crypto: cavium - Add Support for Octeon-tx CPT Engine

Enable the Physical Function driver for the Cavium Crypto Engine (CPT)
found in Octeon-tx series of SoC's. CPT is the Cryptographic Accelaration
Unit. CPT includes microcoded GigaCypher symmetric engines (SEs) and
asymmetric engines (AEs).

Signed-off-by: George Cherian <george.cherian@cavium.com>
Reviewed-by: David Daney <david.daney@cavium.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
George Cherian 2017-02-07 14:51:13 +00:00 committed by Herbert Xu
parent 87f3d0887c
commit 9e2c7d9994
7 changed files with 1774 additions and 0 deletions

View File

@ -0,0 +1,16 @@
#
# Cavium crypto device configuration
#
config CRYPTO_DEV_CPT
tristate
config CAVIUM_CPT
tristate "Cavium Cryptographic Accelerator driver"
depends on ARCH_THUNDER
select CRYPTO_DEV_CPT
help
Support for Cavium CPT block found in octeon-tx series of
processors.
To compile this as a module, choose M here.

View File

@ -0,0 +1,2 @@
obj-$(CONFIG_CAVIUM_CPT) += cptpf.o
cptpf-objs := cptpf_main.o cptpf_mbox.o

View File

@ -0,0 +1,158 @@
/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#ifndef __CPT_COMMON_H
#define __CPT_COMMON_H
#include <asm/byteorder.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include "cpt_hw_types.h"
/* Device ID */
#define CPT_81XX_PCI_PF_DEVICE_ID 0xa040
#define CPT_81XX_PCI_VF_DEVICE_ID 0xa041
/* flags to indicate the features supported */
#define CPT_FLAG_MSIX_ENABLED BIT(0)
#define CPT_FLAG_SRIOV_ENABLED BIT(1)
#define CPT_FLAG_VF_DRIVER BIT(2)
#define CPT_FLAG_DEVICE_READY BIT(3)
#define cpt_msix_enabled(cpt) ((cpt)->flags & CPT_FLAG_MSIX_ENABLED)
#define cpt_sriov_enabled(cpt) ((cpt)->flags & CPT_FLAG_SRIOV_ENABLED)
#define cpt_vf_driver(cpt) ((cpt)->flags & CPT_FLAG_VF_DRIVER)
#define cpt_device_ready(cpt) ((cpt)->flags & CPT_FLAG_DEVICE_READY)
#define CPT_MBOX_MSG_TYPE_ACK 1
#define CPT_MBOX_MSG_TYPE_NACK 2
#define CPT_MBOX_MSG_TIMEOUT 2000
#define VF_STATE_DOWN 0
#define VF_STATE_UP 1
/*
* CPT Registers map for 81xx
*/
/* PF registers */
#define CPTX_PF_CONSTANTS(a) (0x0ll + ((u64)(a) << 36))
#define CPTX_PF_RESET(a) (0x100ll + ((u64)(a) << 36))
#define CPTX_PF_DIAG(a) (0x120ll + ((u64)(a) << 36))
#define CPTX_PF_BIST_STATUS(a) (0x160ll + ((u64)(a) << 36))
#define CPTX_PF_ECC0_CTL(a) (0x200ll + ((u64)(a) << 36))
#define CPTX_PF_ECC0_FLIP(a) (0x210ll + ((u64)(a) << 36))
#define CPTX_PF_ECC0_INT(a) (0x220ll + ((u64)(a) << 36))
#define CPTX_PF_ECC0_INT_W1S(a) (0x230ll + ((u64)(a) << 36))
#define CPTX_PF_ECC0_ENA_W1S(a) (0x240ll + ((u64)(a) << 36))
#define CPTX_PF_ECC0_ENA_W1C(a) (0x250ll + ((u64)(a) << 36))
#define CPTX_PF_MBOX_INTX(a, b) \
(0x400ll + ((u64)(a) << 36) + ((b) << 3))
#define CPTX_PF_MBOX_INT_W1SX(a, b) \
(0x420ll + ((u64)(a) << 36) + ((b) << 3))
#define CPTX_PF_MBOX_ENA_W1CX(a, b) \
(0x440ll + ((u64)(a) << 36) + ((b) << 3))
#define CPTX_PF_MBOX_ENA_W1SX(a, b) \
(0x460ll + ((u64)(a) << 36) + ((b) << 3))
#define CPTX_PF_EXEC_INT(a) (0x500ll + 0x1000000000ll * ((a) & 0x1))
#define CPTX_PF_EXEC_INT_W1S(a) (0x520ll + ((u64)(a) << 36))
#define CPTX_PF_EXEC_ENA_W1C(a) (0x540ll + ((u64)(a) << 36))
#define CPTX_PF_EXEC_ENA_W1S(a) (0x560ll + ((u64)(a) << 36))
#define CPTX_PF_GX_EN(a, b) \
(0x600ll + ((u64)(a) << 36) + ((b) << 3))
#define CPTX_PF_EXEC_INFO(a) (0x700ll + ((u64)(a) << 36))
#define CPTX_PF_EXEC_BUSY(a) (0x800ll + ((u64)(a) << 36))
#define CPTX_PF_EXEC_INFO0(a) (0x900ll + ((u64)(a) << 36))
#define CPTX_PF_EXEC_INFO1(a) (0x910ll + ((u64)(a) << 36))
#define CPTX_PF_INST_REQ_PC(a) (0x10000ll + ((u64)(a) << 36))
#define CPTX_PF_INST_LATENCY_PC(a) \
(0x10020ll + ((u64)(a) << 36))
#define CPTX_PF_RD_REQ_PC(a) (0x10040ll + ((u64)(a) << 36))
#define CPTX_PF_RD_LATENCY_PC(a) (0x10060ll + ((u64)(a) << 36))
#define CPTX_PF_RD_UC_PC(a) (0x10080ll + ((u64)(a) << 36))
#define CPTX_PF_ACTIVE_CYCLES_PC(a) (0x10100ll + ((u64)(a) << 36))
#define CPTX_PF_EXE_CTL(a) (0x4000000ll + ((u64)(a) << 36))
#define CPTX_PF_EXE_STATUS(a) (0x4000008ll + ((u64)(a) << 36))
#define CPTX_PF_EXE_CLK(a) (0x4000010ll + ((u64)(a) << 36))
#define CPTX_PF_EXE_DBG_CTL(a) (0x4000018ll + ((u64)(a) << 36))
#define CPTX_PF_EXE_DBG_DATA(a) (0x4000020ll + ((u64)(a) << 36))
#define CPTX_PF_EXE_BIST_STATUS(a) (0x4000028ll + ((u64)(a) << 36))
#define CPTX_PF_EXE_REQ_TIMER(a) (0x4000030ll + ((u64)(a) << 36))
#define CPTX_PF_EXE_MEM_CTL(a) (0x4000038ll + ((u64)(a) << 36))
#define CPTX_PF_EXE_PERF_CTL(a) (0x4001000ll + ((u64)(a) << 36))
#define CPTX_PF_EXE_DBG_CNTX(a, b) \
(0x4001100ll + ((u64)(a) << 36) + ((b) << 3))
#define CPTX_PF_EXE_PERF_EVENT_CNT(a) (0x4001180ll + ((u64)(a) << 36))
#define CPTX_PF_EXE_EPCI_INBX_CNT(a, b) \
(0x4001200ll + ((u64)(a) << 36) + ((b) << 3))
#define CPTX_PF_EXE_EPCI_OUTBX_CNT(a, b) \
(0x4001240ll + ((u64)(a) << 36) + ((b) << 3))
#define CPTX_PF_ENGX_UCODE_BASE(a, b) \
(0x4002000ll + ((u64)(a) << 36) + ((b) << 3))
#define CPTX_PF_QX_CTL(a, b) \
(0x8000000ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_PF_QX_GMCTL(a, b) \
(0x8000020ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_PF_QX_CTL2(a, b) \
(0x8000100ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_PF_VFX_MBOXX(a, b, c) \
(0x8001000ll + ((u64)(a) << 36) + ((b) << 20) + ((c) << 8))
/* VF registers */
#define CPTX_VQX_CTL(a, b) (0x100ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_SADDR(a, b) (0x200ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_DONE_WAIT(a, b) (0x400ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_INPROG(a, b) (0x410ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_DONE(a, b) (0x420ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_DONE_ACK(a, b) (0x440ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_DONE_INT_W1S(a, b) (0x460ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_DONE_INT_W1C(a, b) (0x468ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_DONE_ENA_W1S(a, b) (0x470ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_DONE_ENA_W1C(a, b) (0x478ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_MISC_INT(a, b) (0x500ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_MISC_INT_W1S(a, b) (0x508ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_MISC_ENA_W1S(a, b) (0x510ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_MISC_ENA_W1C(a, b) (0x518ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VQX_DOORBELL(a, b) (0x600ll + ((u64)(a) << 36) + ((b) << 20))
#define CPTX_VFX_PF_MBOXX(a, b, c) \
(0x1000ll + ((u64)(a) << 36) + ((b) << 20) + ((c) << 3))
enum vftype {
AE_TYPES = 1,
SE_TYPES = 2,
BAD_CPT_TYPES,
};
/* Max CPT devices supported */
enum cpt_mbox_opcode {
CPT_MSG_VF_UP = 1,
CPT_MSG_VF_DOWN,
CPT_MSG_READY,
CPT_MSG_QLEN,
CPT_MSG_QBIND_GRP,
CPT_MSG_VQ_PRIORITY,
};
/* CPT mailbox structure */
struct cpt_mbox {
u64 msg; /* Message type MBOX[0] */
u64 data;/* Data MBOX[1] */
};
/* Register read/write APIs */
static inline void cpt_write_csr64(u8 __iomem *hw_addr, u64 offset,
u64 val)
{
writeq(val, hw_addr + offset);
}
static inline u64 cpt_read_csr64(u8 __iomem *hw_addr, u64 offset)
{
return readq(hw_addr + offset);
}
#endif /* __CPT_COMMON_H */

View File

@ -0,0 +1,658 @@
/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#ifndef __CPT_HW_TYPES_H
#define __CPT_HW_TYPES_H
#include "cpt_common.h"
/**
* Enumeration cpt_comp_e
*
* CPT Completion Enumeration
* Enumerates the values of CPT_RES_S[COMPCODE].
*/
enum cpt_comp_e {
CPT_COMP_E_NOTDONE = 0x00,
CPT_COMP_E_GOOD = 0x01,
CPT_COMP_E_FAULT = 0x02,
CPT_COMP_E_SWERR = 0x03,
CPT_COMP_E_LAST_ENTRY = 0xFF
};
/**
* Structure cpt_inst_s
*
* CPT Instruction Structure
* This structure specifies the instruction layout. Instructions are
* stored in memory as little-endian unless CPT()_PF_Q()_CTL[INST_BE] is set.
* cpt_inst_s_s
* Word 0
* doneint:1 Done interrupt.
* 0 = No interrupts related to this instruction.
* 1 = When the instruction completes, CPT()_VQ()_DONE[DONE] will be
* incremented,and based on the rules described there an interrupt may
* occur.
* Word 1
* res_addr [127: 64] Result IOVA.
* If nonzero, specifies where to write CPT_RES_S.
* If zero, no result structure will be written.
* Address must be 16-byte aligned.
* Bits <63:49> are ignored by hardware; software should use a
* sign-extended bit <48> for forward compatibility.
* Word 2
* grp:10 [171:162] If [WQ_PTR] is nonzero, the SSO guest-group to use when
* CPT submits work SSO.
* For the SSO to not discard the add-work request, FPA_PF_MAP() must map
* [GRP] and CPT()_PF_Q()_GMCTL[GMID] as valid.
* tt:2 [161:160] If [WQ_PTR] is nonzero, the SSO tag type to use when CPT
* submits work to SSO
* tag:32 [159:128] If [WQ_PTR] is nonzero, the SSO tag to use when CPT
* submits work to SSO.
* Word 3
* wq_ptr [255:192] If [WQ_PTR] is nonzero, it is a pointer to a
* work-queue entry that CPT submits work to SSO after all context,
* output data, and result write operations are visible to other
* CNXXXX units and the cores. Bits <2:0> must be zero.
* Bits <63:49> are ignored by hardware; software should
* use a sign-extended bit <48> for forward compatibility.
* Internal:
* Bits <63:49>, <2:0> are ignored by hardware, treated as always 0x0.
* Word 4
* ei0; [319:256] Engine instruction word 0. Passed to the AE/SE.
* Word 5
* ei1; [383:320] Engine instruction word 1. Passed to the AE/SE.
* Word 6
* ei2; [447:384] Engine instruction word 1. Passed to the AE/SE.
* Word 7
* ei3; [511:448] Engine instruction word 1. Passed to the AE/SE.
*
*/
union cpt_inst_s {
u64 u[8];
struct cpt_inst_s_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_17_63:47;
u64 doneint:1;
u64 reserved_0_1:16;
#else /* Word 0 - Little Endian */
u64 reserved_0_15:16;
u64 doneint:1;
u64 reserved_17_63:47;
#endif /* Word 0 - End */
u64 res_addr;
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 2 - Big Endian */
u64 reserved_172_19:20;
u64 grp:10;
u64 tt:2;
u64 tag:32;
#else /* Word 2 - Little Endian */
u64 tag:32;
u64 tt:2;
u64 grp:10;
u64 reserved_172_191:20;
#endif /* Word 2 - End */
u64 wq_ptr;
u64 ei0;
u64 ei1;
u64 ei2;
u64 ei3;
} s;
};
/**
* Structure cpt_res_s
*
* CPT Result Structure
* The CPT coprocessor writes the result structure after it completes a
* CPT_INST_S instruction. The result structure is exactly 16 bytes, and
* each instruction completion produces exactly one result structure.
*
* This structure is stored in memory as little-endian unless
* CPT()_PF_Q()_CTL[INST_BE] is set.
* cpt_res_s_s
* Word 0
* doneint:1 [16:16] Done interrupt. This bit is copied from the
* corresponding instruction's CPT_INST_S[DONEINT].
* compcode:8 [7:0] Indicates completion/error status of the CPT coprocessor
* for the associated instruction, as enumerated by CPT_COMP_E.
* Core software may write the memory location containing [COMPCODE] to
* 0x0 before ringing the doorbell, and then poll for completion by
* checking for a nonzero value.
* Once the core observes a nonzero [COMPCODE] value in this case,the CPT
* coprocessor will have also completed L2/DRAM write operations.
* Word 1
* reserved
*
*/
union cpt_res_s {
u64 u[2];
struct cpt_res_s_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_17_63:47;
u64 doneint:1;
u64 reserved_8_15:8;
u64 compcode:8;
#else /* Word 0 - Little Endian */
u64 compcode:8;
u64 reserved_8_15:8;
u64 doneint:1;
u64 reserved_17_63:47;
#endif /* Word 0 - End */
u64 reserved_64_127;
} s;
};
/**
* Register (NCB) cpt#_pf_bist_status
*
* CPT PF Control Bist Status Register
* This register has the BIST status of memories. Each bit is the BIST result
* of an individual memory (per bit, 0 = pass and 1 = fail).
* cptx_pf_bist_status_s
* Word0
* bstatus [29:0](RO/H) BIST status. One bit per memory, enumerated by
* CPT_RAMS_E.
*/
union cptx_pf_bist_status {
u64 u;
struct cptx_pf_bist_status_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_30_63:34;
u64 bstatus:30;
#else /* Word 0 - Little Endian */
u64 bstatus:30;
u64 reserved_30_63:34;
#endif /* Word 0 - End */
} s;
};
/**
* Register (NCB) cpt#_pf_constants
*
* CPT PF Constants Register
* This register contains implementation-related parameters of CPT in CNXXXX.
* cptx_pf_constants_s
* Word 0
* reserved_40_63:24 [63:40] Reserved.
* epcis:8 [39:32](RO) Number of EPCI busses.
* grps:8 [31:24](RO) Number of engine groups implemented.
* ae:8 [23:16](RO/H) Number of AEs. In CNXXXX, for CPT0 returns 0x0,
* for CPT1 returns 0x18, or less if there are fuse-disables.
* se:8 [15:8](RO/H) Number of SEs. In CNXXXX, for CPT0 returns 0x30,
* or less if there are fuse-disables, for CPT1 returns 0x0.
* vq:8 [7:0](RO) Number of VQs.
*/
union cptx_pf_constants {
u64 u;
struct cptx_pf_constants_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_40_63:24;
u64 epcis:8;
u64 grps:8;
u64 ae:8;
u64 se:8;
u64 vq:8;
#else /* Word 0 - Little Endian */
u64 vq:8;
u64 se:8;
u64 ae:8;
u64 grps:8;
u64 epcis:8;
u64 reserved_40_63:24;
#endif /* Word 0 - End */
} s;
};
/**
* Register (NCB) cpt#_pf_exe_bist_status
*
* CPT PF Engine Bist Status Register
* This register has the BIST status of each engine. Each bit is the
* BIST result of an individual engine (per bit, 0 = pass and 1 = fail).
* cptx_pf_exe_bist_status_s
* Word0
* reserved_48_63:16 [63:48] reserved
* bstatus:48 [47:0](RO/H) BIST status. One bit per engine.
*
*/
union cptx_pf_exe_bist_status {
u64 u;
struct cptx_pf_exe_bist_status_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_48_63:16;
u64 bstatus:48;
#else /* Word 0 - Little Endian */
u64 bstatus:48;
u64 reserved_48_63:16;
#endif /* Word 0 - End */
} s;
};
/**
* Register (NCB) cpt#_pf_q#_ctl
*
* CPT Queue Control Register
* This register configures queues. This register should be changed only
* when quiescent (see CPT()_VQ()_INPROG[INFLIGHT]).
* cptx_pf_qx_ctl_s
* Word0
* reserved_60_63:4 [63:60] reserved.
* aura:12; [59:48](R/W) Guest-aura for returning this queue's
* instruction-chunk buffers to FPA. Only used when [INST_FREE] is set.
* For the FPA to not discard the request, FPA_PF_MAP() must map
* [AURA] and CPT()_PF_Q()_GMCTL[GMID] as valid.
* reserved_45_47:3 [47:45] reserved.
* size:13 [44:32](R/W) Command-buffer size, in number of 64-bit words per
* command buffer segment. Must be 8*n + 1, where n is the number of
* instructions per buffer segment.
* reserved_11_31:21 [31:11] Reserved.
* cont_err:1 [10:10](R/W) Continue on error.
* 0 = When CPT()_VQ()_MISC_INT[NWRP], CPT()_VQ()_MISC_INT[IRDE] or
* CPT()_VQ()_MISC_INT[DOVF] are set by hardware or software via
* CPT()_VQ()_MISC_INT_W1S, then CPT()_VQ()_CTL[ENA] is cleared. Due to
* pipelining, additional instructions may have been processed between the
* instruction causing the error and the next instruction in the disabled
* queue (the instruction at CPT()_VQ()_SADDR).
* 1 = Ignore errors and continue processing instructions.
* For diagnostic use only.
* inst_free:1 [9:9](R/W) Instruction FPA free. When set, when CPT reaches the
* end of an instruction chunk, that chunk will be freed to the FPA.
* inst_be:1 [8:8](R/W) Instruction big-endian control. When set, instructions,
* instruction next chunk pointers, and result structures are stored in
* big-endian format in memory.
* iqb_ldwb:1 [7:7](R/W) Instruction load don't write back.
* 0 = The hardware issues NCB transient load (LDT) towards the cache,
* which if the line hits and is is dirty will cause the line to be
* written back before being replaced.
* 1 = The hardware issues NCB LDWB read-and-invalidate command towards
* the cache when fetching the last word of instructions; as a result the
* line will not be written back when replaced. This improves
* performance, but software must not read the instructions after they are
* posted to the hardware. Reads that do not consume the last word of a
* cache line always use LDI.
* reserved_4_6:3 [6:4] Reserved.
* grp:3; [3:1](R/W) Engine group.
* pri:1; [0:0](R/W) Queue priority.
* 1 = This queue has higher priority. Round-robin between higher
* priority queues.
* 0 = This queue has lower priority. Round-robin between lower
* priority queues.
*/
union cptx_pf_qx_ctl {
u64 u;
struct cptx_pf_qx_ctl_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_60_63:4;
u64 aura:12;
u64 reserved_45_47:3;
u64 size:13;
u64 reserved_11_31:21;
u64 cont_err:1;
u64 inst_free:1;
u64 inst_be:1;
u64 iqb_ldwb:1;
u64 reserved_4_6:3;
u64 grp:3;
u64 pri:1;
#else /* Word 0 - Little Endian */
u64 pri:1;
u64 grp:3;
u64 reserved_4_6:3;
u64 iqb_ldwb:1;
u64 inst_be:1;
u64 inst_free:1;
u64 cont_err:1;
u64 reserved_11_31:21;
u64 size:13;
u64 reserved_45_47:3;
u64 aura:12;
u64 reserved_60_63:4;
#endif /* Word 0 - End */
} s;
};
/**
* Register (NCB) cpt#_vq#_saddr
*
* CPT Queue Starting Buffer Address Registers
* These registers set the instruction buffer starting address.
* cptx_vqx_saddr_s
* Word0
* reserved_49_63:15 [63:49] Reserved.
* ptr:43 [48:6](R/W/H) Instruction buffer IOVA <48:6> (64-byte aligned).
* When written, it is the initial buffer starting address; when read,
* it is the next read pointer to be requested from L2C. The PTR field
* is overwritten with the next pointer each time that the command buffer
* segment is exhausted. New commands will then be read from the newly
* specified command buffer pointer.
* reserved_0_5:6 [5:0] Reserved.
*
*/
union cptx_vqx_saddr {
u64 u;
struct cptx_vqx_saddr_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_49_63:15;
u64 ptr:43;
u64 reserved_0_5:6;
#else /* Word 0 - Little Endian */
u64 reserved_0_5:6;
u64 ptr:43;
u64 reserved_49_63:15;
#endif /* Word 0 - End */
} s;
};
/**
* Register (NCB) cpt#_vq#_misc_ena_w1s
*
* CPT Queue Misc Interrupt Enable Set Register
* This register sets interrupt enable bits.
* cptx_vqx_misc_ena_w1s_s
* Word0
* reserved_5_63:59 [63:5] Reserved.
* swerr:1 [4:4](R/W1S/H) Reads or sets enable for
* CPT(0..1)_VQ(0..63)_MISC_INT[SWERR].
* nwrp:1 [3:3](R/W1S/H) Reads or sets enable for
* CPT(0..1)_VQ(0..63)_MISC_INT[NWRP].
* irde:1 [2:2](R/W1S/H) Reads or sets enable for
* CPT(0..1)_VQ(0..63)_MISC_INT[IRDE].
* dovf:1 [1:1](R/W1S/H) Reads or sets enable for
* CPT(0..1)_VQ(0..63)_MISC_INT[DOVF].
* mbox:1 [0:0](R/W1S/H) Reads or sets enable for
* CPT(0..1)_VQ(0..63)_MISC_INT[MBOX].
*
*/
union cptx_vqx_misc_ena_w1s {
u64 u;
struct cptx_vqx_misc_ena_w1s_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_5_63:59;
u64 swerr:1;
u64 nwrp:1;
u64 irde:1;
u64 dovf:1;
u64 mbox:1;
#else /* Word 0 - Little Endian */
u64 mbox:1;
u64 dovf:1;
u64 irde:1;
u64 nwrp:1;
u64 swerr:1;
u64 reserved_5_63:59;
#endif /* Word 0 - End */
} s;
};
/**
* Register (NCB) cpt#_vq#_doorbell
*
* CPT Queue Doorbell Registers
* Doorbells for the CPT instruction queues.
* cptx_vqx_doorbell_s
* Word0
* reserved_20_63:44 [63:20] Reserved.
* dbell_cnt:20 [19:0](R/W/H) Number of instruction queue 64-bit words to add
* to the CPT instruction doorbell count. Readback value is the the
* current number of pending doorbell requests. If counter overflows
* CPT()_VQ()_MISC_INT[DBELL_DOVF] is set. To reset the count back to
* zero, write one to clear CPT()_VQ()_MISC_INT_ENA_W1C[DBELL_DOVF],
* then write a value of 2^20 minus the read [DBELL_CNT], then write one
* to CPT()_VQ()_MISC_INT_W1C[DBELL_DOVF] and
* CPT()_VQ()_MISC_INT_ENA_W1S[DBELL_DOVF]. Must be a multiple of 8.
* All CPT instructions are 8 words and require a doorbell count of
* multiple of 8.
*/
union cptx_vqx_doorbell {
u64 u;
struct cptx_vqx_doorbell_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_20_63:44;
u64 dbell_cnt:20;
#else /* Word 0 - Little Endian */
u64 dbell_cnt:20;
u64 reserved_20_63:44;
#endif /* Word 0 - End */
} s;
};
/**
* Register (NCB) cpt#_vq#_inprog
*
* CPT Queue In Progress Count Registers
* These registers contain the per-queue instruction in flight registers.
* cptx_vqx_inprog_s
* Word0
* reserved_8_63:56 [63:8] Reserved.
* inflight:8 [7:0](RO/H) Inflight count. Counts the number of instructions
* for the VF for which CPT is fetching, executing or responding to
* instructions. However this does not include any interrupts that are
* awaiting software handling (CPT()_VQ()_DONE[DONE] != 0x0).
* A queue may not be reconfigured until:
* 1. CPT()_VQ()_CTL[ENA] is cleared by software.
* 2. [INFLIGHT] is polled until equals to zero.
*/
union cptx_vqx_inprog {
u64 u;
struct cptx_vqx_inprog_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_8_63:56;
u64 inflight:8;
#else /* Word 0 - Little Endian */
u64 inflight:8;
u64 reserved_8_63:56;
#endif /* Word 0 - End */
} s;
};
/**
* Register (NCB) cpt#_vq#_misc_int
*
* CPT Queue Misc Interrupt Register
* These registers contain the per-queue miscellaneous interrupts.
* cptx_vqx_misc_int_s
* Word 0
* reserved_5_63:59 [63:5] Reserved.
* swerr:1 [4:4](R/W1C/H) Software error from engines.
* nwrp:1 [3:3](R/W1C/H) NCB result write response error.
* irde:1 [2:2](R/W1C/H) Instruction NCB read response error.
* dovf:1 [1:1](R/W1C/H) Doorbell overflow.
* mbox:1 [0:0](R/W1C/H) PF to VF mailbox interrupt. Set when
* CPT()_VF()_PF_MBOX(0) is written.
*
*/
union cptx_vqx_misc_int {
u64 u;
struct cptx_vqx_misc_int_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_5_63:59;
u64 swerr:1;
u64 nwrp:1;
u64 irde:1;
u64 dovf:1;
u64 mbox:1;
#else /* Word 0 - Little Endian */
u64 mbox:1;
u64 dovf:1;
u64 irde:1;
u64 nwrp:1;
u64 swerr:1;
u64 reserved_5_63:59;
#endif /* Word 0 - End */
} s;
};
/**
* Register (NCB) cpt#_vq#_done_ack
*
* CPT Queue Done Count Ack Registers
* This register is written by software to acknowledge interrupts.
* cptx_vqx_done_ack_s
* Word0
* reserved_20_63:44 [63:20] Reserved.
* done_ack:20 [19:0](R/W/H) Number of decrements to CPT()_VQ()_DONE[DONE].
* Reads CPT()_VQ()_DONE[DONE]. Written by software to acknowledge
* interrupts. If CPT()_VQ()_DONE[DONE] is still nonzero the interrupt
* will be re-sent if the conditions described in CPT()_VQ()_DONE[DONE]
* are satisfied.
*
*/
union cptx_vqx_done_ack {
u64 u;
struct cptx_vqx_done_ack_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_20_63:44;
u64 done_ack:20;
#else /* Word 0 - Little Endian */
u64 done_ack:20;
u64 reserved_20_63:44;
#endif /* Word 0 - End */
} s;
};
/**
* Register (NCB) cpt#_vq#_done
*
* CPT Queue Done Count Registers
* These registers contain the per-queue instruction done count.
* cptx_vqx_done_s
* Word0
* reserved_20_63:44 [63:20] Reserved.
* done:20 [19:0](R/W/H) Done count. When CPT_INST_S[DONEINT] set and that
* instruction completes, CPT()_VQ()_DONE[DONE] is incremented when the
* instruction finishes. Write to this field are for diagnostic use only;
* instead software writes CPT()_VQ()_DONE_ACK with the number of
* decrements for this field.
* Interrupts are sent as follows:
* * When CPT()_VQ()_DONE[DONE] = 0, then no results are pending, the
* interrupt coalescing timer is held to zero, and an interrupt is not
* sent.
* * When CPT()_VQ()_DONE[DONE] != 0, then the interrupt coalescing timer
* counts. If the counter is >= CPT()_VQ()_DONE_WAIT[TIME_WAIT]*1024, or
* CPT()_VQ()_DONE[DONE] >= CPT()_VQ()_DONE_WAIT[NUM_WAIT], i.e. enough
* time has passed or enough results have arrived, then the interrupt is
* sent.
* * When CPT()_VQ()_DONE_ACK is written (or CPT()_VQ()_DONE is written
* but this is not typical), the interrupt coalescing timer restarts.
* Note after decrementing this interrupt equation is recomputed,
* for example if CPT()_VQ()_DONE[DONE] >= CPT()_VQ()_DONE_WAIT[NUM_WAIT]
* and because the timer is zero, the interrupt will be resent immediately.
* (This covers the race case between software acknowledging an interrupt
* and a result returning.)
* * When CPT()_VQ()_DONE_ENA_W1S[DONE] = 0, interrupts are not sent,
* but the counting described above still occurs.
* Since CPT instructions complete out-of-order, if software is using
* completion interrupts the suggested scheme is to request a DONEINT on
* each request, and when an interrupt arrives perform a "greedy" scan for
* completions; even if a later command is acknowledged first this will
* not result in missing a completion.
* Software is responsible for making sure [DONE] does not overflow;
* for example by insuring there are not more than 2^20-1 instructions in
* flight that may request interrupts.
*
*/
union cptx_vqx_done {
u64 u;
struct cptx_vqx_done_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_20_63:44;
u64 done:20;
#else /* Word 0 - Little Endian */
u64 done:20;
u64 reserved_20_63:44;
#endif /* Word 0 - End */
} s;
};
/**
* Register (NCB) cpt#_vq#_done_wait
*
* CPT Queue Done Interrupt Coalescing Wait Registers
* Specifies the per queue interrupt coalescing settings.
* cptx_vqx_done_wait_s
* Word0
* reserved_48_63:16 [63:48] Reserved.
* time_wait:16; [47:32](R/W) Time hold-off. When CPT()_VQ()_DONE[DONE] = 0
* or CPT()_VQ()_DONE_ACK is written a timer is cleared. When the timer
* reaches [TIME_WAIT]*1024 then interrupt coalescing ends.
* see CPT()_VQ()_DONE[DONE]. If 0x0, time coalescing is disabled.
* reserved_20_31:12 [31:20] Reserved.
* num_wait:20 [19:0](R/W) Number of messages hold-off.
* When CPT()_VQ()_DONE[DONE] >= [NUM_WAIT] then interrupt coalescing ends
* see CPT()_VQ()_DONE[DONE]. If 0x0, same behavior as 0x1.
*
*/
union cptx_vqx_done_wait {
u64 u;
struct cptx_vqx_done_wait_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_48_63:16;
u64 time_wait:16;
u64 reserved_20_31:12;
u64 num_wait:20;
#else /* Word 0 - Little Endian */
u64 num_wait:20;
u64 reserved_20_31:12;
u64 time_wait:16;
u64 reserved_48_63:16;
#endif /* Word 0 - End */
} s;
};
/**
* Register (NCB) cpt#_vq#_done_ena_w1s
*
* CPT Queue Done Interrupt Enable Set Registers
* Write 1 to these registers will enable the DONEINT interrupt for the queue.
* cptx_vqx_done_ena_w1s_s
* Word0
* reserved_1_63:63 [63:1] Reserved.
* done:1 [0:0](R/W1S/H) Write 1 will enable DONEINT for this queue.
* Write 0 has no effect. Read will return the enable bit.
*/
union cptx_vqx_done_ena_w1s {
u64 u;
struct cptx_vqx_done_ena_w1s_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_1_63:63;
u64 done:1;
#else /* Word 0 - Little Endian */
u64 done:1;
u64 reserved_1_63:63;
#endif /* Word 0 - End */
} s;
};
/**
* Register (NCB) cpt#_vq#_ctl
*
* CPT VF Queue Control Registers
* This register configures queues. This register should be changed (other than
* clearing [ENA]) only when quiescent (see CPT()_VQ()_INPROG[INFLIGHT]).
* cptx_vqx_ctl_s
* Word0
* reserved_1_63:63 [63:1] Reserved.
* ena:1 [0:0](R/W/H) Enables the logical instruction queue.
* See also CPT()_PF_Q()_CTL[CONT_ERR] and CPT()_VQ()_INPROG[INFLIGHT].
* 1 = Queue is enabled.
* 0 = Queue is disabled.
*/
union cptx_vqx_ctl {
u64 u;
struct cptx_vqx_ctl_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_1_63:63;
u64 ena:1;
#else /* Word 0 - Little Endian */
u64 ena:1;
u64 reserved_1_63:63;
#endif /* Word 0 - End */
} s;
};
#endif /*__CPT_HW_TYPES_H*/

View File

@ -0,0 +1,69 @@
/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#ifndef __CPTPF_H
#define __CPTPF_H
#include "cpt_common.h"
#define CSR_DELAY 30
#define CPT_MAX_CORE_GROUPS 8
#define CPT_MAX_SE_CORES 10
#define CPT_MAX_AE_CORES 6
#define CPT_MAX_TOTAL_CORES (CPT_MAX_SE_CORES + CPT_MAX_AE_CORES)
#define CPT_MAX_VF_NUM 16
#define CPT_PF_MSIX_VECTORS 3
#define CPT_PF_INT_VEC_E_MBOXX(a) (0x02 + (a))
#define CPT_UCODE_VERSION_SZ 32
struct cpt_device;
struct microcode {
u8 is_mc_valid;
u8 is_ae;
u8 group;
u8 num_cores;
u32 code_size;
u64 core_mask;
u8 version[CPT_UCODE_VERSION_SZ];
/* Base info */
dma_addr_t phys_base;
void *code;
};
struct cpt_vf_info {
u8 state;
u8 priority;
u8 id;
u32 qlen;
};
/**
* cpt device structure
*/
struct cpt_device {
u16 flags; /* Flags to hold device status bits */
u8 num_vf_en; /* Number of VFs enabled (0...CPT_MAX_VF_NUM) */
struct cpt_vf_info vfinfo[CPT_MAX_VF_NUM]; /* Per VF info */
void __iomem *reg_base; /* Register start address */
/* MSI-X */
u8 num_vec;
bool msix_enabled;
struct msix_entry msix_entries[CPT_PF_MSIX_VECTORS];
bool irq_allocated[CPT_PF_MSIX_VECTORS];
struct pci_dev *pdev; /* pci device handle */
struct microcode mcode[CPT_MAX_CORE_GROUPS];
u8 next_mc_idx; /* next microcode index */
u8 next_group;
u8 max_se_cores;
u8 max_ae_cores;
};
void cpt_mbox_intr_handler(struct cpt_device *cpt, int mbx);
#endif /* __CPTPF_H */

View File

@ -0,0 +1,708 @@
/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include <linux/device.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/printk.h>
#include <linux/version.h>
#include "cptpf.h"
#define DRV_NAME "thunder-cpt"
#define DRV_VERSION "1.0"
static u32 num_vfs = 4; /* Default 4 VF enabled */
module_param(num_vfs, uint, 0444);
MODULE_PARM_DESC(num_vfs, "Number of VFs to enable(1-16)");
/*
* Disable cores specified by coremask
*/
static void cpt_disable_cores(struct cpt_device *cpt, u64 coremask,
u8 type, u8 grp)
{
u64 pf_exe_ctl;
u32 timeout = 100;
u64 grpmask = 0;
struct device *dev = &cpt->pdev->dev;
if (type == AE_TYPES)
coremask = (coremask << cpt->max_se_cores);
/* Disengage the cores from groups */
grpmask = cpt_read_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp));
cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp),
(grpmask & ~coremask));
udelay(CSR_DELAY);
grp = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXEC_BUSY(0));
while (grp & coremask) {
dev_err(dev, "Cores still busy %llx", coremask);
grp = cpt_read_csr64(cpt->reg_base,
CPTX_PF_EXEC_BUSY(0));
if (timeout--)
break;
udelay(CSR_DELAY);
}
/* Disable the cores */
pf_exe_ctl = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0));
cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0),
(pf_exe_ctl & ~coremask));
udelay(CSR_DELAY);
}
/*
* Enable cores specified by coremask
*/
static void cpt_enable_cores(struct cpt_device *cpt, u64 coremask,
u8 type)
{
u64 pf_exe_ctl;
if (type == AE_TYPES)
coremask = (coremask << cpt->max_se_cores);
pf_exe_ctl = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0));
cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0),
(pf_exe_ctl | coremask));
udelay(CSR_DELAY);
}
static void cpt_configure_group(struct cpt_device *cpt, u8 grp,
u64 coremask, u8 type)
{
u64 pf_gx_en = 0;
if (type == AE_TYPES)
coremask = (coremask << cpt->max_se_cores);
pf_gx_en = cpt_read_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp));
cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp),
(pf_gx_en | coremask));
udelay(CSR_DELAY);
}
static void cpt_disable_mbox_interrupts(struct cpt_device *cpt)
{
/* Clear mbox(0) interupts for all vfs */
cpt_write_csr64(cpt->reg_base, CPTX_PF_MBOX_ENA_W1CX(0, 0), ~0ull);
}
static void cpt_disable_ecc_interrupts(struct cpt_device *cpt)
{
/* Clear ecc(0) interupts for all vfs */
cpt_write_csr64(cpt->reg_base, CPTX_PF_ECC0_ENA_W1C(0), ~0ull);
}
static void cpt_disable_exec_interrupts(struct cpt_device *cpt)
{
/* Clear exec interupts for all vfs */
cpt_write_csr64(cpt->reg_base, CPTX_PF_EXEC_ENA_W1C(0), ~0ull);
}
static void cpt_disable_all_interrupts(struct cpt_device *cpt)
{
cpt_disable_mbox_interrupts(cpt);
cpt_disable_ecc_interrupts(cpt);
cpt_disable_exec_interrupts(cpt);
}
static void cpt_enable_mbox_interrupts(struct cpt_device *cpt)
{
/* Set mbox(0) interupts for all vfs */
cpt_write_csr64(cpt->reg_base, CPTX_PF_MBOX_ENA_W1SX(0, 0), ~0ull);
}
static int cpt_load_microcode(struct cpt_device *cpt, struct microcode *mcode)
{
int ret = 0, core = 0, shift = 0;
u32 total_cores = 0;
struct device *dev = &cpt->pdev->dev;
if (!mcode || !mcode->code) {
dev_err(dev, "Either the mcode is null or data is NULL\n");
return -EINVAL;
}
if (mcode->code_size == 0) {
dev_err(dev, "microcode size is 0\n");
return -EINVAL;
}
/* Assumes 0-9 are SE cores for UCODE_BASE registers and
* AE core bases follow
*/
if (mcode->is_ae) {
core = CPT_MAX_SE_CORES; /* start couting from 10 */
total_cores = CPT_MAX_TOTAL_CORES; /* upto 15 */
} else {
core = 0; /* start couting from 0 */
total_cores = CPT_MAX_SE_CORES; /* upto 9 */
}
/* Point to microcode for each core of the group */
for (; core < total_cores ; core++, shift++) {
if (mcode->core_mask & (1 << shift)) {
cpt_write_csr64(cpt->reg_base,
CPTX_PF_ENGX_UCODE_BASE(0, core),
(u64)mcode->phys_base);
}
}
return ret;
}
static int do_cpt_init(struct cpt_device *cpt, struct microcode *mcode)
{
int ret = 0;
struct device *dev = &cpt->pdev->dev;
/* Make device not ready */
cpt->flags &= ~CPT_FLAG_DEVICE_READY;
/* Disable All PF interrupts */
cpt_disable_all_interrupts(cpt);
/* Calculate mcode group and coremasks */
if (mcode->is_ae) {
if (mcode->num_cores > cpt->max_ae_cores) {
dev_err(dev, "Requested for more cores than available AE cores\n");
ret = -EINVAL;
goto cpt_init_fail;
}
if (cpt->next_group >= CPT_MAX_CORE_GROUPS) {
dev_err(dev, "Can't load, all eight microcode groups in use");
return -ENFILE;
}
mcode->group = cpt->next_group;
/* Convert requested cores to mask */
mcode->core_mask = GENMASK(mcode->num_cores, 0);
cpt_disable_cores(cpt, mcode->core_mask, AE_TYPES,
mcode->group);
/* Load microcode for AE engines */
ret = cpt_load_microcode(cpt, mcode);
if (ret) {
dev_err(dev, "Microcode load Failed for %s\n",
mcode->version);
goto cpt_init_fail;
}
cpt->next_group++;
/* Configure group mask for the mcode */
cpt_configure_group(cpt, mcode->group, mcode->core_mask,
AE_TYPES);
/* Enable AE cores for the group mask */
cpt_enable_cores(cpt, mcode->core_mask, AE_TYPES);
} else {
if (mcode->num_cores > cpt->max_se_cores) {
dev_err(dev, "Requested for more cores than available SE cores\n");
ret = -EINVAL;
goto cpt_init_fail;
}
if (cpt->next_group >= CPT_MAX_CORE_GROUPS) {
dev_err(dev, "Can't load, all eight microcode groups in use");
return -ENFILE;
}
mcode->group = cpt->next_group;
/* Covert requested cores to mask */
mcode->core_mask = GENMASK(mcode->num_cores, 0);
cpt_disable_cores(cpt, mcode->core_mask, SE_TYPES,
mcode->group);
/* Load microcode for SE engines */
ret = cpt_load_microcode(cpt, mcode);
if (ret) {
dev_err(dev, "Microcode load Failed for %s\n",
mcode->version);
goto cpt_init_fail;
}
cpt->next_group++;
/* Configure group mask for the mcode */
cpt_configure_group(cpt, mcode->group, mcode->core_mask,
SE_TYPES);
/* Enable SE cores for the group mask */
cpt_enable_cores(cpt, mcode->core_mask, SE_TYPES);
}
/* Enabled PF mailbox interrupts */
cpt_enable_mbox_interrupts(cpt);
cpt->flags |= CPT_FLAG_DEVICE_READY;
return ret;
cpt_init_fail:
/* Enabled PF mailbox interrupts */
cpt_enable_mbox_interrupts(cpt);
return ret;
}
struct ucode_header {
u8 version[CPT_UCODE_VERSION_SZ];
u32 code_length;
u32 data_length;
u64 sram_address;
};
static int cpt_ucode_load_fw(struct cpt_device *cpt, const u8 *fw, bool is_ae)
{
const struct firmware *fw_entry;
struct device *dev = &cpt->pdev->dev;
struct ucode_header *ucode;
struct microcode *mcode;
int j, ret = 0;
ret = request_firmware(&fw_entry, fw, dev);
if (ret)
return ret;
ucode = (struct ucode_header *)fw_entry->data;
mcode = &cpt->mcode[cpt->next_mc_idx];
memcpy(mcode->version, (u8 *)fw_entry->data, CPT_UCODE_VERSION_SZ);
mcode->code_size = ntohl(ucode->code_length) * 2;
if (!mcode->code_size)
return -EINVAL;
mcode->is_ae = is_ae;
mcode->core_mask = 0ULL;
mcode->num_cores = is_ae ? 6 : 10;
/* Allocate DMAable space */
mcode->code = dma_zalloc_coherent(&cpt->pdev->dev, mcode->code_size,
&mcode->phys_base, GFP_KERNEL);
if (!mcode->code) {
dev_err(dev, "Unable to allocate space for microcode");
return -ENOMEM;
}
memcpy((void *)mcode->code, (void *)(fw_entry->data + sizeof(*ucode)),
mcode->code_size);
/* Byte swap 64-bit */
for (j = 0; j < (mcode->code_size / 8); j++)
((u64 *)mcode->code)[j] = cpu_to_be64(((u64 *)mcode->code)[j]);
/* MC needs 16-bit swap */
for (j = 0; j < (mcode->code_size / 2); j++)
((u16 *)mcode->code)[j] = cpu_to_be16(((u16 *)mcode->code)[j]);
dev_dbg(dev, "mcode->code_size = %u\n", mcode->code_size);
dev_dbg(dev, "mcode->is_ae = %u\n", mcode->is_ae);
dev_dbg(dev, "mcode->num_cores = %u\n", mcode->num_cores);
dev_dbg(dev, "mcode->code = %llx\n", (u64)mcode->code);
dev_dbg(dev, "mcode->phys_base = %llx\n", mcode->phys_base);
ret = do_cpt_init(cpt, mcode);
if (ret) {
dev_err(dev, "do_cpt_init failed with ret: %d\n", ret);
return ret;
}
dev_info(dev, "Microcode Loaded %s\n", mcode->version);
mcode->is_mc_valid = 1;
cpt->next_mc_idx++;
release_firmware(fw_entry);
return ret;
}
static int cpt_ucode_load(struct cpt_device *cpt)
{
int ret = 0;
struct device *dev = &cpt->pdev->dev;
ret = cpt_ucode_load_fw(cpt, "cpt8x-mc-ae.out", true);
if (ret) {
dev_err(dev, "ae:cpt_ucode_load failed with ret: %d\n", ret);
return ret;
}
ret = cpt_ucode_load_fw(cpt, "cpt8x-mc-se.out", false);
if (ret) {
dev_err(dev, "se:cpt_ucode_load failed with ret: %d\n", ret);
return ret;
}
return ret;
}
static int cpt_enable_msix(struct cpt_device *cpt)
{
int i, ret;
cpt->num_vec = CPT_PF_MSIX_VECTORS;
for (i = 0; i < cpt->num_vec; i++)
cpt->msix_entries[i].entry = i;
ret = pci_enable_msix(cpt->pdev, cpt->msix_entries, cpt->num_vec);
if (ret) {
dev_err(&cpt->pdev->dev, "Request for #%d msix vectors failed\n",
cpt->num_vec);
return ret;
}
cpt->msix_enabled = 1;
return 0;
}
static irqreturn_t cpt_mbx0_intr_handler(int irq, void *cpt_irq)
{
struct cpt_device *cpt = (struct cpt_device *)cpt_irq;
cpt_mbox_intr_handler(cpt, 0);
return IRQ_HANDLED;
}
static void cpt_disable_msix(struct cpt_device *cpt)
{
if (cpt->msix_enabled) {
pci_disable_msix(cpt->pdev);
cpt->msix_enabled = 0;
cpt->num_vec = 0;
}
}
static void cpt_free_all_interrupts(struct cpt_device *cpt)
{
int irq;
for (irq = 0; irq < cpt->num_vec; irq++) {
if (cpt->irq_allocated[irq])
free_irq(cpt->msix_entries[irq].vector, cpt);
cpt->irq_allocated[irq] = false;
}
}
static void cpt_reset(struct cpt_device *cpt)
{
cpt_write_csr64(cpt->reg_base, CPTX_PF_RESET(0), 1);
}
static void cpt_find_max_enabled_cores(struct cpt_device *cpt)
{
union cptx_pf_constants pf_cnsts = {0};
pf_cnsts.u = cpt_read_csr64(cpt->reg_base, CPTX_PF_CONSTANTS(0));
cpt->max_se_cores = pf_cnsts.s.se;
cpt->max_ae_cores = pf_cnsts.s.ae;
}
static u32 cpt_check_bist_status(struct cpt_device *cpt)
{
union cptx_pf_bist_status bist_sts = {0};
bist_sts.u = cpt_read_csr64(cpt->reg_base,
CPTX_PF_BIST_STATUS(0));
return bist_sts.u;
}
static u64 cpt_check_exe_bist_status(struct cpt_device *cpt)
{
union cptx_pf_exe_bist_status bist_sts = {0};
bist_sts.u = cpt_read_csr64(cpt->reg_base,
CPTX_PF_EXE_BIST_STATUS(0));
return bist_sts.u;
}
static void cpt_disable_all_cores(struct cpt_device *cpt)
{
u32 grp, timeout = 100;
struct device *dev = &cpt->pdev->dev;
/* Disengage the cores from groups */
for (grp = 0; grp < CPT_MAX_CORE_GROUPS; grp++) {
cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp), 0);
udelay(CSR_DELAY);
}
grp = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXEC_BUSY(0));
while (grp) {
dev_err(dev, "Cores still busy");
grp = cpt_read_csr64(cpt->reg_base,
CPTX_PF_EXEC_BUSY(0));
if (timeout--)
break;
udelay(CSR_DELAY);
}
/* Disable the cores */
cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0), 0);
}
/**
* Ensure all cores are disengaged from all groups by
* calling cpt_disable_all_cores() before calling this
* function.
*/
static void cpt_unload_microcode(struct cpt_device *cpt)
{
u32 grp = 0, core;
/* Free microcode bases and reset group masks */
for (grp = 0; grp < CPT_MAX_CORE_GROUPS; grp++) {
struct microcode *mcode = &cpt->mcode[grp];
if (cpt->mcode[grp].code)
dma_free_coherent(&cpt->pdev->dev, mcode->code_size,
mcode->code, mcode->phys_base);
mcode->code = NULL;
}
/* Clear UCODE_BASE registers for all engines */
for (core = 0; core < CPT_MAX_TOTAL_CORES; core++)
cpt_write_csr64(cpt->reg_base,
CPTX_PF_ENGX_UCODE_BASE(0, core), 0ull);
}
static int cpt_device_init(struct cpt_device *cpt)
{
u64 bist;
struct device *dev = &cpt->pdev->dev;
/* Reset the PF when probed first */
cpt_reset(cpt);
mdelay(100);
/*Check BIST status*/
bist = (u64)cpt_check_bist_status(cpt);
if (bist) {
dev_err(dev, "RAM BIST failed with code 0x%llx", bist);
return -ENODEV;
}
bist = cpt_check_exe_bist_status(cpt);
if (bist) {
dev_err(dev, "Engine BIST failed with code 0x%llx", bist);
return -ENODEV;
}
/*Get CLK frequency*/
/*Get max enabled cores */
cpt_find_max_enabled_cores(cpt);
/*Disable all cores*/
cpt_disable_all_cores(cpt);
/*Reset device parameters*/
cpt->next_mc_idx = 0;
cpt->next_group = 0;
/* PF is ready */
cpt->flags |= CPT_FLAG_DEVICE_READY;
return 0;
}
static int cpt_register_interrupts(struct cpt_device *cpt)
{
int ret;
struct device *dev = &cpt->pdev->dev;
/* Enable MSI-X */
ret = cpt_enable_msix(cpt);
if (ret)
return ret;
/* Register mailbox interrupt handlers */
ret = request_irq(cpt->msix_entries[CPT_PF_INT_VEC_E_MBOXX(0)].vector,
cpt_mbx0_intr_handler, 0, "CPT Mbox0", cpt);
if (ret)
goto fail;
cpt->irq_allocated[CPT_PF_INT_VEC_E_MBOXX(0)] = true;
/* Enable mailbox interrupt */
cpt_enable_mbox_interrupts(cpt);
return 0;
fail:
dev_err(dev, "Request irq failed\n");
cpt_free_all_interrupts(cpt);
return ret;
}
static void cpt_unregister_interrupts(struct cpt_device *cpt)
{
cpt_free_all_interrupts(cpt);
cpt_disable_msix(cpt);
}
static int cpt_sriov_init(struct cpt_device *cpt, int num_vfs)
{
int pos = 0;
int err;
u16 total_vf_cnt;
struct pci_dev *pdev = cpt->pdev;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
if (!pos) {
dev_err(&pdev->dev, "SRIOV capability is not found in PCIe config space\n");
return -ENODEV;
}
cpt->num_vf_en = num_vfs; /* User requested VFs */
pci_read_config_word(pdev, (pos + PCI_SRIOV_TOTAL_VF), &total_vf_cnt);
if (total_vf_cnt < cpt->num_vf_en)
cpt->num_vf_en = total_vf_cnt;
if (!total_vf_cnt)
return 0;
/*Enabled the available VFs */
err = pci_enable_sriov(pdev, cpt->num_vf_en);
if (err) {
dev_err(&pdev->dev, "SRIOV enable failed, num VF is %d\n",
cpt->num_vf_en);
cpt->num_vf_en = 0;
return err;
}
/* TODO: Optionally enable static VQ priorities feature */
dev_info(&pdev->dev, "SRIOV enabled, number of VF available %d\n",
cpt->num_vf_en);
cpt->flags |= CPT_FLAG_SRIOV_ENABLED;
return 0;
}
static int cpt_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct device *dev = &pdev->dev;
struct cpt_device *cpt;
int err;
if (num_vfs > 16 || num_vfs < 4) {
dev_warn(dev, "Invalid vf count %d, Resetting it to 4(default)\n",
num_vfs);
num_vfs = 4;
}
cpt = devm_kzalloc(dev, sizeof(*cpt), GFP_KERNEL);
if (!cpt)
return -ENOMEM;
pci_set_drvdata(pdev, cpt);
cpt->pdev = pdev;
err = pci_enable_device(pdev);
if (err) {
dev_err(dev, "Failed to enable PCI device\n");
pci_set_drvdata(pdev, NULL);
return err;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(dev, "PCI request regions failed 0x%x\n", err);
goto cpt_err_disable_device;
}
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "Unable to get usable DMA configuration\n");
goto cpt_err_release_regions;
}
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "Unable to get 48-bit DMA for consistent allocations\n");
goto cpt_err_release_regions;
}
/* MAP PF's configuration registers */
cpt->reg_base = pcim_iomap(pdev, 0, 0);
if (!cpt->reg_base) {
dev_err(dev, "Cannot map config register space, aborting\n");
err = -ENOMEM;
goto cpt_err_release_regions;
}
/* CPT device HW initialization */
cpt_device_init(cpt);
/* Register interrupts */
err = cpt_register_interrupts(cpt);
if (err)
goto cpt_err_release_regions;
err = cpt_ucode_load(cpt);
if (err)
goto cpt_err_unregister_interrupts;
/* Configure SRIOV */
err = cpt_sriov_init(cpt, num_vfs);
if (err)
goto cpt_err_unregister_interrupts;
return 0;
cpt_err_unregister_interrupts:
cpt_unregister_interrupts(cpt);
cpt_err_release_regions:
pci_release_regions(pdev);
cpt_err_disable_device:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return err;
}
static void cpt_remove(struct pci_dev *pdev)
{
struct cpt_device *cpt = pci_get_drvdata(pdev);
/* Disengage SE and AE cores from all groups*/
cpt_disable_all_cores(cpt);
/* Unload microcodes */
cpt_unload_microcode(cpt);
cpt_unregister_interrupts(cpt);
pci_disable_sriov(pdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static void cpt_shutdown(struct pci_dev *pdev)
{
struct cpt_device *cpt = pci_get_drvdata(pdev);
if (!cpt)
return;
dev_info(&pdev->dev, "Shutdown device %x:%x.\n",
(u32)pdev->vendor, (u32)pdev->device);
cpt_unregister_interrupts(cpt);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
/* Supported devices */
static const struct pci_device_id cpt_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, CPT_81XX_PCI_PF_DEVICE_ID) },
{ 0, } /* end of table */
};
static struct pci_driver cpt_pci_driver = {
.name = DRV_NAME,
.id_table = cpt_id_table,
.probe = cpt_probe,
.remove = cpt_remove,
.shutdown = cpt_shutdown,
};
module_pci_driver(cpt_pci_driver);
MODULE_AUTHOR("George Cherian <george.cherian@cavium.com>");
MODULE_DESCRIPTION("Cavium Thunder CPT Physical Function Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, cpt_id_table);

View File

@ -0,0 +1,163 @@
/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include <linux/module.h>
#include "cptpf.h"
static void cpt_send_msg_to_vf(struct cpt_device *cpt, int vf,
struct cpt_mbox *mbx)
{
/* Writing mbox(0) causes interrupt */
cpt_write_csr64(cpt->reg_base, CPTX_PF_VFX_MBOXX(0, vf, 1),
mbx->data);
cpt_write_csr64(cpt->reg_base, CPTX_PF_VFX_MBOXX(0, vf, 0), mbx->msg);
}
/* ACKs VF's mailbox message
* @vf: VF to which ACK to be sent
*/
static void cpt_mbox_send_ack(struct cpt_device *cpt, int vf,
struct cpt_mbox *mbx)
{
mbx->data = 0ull;
mbx->msg = CPT_MBOX_MSG_TYPE_ACK;
cpt_send_msg_to_vf(cpt, vf, mbx);
}
static void cpt_clear_mbox_intr(struct cpt_device *cpt, u32 vf)
{
/* W1C for the VF */
cpt_write_csr64(cpt->reg_base, CPTX_PF_MBOX_INTX(0, 0), (1 << vf));
}
/*
* Configure QLEN/Chunk sizes for VF
*/
static void cpt_cfg_qlen_for_vf(struct cpt_device *cpt, int vf, u32 size)
{
union cptx_pf_qx_ctl pf_qx_ctl;
pf_qx_ctl.u = cpt_read_csr64(cpt->reg_base, CPTX_PF_QX_CTL(0, vf));
pf_qx_ctl.s.size = size;
pf_qx_ctl.s.cont_err = true;
cpt_write_csr64(cpt->reg_base, CPTX_PF_QX_CTL(0, vf), pf_qx_ctl.u);
}
/*
* Configure VQ priority
*/
static void cpt_cfg_vq_priority(struct cpt_device *cpt, int vf, u32 pri)
{
union cptx_pf_qx_ctl pf_qx_ctl;
pf_qx_ctl.u = cpt_read_csr64(cpt->reg_base, CPTX_PF_QX_CTL(0, vf));
pf_qx_ctl.s.pri = pri;
cpt_write_csr64(cpt->reg_base, CPTX_PF_QX_CTL(0, vf), pf_qx_ctl.u);
}
static u8 cpt_bind_vq_to_grp(struct cpt_device *cpt, u8 q, u8 grp)
{
struct microcode *mcode = cpt->mcode;
union cptx_pf_qx_ctl pf_qx_ctl;
struct device *dev = &cpt->pdev->dev;
if (q >= CPT_MAX_VF_NUM) {
dev_err(dev, "Queues are more than cores in the group");
return -EINVAL;
}
if (grp >= CPT_MAX_CORE_GROUPS) {
dev_err(dev, "Request group is more than possible groups");
return -EINVAL;
}
if (grp >= cpt->next_mc_idx) {
dev_err(dev, "Request group is higher than available functional groups");
return -EINVAL;
}
pf_qx_ctl.u = cpt_read_csr64(cpt->reg_base, CPTX_PF_QX_CTL(0, q));
pf_qx_ctl.s.grp = mcode[grp].group;
cpt_write_csr64(cpt->reg_base, CPTX_PF_QX_CTL(0, q), pf_qx_ctl.u);
dev_dbg(dev, "VF %d TYPE %s", q, (mcode[grp].is_ae ? "AE" : "SE"));
return mcode[grp].is_ae ? AE_TYPES : SE_TYPES;
}
/* Interrupt handler to handle mailbox messages from VFs */
static void cpt_handle_mbox_intr(struct cpt_device *cpt, int vf)
{
struct cpt_vf_info *vfx = &cpt->vfinfo[vf];
struct cpt_mbox mbx = {};
u8 vftype;
struct device *dev = &cpt->pdev->dev;
/*
* MBOX[0] contains msg
* MBOX[1] contains data
*/
mbx.msg = cpt_read_csr64(cpt->reg_base, CPTX_PF_VFX_MBOXX(0, vf, 0));
mbx.data = cpt_read_csr64(cpt->reg_base, CPTX_PF_VFX_MBOXX(0, vf, 1));
dev_dbg(dev, "%s: Mailbox msg 0x%llx from VF%d", __func__, mbx.msg, vf);
switch (mbx.msg) {
case CPT_MSG_VF_UP:
vfx->state = VF_STATE_UP;
try_module_get(THIS_MODULE);
cpt_mbox_send_ack(cpt, vf, &mbx);
break;
case CPT_MSG_READY:
mbx.msg = CPT_MSG_READY;
mbx.data = vf;
cpt_send_msg_to_vf(cpt, vf, &mbx);
break;
case CPT_MSG_VF_DOWN:
/* First msg in VF teardown sequence */
vfx->state = VF_STATE_DOWN;
module_put(THIS_MODULE);
cpt_mbox_send_ack(cpt, vf, &mbx);
break;
case CPT_MSG_QLEN:
vfx->qlen = mbx.data;
cpt_cfg_qlen_for_vf(cpt, vf, vfx->qlen);
cpt_mbox_send_ack(cpt, vf, &mbx);
break;
case CPT_MSG_QBIND_GRP:
vftype = cpt_bind_vq_to_grp(cpt, vf, (u8)mbx.data);
if ((vftype != AE_TYPES) && (vftype != SE_TYPES))
dev_err(dev, "Queue %d binding to group %llu failed",
vf, mbx.data);
else {
dev_dbg(dev, "Queue %d binding to group %llu successful",
vf, mbx.data);
mbx.msg = CPT_MSG_QBIND_GRP;
mbx.data = vftype;
cpt_send_msg_to_vf(cpt, vf, &mbx);
}
break;
case CPT_MSG_VQ_PRIORITY:
vfx->priority = mbx.data;
cpt_cfg_vq_priority(cpt, vf, vfx->priority);
cpt_mbox_send_ack(cpt, vf, &mbx);
break;
default:
dev_err(&cpt->pdev->dev, "Invalid msg from VF%d, msg 0x%llx\n",
vf, mbx.msg);
break;
}
}
void cpt_mbox_intr_handler (struct cpt_device *cpt, int mbx)
{
u64 intr;
u8 vf;
intr = cpt_read_csr64(cpt->reg_base, CPTX_PF_MBOX_INTX(0, 0));
dev_dbg(&cpt->pdev->dev, "PF interrupt Mbox%d 0x%llx\n", mbx, intr);
for (vf = 0; vf < CPT_MAX_VF_NUM; vf++) {
if (intr & (1ULL << vf)) {
dev_dbg(&cpt->pdev->dev, "Intr from VF %d\n", vf);
cpt_handle_mbox_intr(cpt, vf);
cpt_clear_mbox_intr(cpt, vf);
}
}
}