO
|
||||
---help---
|
||||
This device-mapper target creates a read-only device that
|
||||
transparently validates the data on one underlying device against
|
||||
a pre-generated tree of cryptographic checksums stored on a second
|
||||
device.
|
||||
|
||||
You'll need to activate the digests you're going to use in the
|
||||
cryptoapi configuration.
|
||||
|
||||
To compile this code as a module, choose M here: the module will
|
||||
be called dm-verity.
|
||||
|
||||
If unsure, say N.
|
||||
|
||||
endif # MD
|
||||
|
@ -42,6 +42,7 @@ obj-$(CONFIG_DM_LOG_USERSPACE) += dm-log-userspace.o
|
||||
obj-$(CONFIG_DM_ZERO) += dm-zero.o
|
||||
obj-$(CONFIG_DM_RAID) += dm-raid.o
|
||||
obj-$(CONFIG_DM_THIN_PROVISIONING) += dm-thin-pool.o
|
||||
obj-$(CONFIG_DM_VERITY) += dm-verity.o
|
||||
|
||||
ifeq ($(CONFIG_DM_UEVENT),y)
|
||||
dm-mod-objs += dm-uevent.o
|
||||
|
913
drivers/md/dm-verity.c
Normal file
913
drivers/md/dm-verity.c
Normal file
@ -0,0 +1,913 @@
|
||||
/*
|
||||
* Copyright (C) 2012 Red Hat, Inc.
|
||||
*
|
||||
* Author: Mikulas Patocka <mpatocka@redhat.com>
|
||||
*
|
||||
* Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
|
||||
*
|
||||
* This file is released under the GPLv2.
|
||||
*
|
||||
* In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
|
||||
* default prefetch value. Data are read in "prefetch_cluster" chunks from the
|
||||
* hash device. Setting this greatly improves performance when data and hash
|
||||
* are on the same disk on different partitions on devices with poor random
|
||||
* access behavior.
|
||||
*/
|
||||
|
||||
#include "dm-bufio.h"
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/device-mapper.h>
|
||||
#include <crypto/hash.h>
|
||||
|
||||
#define DM_MSG_PREFIX "verity"
|
||||
|
||||
#define DM_VERITY_IO_VEC_INLINE 16
|
||||
#define DM_VERITY_MEMPOOL_SIZE 4
|
||||
#define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
|
||||
|
||||
#define DM_VERITY_MAX_LEVELS 63
|
||||
|
||||
static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
|
||||
|
||||
module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
|
||||
|
||||
struct dm_verity {
|
||||
struct dm_dev *data_dev;
|
||||
struct dm_dev *hash_dev;
|
||||
struct dm_target *ti;
|
||||
struct dm_bufio_client *bufio;
|
||||
char *alg_name;
|
||||
struct crypto_shash *tfm;
|
||||
u8 *root_digest; /* digest of the root block */
|
||||
u8 *salt; /* salt: its size is salt_size */
|
||||
unsigned salt_size;
|
||||
sector_t data_start; /* data offset in 512-byte sectors */
|
||||
sector_t hash_start; /* hash start in blocks */
|
||||
sector_t data_blocks; /* the number of data blocks */
|
||||
sector_t hash_blocks; /* the number of hash blocks */
|
||||
unsigned char data_dev_block_bits; /* log2(data blocksize) */
|
||||
unsigned char hash_dev_block_bits; /* log2(hash blocksize) */
|
||||
unsigned char hash_per_block_bits; /* log2(hashes in hash block) */
|
||||
unsigned char levels; /* the number of tree levels */
|
||||
unsigned char version;
|
||||
unsigned digest_size; /* digest size for the current hash algorithm */
|
||||
unsigned shash_descsize;/* the size of temporary space for crypto */
|
||||
int hash_failed; /* set to 1 if hash of any block failed */
|
||||
|
||||
mempool_t *io_mempool; /* mempool of struct dm_verity_io */
|
||||
mempool_t *vec_mempool; /* mempool of bio vector */
|
||||
|
||||
struct workqueue_struct *verify_wq;
|
||||
|
||||
/* starting blocks for each tree level. 0 is the lowest level. */
|
||||
sector_t hash_level_block[DM_VERITY_MAX_LEVELS];
|
||||
};
|
||||
|
||||
struct dm_verity_io {
|
||||
struct dm_verity *v;
|
||||
struct bio *bio;
|
||||
|
||||
/* original values of bio->bi_end_io and bio->bi_private */
|
||||
bio_end_io_t *orig_bi_end_io;
|
||||
void *orig_bi_private;
|
||||
|
||||
sector_t block;
|
||||
unsigned n_blocks;
|
||||
|
||||
/* saved bio vector */
|
||||
struct bio_vec *io_vec;
|
||||
unsigned io_vec_size;
|
||||
|
||||
struct work_struct work;
|
||||
|
||||
/* A space for short vectors; longer vectors are allocated separately. */
|
||||
struct bio_vec io_vec_inline[DM_VERITY_IO_VEC_INLINE];
|
||||
|
||||
/*
|
||||
* Three variably-size fields follow this struct:
|
||||
*
|
||||
* u8 hash_desc[v->shash_descsize];
|
||||
* u8 real_digest[v->digest_size];
|
||||
* u8 want_digest[v->digest_size];
|
||||
*
|
||||
* To access them use: io_hash_desc(), io_real_digest() and io_want_digest().
|
||||
*/
|
||||
};
|
||||
|
||||
static struct shash_desc *io_hash_desc(struct dm_verity *v, struct dm_verity_io *io)
|
||||
{
|
||||
return (struct shash_desc *)(io + 1);
|
||||
}
|
||||
|
||||
static u8 *io_real_digest(struct dm_verity *v, struct dm_verity_io *io)
|
||||
{
|
||||
return (u8 *)(io + 1) + v->shash_descsize;
|
||||
}
|
||||
|
||||
static u8 *io_want_digest(struct dm_verity *v, struct dm_verity_io *io)
|
||||
{
|
||||
return (u8 *)(io + 1) + v->shash_descsize + v->digest_size;
|
||||
}
|
||||
|
||||
/*
|
||||
* Auxiliary structure appended to each dm-bufio buffer. If the value
|
||||
* hash_verified is nonzero, hash of the block has been verified.
|
||||
*
|
||||
* The variable hash_verified is set to 0 when allocating the buffer, then
|
||||
* it can be changed to 1 and it is never reset to 0 again.
|
||||
*
|
||||
* There is no lock around this value, a race condition can at worst cause
|
||||
* that multiple processes verify the hash of the same buffer simultaneously
|
||||
* and write 1 to hash_verified simultaneously.
|
||||
* This condition is harmless, so we don't need locking.
|
||||
*/
|
||||
struct buffer_aux {
|
||||
int hash_verified;
|
||||
};
|
||||
|
||||
/*
|
||||
* Initialize struct buffer_aux for a freshly created buffer.
|
||||
*/
|
||||
static void dm_bufio_alloc_callback(struct dm_buffer *buf)
|
||||
{
|
||||
struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
|
||||
|
||||
aux->hash_verified = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Translate input sector number to the sector number on the target device.
|
||||
*/
|
||||
static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
|
||||
{
|
||||
return v->data_start + dm_target_offset(v->ti, bi_sector);
|
||||
}
|
||||
|
||||
/*
|
||||
* Return hash position of a specified block at a specified tree level
|
||||
* (0 is the lowest level).
|
||||
* The lowest "hash_per_block_bits"-bits of the result denote hash position
|
||||
* inside a hash block. The remaining bits denote location of the hash block.
|
||||
*/
|
||||
static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
|
||||
int level)
|
||||
{
|
||||
return block >> (level * v->hash_per_block_bits);
|
||||
}
|
||||
|
||||
static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
|
||||
sector_t *hash_block, unsigned *offset)
|
||||
{
|
||||
sector_t position = verity_position_at_level(v, block, level);
|
||||
unsigned idx;
|
||||
|
||||
*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
|
||||
|
||||
if (!offset)
|
||||
return;
|
||||
|
||||
idx = position & ((1 << v->hash_per_block_bits) - 1);
|
||||
if (!v->version)
|
||||
*offset = idx * v->digest_size;
|
||||
else
|
||||
*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
|
||||
}
|
||||
|
||||
/*
|
||||
* Verify hash of a metadata block pertaining to the specified data block
|
||||
* ("block" argument) at a specified level ("level" argument).
|
||||
*
|
||||
* On successful return, io_want_digest(v, io) contains the hash value for
|
||||
* a lower tree level or for the data block (if we're at the lowest leve).
|
||||
*
|
||||
* If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
|
||||
* If "skip_unverified" is false, unverified buffer is hashed and verified
|
||||
* against current value of io_want_digest(v, io).
|
||||
*/
|
||||
static int verity_verify_level(struct dm_verity_io *io, sector_t block,
|
||||
int level, bool skip_unverified)
|
||||
{
|
||||
struct dm_verity *v = io->v;
|
||||
struct dm_buffer *buf;
|
||||
struct buffer_aux *aux;
|
||||
u8 *data;
|
||||
int r;
|
||||
sector_t hash_block;
|
||||
unsigned offset;
|
||||
|
||||
verity_hash_at_level(v, block, level, &hash_block, &offset);
|
||||
|
||||
data = dm_bufio_read(v->bufio, hash_block, &buf);
|
||||
if (unlikely(IS_ERR(data)))
|
||||
return PTR_ERR(data);
|
||||
|
||||
aux = dm_bufio_get_aux_data(buf);
|
||||
|
||||
if (!aux->hash_verified) {
|
||||
struct shash_desc *desc;
|
||||
u8 *result;
|
||||
|
||||
if (skip_unverified) {
|
||||
r = 1;
|
||||
goto release_ret_r;
|
||||
}
|
||||
|
||||
desc = io_hash_desc(v, io);
|
||||
desc->tfm = v->tfm;
|
||||
desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
|
||||
r = crypto_shash_init(desc);
|
||||
if (r < 0) {
|
||||
DMERR("crypto_shash_init failed: %d", r);
|
||||
goto release_ret_r;
|
||||
}
|
||||
|
||||
if (likely(v->version >= 1)) {
|
||||
r = crypto_shash_update(desc, v->salt, v->salt_size);
|
||||
if (r < 0) {
|
||||
DMERR("crypto_shash_update failed: %d", r);
|
||||
goto release_ret_r;
|
||||
}
|
||||
}
|
||||
|
||||
r = crypto_shash_update(desc, data, 1 << v->hash_dev_block_bits);
|
||||
if (r < 0) {
|
||||
DMERR("crypto_shash_update failed: %d", r);
|
||||
goto release_ret_r;
|
||||
}
|
||||
|
||||
if (!v->version) {
|
||||
r = crypto_shash_update(desc, v->salt, v->salt_size);
|
||||
if (r < 0) {
|
||||
DMERR("crypto_shash_update failed: %d", r);
|
||||
goto release_ret_r;
|
||||
}
|
||||
}
|
||||
|
||||
result = io_real_digest(v, io);
|
||||
r = crypto_shash_final(desc, result);
|
||||
if (r < 0) {
|
||||
DMERR("crypto_shash_final failed: %d", r);
|
||||
goto release_ret_r;
|
||||
}
|
||||
if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
|
||||
DMERR_LIMIT("metadata block %llu is corrupted",
|
||||
(unsigned long long)hash_block);
|
||||
v->hash_failed = 1;
|
||||
r = -EIO;
|
||||
goto release_ret_r;
|
||||
} else
|
||||
aux->hash_verified = 1;
|
||||
}
|
||||
|
||||
data += offset;
|
||||
|
||||
memcpy(io_want_digest(v, io), data, v->digest_size);
|
||||
|
||||
dm_bufio_release(buf);
|
||||
return 0;
|
||||
|
||||
release_ret_r:
|
||||
dm_bufio_release(buf);
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* Verify one "dm_verity_io" structure.
|
||||
*/
|
||||
static int verity_verify_io(struct dm_verity_io *io)
|
||||
{
|
||||
struct dm_verity *v = io->v;
|
||||
unsigned b;
|
||||
int i;
|
||||
unsigned vector = 0, offset = 0;
|
||||
|
||||
for (b = 0; b < io->n_blocks; b++) {
|
||||
struct shash_desc *desc;
|
||||
u8 *result;
|
||||
int r;
|
||||
unsigned todo;
|
||||
|
||||
if (likely(v->levels)) {
|
||||
/*
|
||||
* First, we try to get the requested hash for
|
||||
* the current block. If the hash block itself is
|
||||
* verified, zero is returned. If it isn't, this
|
||||
* function returns 0 and we fall back to whole
|
||||
* chain verification.
|
||||
*/
|
||||
int r = verity_verify_level(io, io->block + b, 0, true);
|
||||
if (likely(!r))
|
||||
goto test_block_hash;
|
||||
if (r < 0)
|
||||
return r;
|
||||
}
|
||||
|
||||
memcpy(io_want_digest(v, io), v->root_digest, v->digest_size);
|
||||
|
||||
for (i = v->levels - 1; i >= 0; i--) {
|
||||
int r = verity_verify_level(io, io->block + b, i, false);
|
||||
if (unlikely(r))
|
||||
return r;
|
||||
}
|
||||
|
||||
test_block_hash:
|
||||
desc = io_hash_desc(v, io);
|
||||
desc->tfm = v->tfm;
|
||||
desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
|
||||
r = crypto_shash_init(desc);
|
||||
if (r < 0) {
|
||||
DMERR("crypto_shash_init failed: %d", r);
|
||||
return r;
|
||||
}
|
||||
|
||||
if (likely(v->version >= 1)) {
|
||||
r = crypto_shash_update(desc, v->salt, v->salt_size);
|
||||
if (r < 0) {
|
||||
DMERR("crypto_shash_update failed: %d", r);
|
||||
return r;
|
||||
}
|
||||
}
|
||||
|
||||
todo = 1 << v->data_dev_block_bits;
|
||||
do {
|
||||
struct bio_vec *bv;
|
||||
u8 *page;
|
||||
unsigned len;
|
||||
|
||||
BUG_ON(vector >= io->io_vec_size);
|
||||
bv = &io->io_vec[vector];
|
||||
page = kmap_atomic(bv->bv_page);
|
||||
len = bv->bv_len - offset;
|
||||
if (likely(len >= todo))
|
||||
len = todo;
|
||||
r = crypto_shash_update(desc,
|
||||
page + bv->bv_offset + offset, len);
|
||||
kunmap_atomic(page);
|
||||
if (r < 0) {
|
||||
DMERR("crypto_shash_update failed: %d", r);
|
||||
return r;
|
||||
}
|
||||
offset += len;
|
||||
if (likely(offset == bv->bv_len)) {
|
||||
offset = 0;
|
||||
vector++;
|
||||
}
|
||||
todo -= len;
|
||||
} while (todo);
|
||||
|
||||
if (!v->version) {
|
||||
r = crypto_shash_update(desc, v->salt, v->salt_size);
|
||||
if (r < 0) {
|
||||
DMERR("crypto_shash_update failed: %d", r);
|
||||
return r;
|
||||
}
|
||||
}
|
||||
|
||||
result = io_real_digest(v, io);
|
||||
r = crypto_shash_final(desc, result);
|
||||
if (r < 0) {
|
||||
DMERR("crypto_shash_final failed: %d", r);
|
||||
return r;
|
||||
}
|
||||
if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
|
||||
DMERR_LIMIT("data block %llu is corrupted",
|
||||
(unsigned long long)(io->block + b));
|
||||
v->hash_failed = 1;
|
||||
return -EIO;
|
||||
}
|
||||
}
|
||||
BUG_ON(vector != io->io_vec_size);
|
||||
BUG_ON(offset);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* End one "io" structure with a given error.
|
||||
*/
|
||||
static void verity_finish_io(struct dm_verity_io *io, int error)
|
||||
{
|
||||
struct bio *bio = io->bio;
|
||||
struct dm_verity *v = io->v;
|
||||
|
||||
bio->bi_end_io = io->orig_bi_end_io;
|
||||
bio->bi_private = io->orig_bi_private;
|
||||
|
||||
if (io->io_vec != io->io_vec_inline)
|
||||
mempool_free(io->io_vec, v->vec_mempool);
|
||||
|
||||
mempool_free(io, v->io_mempool);
|
||||
|
||||
bio_endio(bio, error);
|
||||
}
|
||||
|
||||
static void verity_work(struct work_struct *w)
|
||||
{
|
||||
struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
|
||||
|
||||
verity_finish_io(io, verity_verify_io(io));
|
||||
}
|
||||
|
||||
static void verity_end_io(struct bio *bio, int error)
|
||||
{
|
||||
struct dm_verity_io *io = bio->bi_private;
|
||||
|
||||
if (error) {
|
||||
verity_finish_io(io, error);
|
||||
return;
|
||||
}
|
||||
|
||||
INIT_WORK(&io->work, verity_work);
|
||||
queue_work(io->v->verify_wq, &io->work);
|
||||
}
|
||||
|
||||
/*
|
||||
* Prefetch buffers for the specified io.
|
||||
* The root buffer is not prefetched, it is assumed that it will be cached
|
||||
* all the time.
|
||||
*/
|
||||
static void verity_prefetch_io(struct dm_verity *v, struct dm_verity_io *io)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = v->levels - 2; i >= 0; i--) {
|
||||
sector_t hash_block_start;
|
||||
sector_t hash_block_end;
|
||||
verity_hash_at_level(v, io->block, i, &hash_block_start, NULL);
|
||||
verity_hash_at_level(v, io->block + io->n_blocks - 1, i, &hash_block_end, NULL);
|
||||
if (!i) {
|
||||
unsigned cluster = *(volatile unsigned *)&dm_verity_prefetch_cluster;
|
||||
|
||||
cluster >>= v->data_dev_block_bits;
|
||||
if (unlikely(!cluster))
|
||||
goto no_prefetch_cluster;
|
||||
|
||||
if (unlikely(cluster & (cluster - 1)))
|
||||
cluster = 1 << (fls(cluster) - 1);
|
||||
|
||||
hash_block_start &= ~(sector_t)(cluster - 1);
|
||||
hash_block_end |= cluster - 1;
|
||||
if (unlikely(hash_block_end >= v->hash_blocks))
|
||||
hash_block_end = v->hash_blocks - 1;
|
||||
}
|
||||
no_prefetch_cluster:
|
||||
dm_bufio_prefetch(v->bufio, hash_block_start,
|
||||
hash_block_end - hash_block_start + 1);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Bio map function. It allocates dm_verity_io structure and bio vector and
|
||||
* fills them. Then it issues prefetches and the I/O.
|
||||
*/
|
||||
static int verity_map(struct dm_target *ti, struct bio *bio,
|
||||
union map_info *map_context)
|
||||
{
|
||||
struct dm_verity *v = ti->private;
|
||||
struct dm_verity_io *io;
|
||||
|
||||
bio->bi_bdev = v->data_dev->bdev;
|
||||
bio->bi_sector = verity_map_sector(v, bio->bi_sector);
|
||||
|
||||
if (((unsigned)bio->bi_sector | bio_sectors(bio)) &
|
||||
((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
|
||||
DMERR_LIMIT("unaligned io");
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
if ((bio->bi_sector + bio_sectors(bio)) >>
|
||||
(v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
|
||||
DMERR_LIMIT("io out of range");
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
if (bio_data_dir(bio) == WRITE)
|
||||
return -EIO;
|
||||
|
||||
io = mempool_alloc(v->io_mempool, GFP_NOIO);
|
||||
io->v = v;
|
||||
io->bio = bio;
|
||||
io->orig_bi_end_io = bio->bi_end_io;
|
||||
io->orig_bi_private = bio->bi_private;
|
||||
io->block = bio->bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
|
||||
io->n_blocks = bio->bi_size >> v->data_dev_block_bits;
|
||||
|
||||
bio->bi_end_io = verity_end_io;
|
||||
bio->bi_private = io;
|
||||
io->io_vec_size = bio->bi_vcnt - bio->bi_idx;
|
||||
if (io->io_vec_size < DM_VERITY_IO_VEC_INLINE)
|
||||
io->io_vec = io->io_vec_inline;
|
||||
else
|
||||
io->io_vec = mempool_alloc(v->vec_mempool, GFP_NOIO);
|
||||
memcpy(io->io_vec, bio_iovec(bio),
|
||||
io->io_vec_size * sizeof(struct bio_vec));
|
||||
|
||||
verity_prefetch_io(v, io);
|
||||
|
||||
generic_make_request(bio);
|
||||
|
||||
return DM_MAPIO_SUBMITTED;
|
||||
}
|
||||
|
||||
/*
|
||||
* Status: V (valid) or C (corruption found)
|
||||
*/
|
||||
static int verity_status(struct dm_target *ti, status_type_t type,
|
||||
char *result, unsigned maxlen)
|
||||
{
|
||||
struct dm_verity *v = ti->private;
|
||||
unsigned sz = 0;
|
||||
unsigned x;
|
||||
|
||||
switch (type) {
|
||||
case STATUSTYPE_INFO:
|
||||
DMEMIT("%c", v->hash_failed ? 'C' : 'V');
|
||||
break;
|
||||
case STATUSTYPE_TABLE:
|
||||
DMEMIT("%u %s %s %u %u %llu %llu %s ",
|
||||
v->version,
|
||||
v->data_dev->name,
|
||||
v->hash_dev->name,
|
||||
1 << v->data_dev_block_bits,
|
||||
1 << v->hash_dev_block_bits,
|
||||
(unsigned long long)v->data_blocks,
|
||||
(unsigned long long)v->hash_start,
|
||||
v->alg_name
|
||||
);
|
||||
for (x = 0; x < v->digest_size; x++)
|
||||
DMEMIT("%02x", v->root_digest[x]);
|
||||
DMEMIT(" ");
|
||||
if (!v->salt_size)
|
||||
DMEMIT("-");
|
||||
else
|
||||
for (x = 0; x < v->salt_size; x++)
|
||||
DMEMIT("%02x", v->salt[x]);
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int verity_ioctl(struct dm_target *ti, unsigned cmd,
|
||||
unsigned long arg)
|
||||
{
|
||||
struct dm_verity *v = ti->private;
|
||||
int r = 0;
|
||||
|
||||
if (v->data_start ||
|
||||
ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
|
||||
r = scsi_verify_blk_ioctl(NULL, cmd);
|
||||
|
||||
return r ? : __blkdev_driver_ioctl(v->data_dev->bdev, v->data_dev->mode,
|
||||
cmd, arg);
|
||||
}
|
||||
|
||||
static int verity_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
|
||||
struct bio_vec *biovec, int max_size)
|
||||
{
|
||||
struct dm_verity *v = ti->private;
|
||||
struct request_queue *q = bdev_get_queue(v->data_dev->bdev);
|
||||
|
||||
if (!q->merge_bvec_fn)
|
||||
return max_size;
|
||||
|
||||
bvm->bi_bdev = v->data_dev->bdev;
|
||||
bvm->bi_sector = verity_map_sector(v, bvm->bi_sector);
|
||||
|
||||
return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
|
||||
}
|
||||
|
||||
static int verity_iterate_devices(struct dm_target *ti,
|
||||
iterate_devices_callout_fn fn, void *data)
|
||||
{
|
||||
struct dm_verity *v = ti->private;
|
||||
|
||||
return fn(ti, v->data_dev, v->data_start, ti->len, data);
|
||||
}
|
||||
|
||||
static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
|
||||
{
|
||||
struct dm_verity *v = ti->private;
|
||||
|
||||
if (limits->logical_block_size < 1 << v->data_dev_block_bits)
|
||||
limits->logical_block_size = 1 << v->data_dev_block_bits;
|
||||
|
||||
if (limits->physical_block_size < 1 << v->data_dev_block_bits)
|
||||
limits->physical_block_size = 1 << v->data_dev_block_bits;
|
||||
|
||||
blk_limits_io_min(limits, limits->logical_block_size);
|
||||
}
|
||||
|
||||
static void verity_dtr(struct dm_target *ti)
|
||||
{
|
||||
struct dm_verity *v = ti->private;
|
||||
|
||||
if (v->verify_wq)
|
||||
destroy_workqueue(v->verify_wq);
|
||||
|
||||
if (v->vec_mempool)
|
||||
mempool_destroy(v->vec_mempool);
|
||||
|
||||
if (v->io_mempool)
|
||||
mempool_destroy(v->io_mempool);
|
||||
|
||||
if (v->bufio)
|
||||
dm_bufio_client_destroy(v->bufio);
|
||||
|
||||
kfree(v->salt);
|
||||
kfree(v->root_digest);
|
||||
|
||||
if (v->tfm)
|
||||
crypto_free_shash(v->tfm);
|
||||
|
||||
kfree(v->alg_name);
|
||||
|
||||
if (v->hash_dev)
|
||||
dm_put_device(ti, v->hash_dev);
|
||||
|
||||
if (v->data_dev)
|
||||
dm_put_device(ti, v->data_dev);
|
||||
|
||||
kfree(v);
|
||||
}
|
||||
|
||||
/*
|
||||
* Target parameters:
|
||||
* <version> The current format is version 1.
|
||||
* Vsn 0 is compatible with original Chromium OS releases.
|
||||
* <data device>
|
||||
* <hash device>
|
||||
* <data block size>
|
||||
* <hash block size>
|
||||
* <the number of data blocks>
|
||||
* <hash start block>
|
||||
* <algorithm>
|
||||
* <digest>
|
||||
* <salt> Hex string or "-" if no salt.
|
||||
*/
|
||||
static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
|
||||
{
|
||||
struct dm_verity *v;
|
||||
unsigned num;
|
||||
unsigned long long num_ll;
|
||||
int r;
|
||||
int i;
|
||||
sector_t hash_position;
|
||||
char dummy;
|
||||
|
||||
v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
|
||||
if (!v) {
|
||||
ti->error = "Cannot allocate verity structure";
|
||||
return -ENOMEM;
|
||||
}
|
||||
ti->private = v;
|
||||
v->ti = ti;
|
||||
|
||||
if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
|
||||
ti->error = "Device must be readonly";
|
||||
r = -EINVAL;
|
||||
goto bad;
|
||||
}
|
||||
|
||||
if (argc != 10) {
|
||||
ti->error = "Invalid argument count: exactly 10 arguments required";
|
||||
r = -EINVAL;
|
||||
goto bad;
|
||||
}
|
||||
|
||||
if (sscanf(argv[0], "%d%c", &num, &dummy) != 1 ||
|
||||
num < 0 || num > 1) {
|
||||
ti->error = "Invalid version";
|
||||
r = -EINVAL;
|
||||
goto bad;
|
||||
}
|
||||
v->version = num;
|
||||
|
||||
r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
|
||||
if (r) {
|
||||
ti->error = "Data device lookup failed";
|
||||
goto bad;
|
||||
}
|
||||
|
||||
r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
|
||||
if (r) {
|
||||
ti->error = "Data device lookup failed";
|
||||
goto bad;
|
||||
}
|
||||
|
||||
if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
|
||||
!num || (num & (num - 1)) ||
|
||||
num < bdev_logical_block_size(v->data_dev->bdev) ||
|
||||
num > PAGE_SIZE) {
|
||||
ti->error = "Invalid data device block size";
|
||||
r = -EINVAL;
|
||||
goto bad;
|
||||
}
|
||||
v->data_dev_block_bits = ffs(num) - 1;
|
||||
|
||||
if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
|
||||
!num || (num & (num - 1)) ||
|
||||
num < bdev_logical_block_size(v->hash_dev->bdev) ||
|
||||
num > INT_MAX) {
|
||||
ti->error = "Invalid hash device block size";
|
||||
r = -EINVAL;
|
||||
goto bad;
|
||||
}
|
||||
v->hash_dev_block_bits = ffs(num) - 1;
|
||||
|
||||
if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
|
||||
num_ll << (v->data_dev_block_bits - SECTOR_SHIFT) !=
|
||||
(sector_t)num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) {
|
||||
ti->error = "Invalid data blocks";
|
||||
r = -EINVAL;
|
||||
goto bad;
|
||||
}
|
||||
v->data_blocks = num_ll;
|
||||
|
||||
if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
|
||||
ti->error = "Data device is too small";
|
||||
r = -EINVAL;
|
||||
goto bad;
|
||||
}
|
||||
|
||||
if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
|
||||
num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT) !=
|
||||
(sector_t)num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT)) {
|
||||
ti->error = "Invalid hash start";
|
||||
r = -EINVAL;
|
||||
goto bad;
|
||||
}
|
||||
v->hash_start = num_ll;
|
||||
|
||||
v->alg_name = kstrdup(argv[7], GFP_KERNEL);
|
||||
if (!v->alg_name) {
|
||||
ti->error = "Cannot allocate algorithm name";
|
||||
r = -ENOMEM;
|
||||
goto bad;
|
||||
}
|
||||
|
||||
v->tfm = crypto_alloc_shash(v->alg_name, 0, 0);
|
||||
if (IS_ERR(v->tfm)) {
|
||||
ti->error = "Cannot initialize hash function";
|
||||
r = PTR_ERR(v->tfm);
|
||||
v->tfm = NULL;
|
||||
goto bad;
|
||||
}
|
||||
v->digest_size = crypto_shash_digestsize(v->tfm);
|
||||
if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
|
||||
ti->error = "Digest size too big";
|
||||
r = -EINVAL;
|
||||
goto bad;
|
||||
}
|
||||
v->shash_descsize =
|
||||
sizeof(struct shash_desc) + crypto_shash_descsize(v->tfm);
|
||||
|
||||
v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
|
||||
if (!v->root_digest) {
|
||||
ti->error = "Cannot allocate root digest";
|
||||
r = -ENOMEM;
|
||||
goto bad;
|
||||
}
|
||||
if (strlen(argv[8]) != v->digest_size * 2 ||
|
||||
hex2bin(v->root_digest, argv[8], v->digest_size)) {
|
||||
ti->error = "Invalid root digest";
|
||||
r = -EINVAL;
|
||||
goto bad;
|
||||
}
|
||||
|
||||
if (strcmp(argv[9], "-")) {
|
||||
v->salt_size = strlen(argv[9]) / 2;
|
||||
v->salt = kmalloc(v->salt_size, GFP_KERNEL);
|
||||
if (!v->salt) {
|
||||
ti->error = "Cannot allocate salt";
|
||||
r = -ENOMEM;
|
||||
goto bad;
|
||||
}
|
||||
if (strlen(argv[9]) != v->salt_size * 2 ||
|
||||
hex2bin(v->salt, argv[9], v->salt_size)) {
|
||||
ti->error = "Invalid salt";
|
||||
r = -EINVAL;
|
||||
goto bad;
|
||||
}
|
||||
}
|
||||
|
||||
v->hash_per_block_bits =
|
||||
fls((1 << v->hash_dev_block_bits) / v->digest_size) - 1;
|
||||
|
||||
v->levels = 0;
|
||||
if (v->data_blocks)
|
||||
while (v->hash_per_block_bits * v->levels < 64 &&
|
||||
(unsigned long long)(v->data_blocks - 1) >>
|
||||
(v->hash_per_block_bits * v->levels))
|
||||
v->levels++;
|
||||
|
||||
if (v->levels > DM_VERITY_MAX_LEVELS) {
|
||||
ti->error = "Too many tree levels";
|
||||
r = -E2BIG;
|
||||
goto bad;
|
||||
}
|
||||
|
||||
hash_position = v->hash_start;
|
||||
for (i = v->levels - 1; i >= 0; i--) {
|
||||
sector_t s;
|
||||
v->hash_level_block[i] = hash_position;
|
||||
s = verity_position_at_level(v, v->data_blocks, i);
|
||||
s = (s >> v->hash_per_block_bits) +
|
||||
!!(s & ((1 << v->hash_per_block_bits) - 1));
|
||||
if (hash_position + s < hash_position) {
|
||||
ti->error = "Hash device offset overflow";
|
||||
r = -E2BIG;
|
||||
goto bad;
|
||||
}
|
||||
hash_position += s;
|
||||
}
|
||||
v->hash_blocks = hash_position;
|
||||
|
||||
v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
|
||||
1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
|
||||
dm_bufio_alloc_callback, NULL);
|
||||
if (IS_ERR(v->bufio)) {
|
||||
ti->error = "Cannot initialize dm-bufio";
|
||||
r = PTR_ERR(v->bufio);
|
||||
v->bufio = NULL;
|
||||
goto bad;
|
||||
}
|
||||
|
||||
if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
|
||||
ti->error = "Hash device is too small";
|
||||
r = -E2BIG;
|
||||
goto bad;
|
||||
}
|
||||
|
||||
v->io_mempool = mempool_create_kmalloc_pool(DM_VERITY_MEMPOOL_SIZE,
|
||||
sizeof(struct dm_verity_io) + v->shash_descsize + v->digest_size * 2);
|
||||
if (!v->io_mempool) {
|
||||
ti->error = "Cannot allocate io mempool";
|
||||
r = -ENOMEM;
|
||||
goto bad;
|
||||
}
|
||||
|
||||
v->vec_mempool = mempool_create_kmalloc_pool(DM_VERITY_MEMPOOL_SIZE,
|
||||
BIO_MAX_PAGES * sizeof(struct bio_vec));
|
||||
if (!v->vec_mempool) {
|
||||
ti->error = "Cannot allocate vector mempool";
|
||||
r = -ENOMEM;
|
||||
goto bad;
|
||||
}
|
||||
|
||||
/* WQ_UNBOUND greatly improves performance when running on ramdisk */
|
||||
v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
|
||||
if (!v->verify_wq) {
|
||||
ti->error = "Cannot allocate workqueue";
|
||||
r = -ENOMEM;
|
||||
goto bad;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
bad:
|
||||
verity_dtr(ti);
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
static struct target_type verity_target = {
|
||||
.name = "verity",
|
||||
.version = {1, 0, 0},
|
||||
.module = THIS_MODULE,
|
||||
.ctr = verity_ctr,
|
||||
.dtr = verity_dtr,
|
||||
.map = verity_map,
|
||||
.status = verity_status,
|
||||
.ioctl = verity_ioctl,
|
||||
.merge = verity_merge,
|
||||
.iterate_devices = verity_iterate_devices,
|
||||
.io_hints = verity_io_hints,
|
||||
};
|
||||
|
||||
static int __init dm_verity_init(void)
|
||||
{
|
||||
int r;
|
||||
|
||||
r = dm_register_target(&verity_target);
|
||||
if (r < 0)
|
||||
DMERR("register failed %d", r);
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
static void __exit dm_verity_exit(void)
|
||||
{
|
||||
dm_unregister_target(&verity_target);
|
||||
}
|
||||
|
||||
module_init(dm_verity_init);
|
||||
module_exit(dm_verity_exit);
|
||||
|
||||
MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
|
||||
MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
|
||||
MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
|
||||
MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
|
||||
MODULE_LICENSE("GPL");
|
Loading…
Reference in New Issue
Block a user