mirror of
https://github.com/torvalds/linux.git
synced 2024-12-15 23:51:46 +00:00
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of gettimeofday() going backwards by 1 microsecond, assuming that userspace is using the gettimeofday() in the VDSO. The VDSO gettimeofday() algorithm computes the time in "xsecs", which are units of 2^-20 seconds, or approximately 0.954 microseconds, using the algorithm now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec and then converts the time in xsecs to seconds and microseconds. The kernel updates the tb_orig_stamp and stamp_xsec values every tick in update_vsyscall(). If the length of the tick is not an integer number of xsecs, then some precision is lost in converting the current time to xsecs. For example, with CONFIG_HZ=1000, the tick is 1ms long, which is 1048.576 xsecs. That means that stamp_xsec will advance by either 1048 or 1049 on each tick. With the right conditions, it is possible for userspace to get (timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is slightly late in updating the vdso_datapage, and then for stamp_xsec to advance by 1048 when the kernel does update it, and for userspace to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to integer truncation. The result is that time appears to go backwards by 1 microsecond. To fix this we change the VDSO gettimeofday to use a new field in the VDSO datapage which stores the nanoseconds part of the time as a fractional number of seconds in a 0.32 binary fraction format. (Or put another way, as a 32-bit number in units of 0.23283 ns.) This is convenient because we can use the mulhwu instruction to convert it to either microseconds or nanoseconds. Since it turns out that computing the time of day using this new field is simpler than either using stamp_xsec (as gettimeofday does) or stamp_xtime.tv_nsec (as clock_gettime does), this converts both gettimeofday and clock_gettime to use the new field. The existing __do_get_tspec function is converted to use the new field and take a parameter in r7 that indicates the desired resolution, 1,000,000 for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec function is then unused and is deleted. The new algorithm is now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs + (stamp_xtime_seconds << 32) + stamp_sec_fraction with 'now' in units of 2^-32 seconds. That is then converted to seconds and either microseconds or nanoseconds with seconds = now >> 32 partseconds = ((now & 0xffffffff) * resolution) >> 32 The 32-bit VDSO code also makes a further simplification: it ignores the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary fraction. Doing so gets rid of 4 multiply instructions. Assuming a timebase frequency of 1GHz or less and an update interval of no more than 10ms, the upper 32 bits of tb_to_xs will be at least 4503599, so the error from ignoring the low 32 bits will be at most 2.2ns, which is more than an order of magnitude less than the time taken to do gettimeofday or clock_gettime on our fastest processors, so there is no possibility of seeing inconsistent values due to this. This also moves update_gtod() down next to its only caller, and makes update_vsyscall use the time passed in via the wall_time argument rather than accessing xtime directly. At present, wall_time always points to xtime, but that could change in future. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This commit is contained in:
parent
5f07aa7524
commit
8fd63a9ea7
@ -85,6 +85,7 @@ struct vdso_data {
|
||||
__s32 wtom_clock_sec; /* Wall to monotonic clock */
|
||||
__s32 wtom_clock_nsec;
|
||||
struct timespec stamp_xtime; /* xtime as at tb_orig_stamp */
|
||||
__u32 stamp_sec_fraction; /* fractional seconds of stamp_xtime */
|
||||
__u32 syscall_map_64[SYSCALL_MAP_SIZE]; /* map of syscalls */
|
||||
__u32 syscall_map_32[SYSCALL_MAP_SIZE]; /* map of syscalls */
|
||||
};
|
||||
@ -105,6 +106,7 @@ struct vdso_data {
|
||||
__s32 wtom_clock_sec; /* Wall to monotonic clock */
|
||||
__s32 wtom_clock_nsec;
|
||||
struct timespec stamp_xtime; /* xtime as at tb_orig_stamp */
|
||||
__u32 stamp_sec_fraction; /* fractional seconds of stamp_xtime */
|
||||
__u32 syscall_map_32[SYSCALL_MAP_SIZE]; /* map of syscalls */
|
||||
__u32 dcache_block_size; /* L1 d-cache block size */
|
||||
__u32 icache_block_size; /* L1 i-cache block size */
|
||||
|
@ -342,6 +342,7 @@ int main(void)
|
||||
DEFINE(WTOM_CLOCK_SEC, offsetof(struct vdso_data, wtom_clock_sec));
|
||||
DEFINE(WTOM_CLOCK_NSEC, offsetof(struct vdso_data, wtom_clock_nsec));
|
||||
DEFINE(STAMP_XTIME, offsetof(struct vdso_data, stamp_xtime));
|
||||
DEFINE(STAMP_SEC_FRAC, offsetof(struct vdso_data, stamp_sec_fraction));
|
||||
DEFINE(CFG_ICACHE_BLOCKSZ, offsetof(struct vdso_data, icache_block_size));
|
||||
DEFINE(CFG_DCACHE_BLOCKSZ, offsetof(struct vdso_data, dcache_block_size));
|
||||
DEFINE(CFG_ICACHE_LOGBLOCKSZ, offsetof(struct vdso_data, icache_log_block_size));
|
||||
|
@ -423,30 +423,6 @@ void udelay(unsigned long usecs)
|
||||
}
|
||||
EXPORT_SYMBOL(udelay);
|
||||
|
||||
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
|
||||
u64 new_tb_to_xs)
|
||||
{
|
||||
/*
|
||||
* tb_update_count is used to allow the userspace gettimeofday code
|
||||
* to assure itself that it sees a consistent view of the tb_to_xs and
|
||||
* stamp_xsec variables. It reads the tb_update_count, then reads
|
||||
* tb_to_xs and stamp_xsec and then reads tb_update_count again. If
|
||||
* the two values of tb_update_count match and are even then the
|
||||
* tb_to_xs and stamp_xsec values are consistent. If not, then it
|
||||
* loops back and reads them again until this criteria is met.
|
||||
* We expect the caller to have done the first increment of
|
||||
* vdso_data->tb_update_count already.
|
||||
*/
|
||||
vdso_data->tb_orig_stamp = new_tb_stamp;
|
||||
vdso_data->stamp_xsec = new_stamp_xsec;
|
||||
vdso_data->tb_to_xs = new_tb_to_xs;
|
||||
vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
|
||||
vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
|
||||
vdso_data->stamp_xtime = xtime;
|
||||
smp_wmb();
|
||||
++(vdso_data->tb_update_count);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
unsigned long profile_pc(struct pt_regs *regs)
|
||||
{
|
||||
@ -873,10 +849,37 @@ static cycle_t timebase_read(struct clocksource *cs)
|
||||
return (cycle_t)get_tb();
|
||||
}
|
||||
|
||||
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
|
||||
u64 new_tb_to_xs, struct timespec *now,
|
||||
u32 frac_sec)
|
||||
{
|
||||
/*
|
||||
* tb_update_count is used to allow the userspace gettimeofday code
|
||||
* to assure itself that it sees a consistent view of the tb_to_xs and
|
||||
* stamp_xsec variables. It reads the tb_update_count, then reads
|
||||
* tb_to_xs and stamp_xsec and then reads tb_update_count again. If
|
||||
* the two values of tb_update_count match and are even then the
|
||||
* tb_to_xs and stamp_xsec values are consistent. If not, then it
|
||||
* loops back and reads them again until this criteria is met.
|
||||
* We expect the caller to have done the first increment of
|
||||
* vdso_data->tb_update_count already.
|
||||
*/
|
||||
vdso_data->tb_orig_stamp = new_tb_stamp;
|
||||
vdso_data->stamp_xsec = new_stamp_xsec;
|
||||
vdso_data->tb_to_xs = new_tb_to_xs;
|
||||
vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
|
||||
vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
|
||||
vdso_data->stamp_xtime = *now;
|
||||
vdso_data->stamp_sec_fraction = frac_sec;
|
||||
smp_wmb();
|
||||
++(vdso_data->tb_update_count);
|
||||
}
|
||||
|
||||
void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
|
||||
u32 mult)
|
||||
{
|
||||
u64 t2x, stamp_xsec;
|
||||
u32 frac_sec;
|
||||
|
||||
if (clock != &clocksource_timebase)
|
||||
return;
|
||||
@ -888,10 +891,14 @@ void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
|
||||
/* XXX this assumes clock->shift == 22 */
|
||||
/* 4611686018 ~= 2^(20+64-22) / 1e9 */
|
||||
t2x = (u64) mult * 4611686018ULL;
|
||||
stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
|
||||
stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
|
||||
do_div(stamp_xsec, 1000000000);
|
||||
stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
|
||||
update_gtod(clock->cycle_last, stamp_xsec, t2x);
|
||||
stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
|
||||
|
||||
BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
|
||||
/* this is tv_nsec / 1e9 as a 0.32 fraction */
|
||||
frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
|
||||
update_gtod(clock->cycle_last, stamp_xsec, t2x, wall_time, frac_sec);
|
||||
}
|
||||
|
||||
void update_vsyscall_tz(void)
|
||||
|
@ -19,8 +19,10 @@
|
||||
/* Offset for the low 32-bit part of a field of long type */
|
||||
#ifdef CONFIG_PPC64
|
||||
#define LOPART 4
|
||||
#define TSPEC_TV_SEC TSPC64_TV_SEC+LOPART
|
||||
#else
|
||||
#define LOPART 0
|
||||
#define TSPEC_TV_SEC TSPC32_TV_SEC
|
||||
#endif
|
||||
|
||||
.text
|
||||
@ -41,23 +43,11 @@ V_FUNCTION_BEGIN(__kernel_gettimeofday)
|
||||
mr r9, r3 /* datapage ptr in r9 */
|
||||
cmplwi r10,0 /* check if tv is NULL */
|
||||
beq 3f
|
||||
bl __do_get_xsec@local /* get xsec from tb & kernel */
|
||||
bne- 2f /* out of line -> do syscall */
|
||||
|
||||
/* seconds are xsec >> 20 */
|
||||
rlwinm r5,r4,12,20,31
|
||||
rlwimi r5,r3,12,0,19
|
||||
stw r5,TVAL32_TV_SEC(r10)
|
||||
|
||||
/* get remaining xsec and convert to usec. we scale
|
||||
* up remaining xsec by 12 bits and get the top 32 bits
|
||||
* of the multiplication
|
||||
*/
|
||||
rlwinm r5,r4,12,0,19
|
||||
lis r6,1000000@h
|
||||
ori r6,r6,1000000@l
|
||||
mulhwu r5,r5,r6
|
||||
stw r5,TVAL32_TV_USEC(r10)
|
||||
lis r7,1000000@ha /* load up USEC_PER_SEC */
|
||||
addi r7,r7,1000000@l /* so we get microseconds in r4 */
|
||||
bl __do_get_tspec@local /* get sec/usec from tb & kernel */
|
||||
stw r3,TVAL32_TV_SEC(r10)
|
||||
stw r4,TVAL32_TV_USEC(r10)
|
||||
|
||||
3: cmplwi r11,0 /* check if tz is NULL */
|
||||
beq 1f
|
||||
@ -70,14 +60,6 @@ V_FUNCTION_BEGIN(__kernel_gettimeofday)
|
||||
crclr cr0*4+so
|
||||
li r3,0
|
||||
blr
|
||||
|
||||
2:
|
||||
mtlr r12
|
||||
mr r3,r10
|
||||
mr r4,r11
|
||||
li r0,__NR_gettimeofday
|
||||
sc
|
||||
blr
|
||||
.cfi_endproc
|
||||
V_FUNCTION_END(__kernel_gettimeofday)
|
||||
|
||||
@ -100,7 +82,8 @@ V_FUNCTION_BEGIN(__kernel_clock_gettime)
|
||||
mr r11,r4 /* r11 saves tp */
|
||||
bl __get_datapage@local /* get data page */
|
||||
mr r9,r3 /* datapage ptr in r9 */
|
||||
|
||||
lis r7,NSEC_PER_SEC@h /* want nanoseconds */
|
||||
ori r7,r7,NSEC_PER_SEC@l
|
||||
50: bl __do_get_tspec@local /* get sec/nsec from tb & kernel */
|
||||
bne cr1,80f /* not monotonic -> all done */
|
||||
|
||||
@ -198,83 +181,12 @@ V_FUNCTION_END(__kernel_clock_getres)
|
||||
|
||||
|
||||
/*
|
||||
* This is the core of gettimeofday() & friends, it returns the xsec
|
||||
* value in r3 & r4 and expects the datapage ptr (non clobbered)
|
||||
* in r9. clobbers r0,r4,r5,r6,r7,r8.
|
||||
* When returning, r8 contains the counter value that can be reused
|
||||
* by the monotonic clock implementation
|
||||
*/
|
||||
__do_get_xsec:
|
||||
.cfi_startproc
|
||||
/* Check for update count & load values. We use the low
|
||||
* order 32 bits of the update count
|
||||
*/
|
||||
1: lwz r8,(CFG_TB_UPDATE_COUNT+LOPART)(r9)
|
||||
andi. r0,r8,1 /* pending update ? loop */
|
||||
bne- 1b
|
||||
xor r0,r8,r8 /* create dependency */
|
||||
add r9,r9,r0
|
||||
|
||||
/* Load orig stamp (offset to TB) */
|
||||
lwz r5,CFG_TB_ORIG_STAMP(r9)
|
||||
lwz r6,(CFG_TB_ORIG_STAMP+4)(r9)
|
||||
|
||||
/* Get a stable TB value */
|
||||
2: mftbu r3
|
||||
mftbl r4
|
||||
mftbu r0
|
||||
cmpl cr0,r3,r0
|
||||
bne- 2b
|
||||
|
||||
/* Substract tb orig stamp. If the high part is non-zero, we jump to
|
||||
* the slow path which call the syscall.
|
||||
* If it's ok, then we have our 32 bits tb_ticks value in r7
|
||||
*/
|
||||
subfc r7,r6,r4
|
||||
subfe. r0,r5,r3
|
||||
bne- 3f
|
||||
|
||||
/* Load scale factor & do multiplication */
|
||||
lwz r5,CFG_TB_TO_XS(r9) /* load values */
|
||||
lwz r6,(CFG_TB_TO_XS+4)(r9)
|
||||
mulhwu r4,r7,r5
|
||||
mulhwu r6,r7,r6
|
||||
mullw r0,r7,r5
|
||||
addc r6,r6,r0
|
||||
|
||||
/* At this point, we have the scaled xsec value in r4 + XER:CA
|
||||
* we load & add the stamp since epoch
|
||||
*/
|
||||
lwz r5,CFG_STAMP_XSEC(r9)
|
||||
lwz r6,(CFG_STAMP_XSEC+4)(r9)
|
||||
adde r4,r4,r6
|
||||
addze r3,r5
|
||||
|
||||
/* We now have our result in r3,r4. We create a fake dependency
|
||||
* on that result and re-check the counter
|
||||
*/
|
||||
or r6,r4,r3
|
||||
xor r0,r6,r6
|
||||
add r9,r9,r0
|
||||
lwz r0,(CFG_TB_UPDATE_COUNT+LOPART)(r9)
|
||||
cmpl cr0,r8,r0 /* check if updated */
|
||||
bne- 1b
|
||||
|
||||
/* Warning ! The caller expects CR:EQ to be set to indicate a
|
||||
* successful calculation (so it won't fallback to the syscall
|
||||
* method). We have overriden that CR bit in the counter check,
|
||||
* but fortunately, the loop exit condition _is_ CR:EQ set, so
|
||||
* we can exit safely here. If you change this code, be careful
|
||||
* of that side effect.
|
||||
*/
|
||||
3: blr
|
||||
.cfi_endproc
|
||||
|
||||
/*
|
||||
* This is the core of clock_gettime(), it returns the current
|
||||
* time in seconds and nanoseconds in r3 and r4.
|
||||
* This is the core of clock_gettime() and gettimeofday(),
|
||||
* it returns the current time in r3 (seconds) and r4.
|
||||
* On entry, r7 gives the resolution of r4, either USEC_PER_SEC
|
||||
* or NSEC_PER_SEC, giving r4 in microseconds or nanoseconds.
|
||||
* It expects the datapage ptr in r9 and doesn't clobber it.
|
||||
* It clobbers r0, r5, r6, r10 and returns NSEC_PER_SEC in r7.
|
||||
* It clobbers r0, r5 and r6.
|
||||
* On return, r8 contains the counter value that can be reused.
|
||||
* This clobbers cr0 but not any other cr field.
|
||||
*/
|
||||
@ -297,70 +209,58 @@ __do_get_tspec:
|
||||
2: mftbu r3
|
||||
mftbl r4
|
||||
mftbu r0
|
||||
cmpl cr0,r3,r0
|
||||
cmplw cr0,r3,r0
|
||||
bne- 2b
|
||||
|
||||
/* Subtract tb orig stamp and shift left 12 bits.
|
||||
*/
|
||||
subfc r7,r6,r4
|
||||
subfc r4,r6,r4
|
||||
subfe r0,r5,r3
|
||||
slwi r0,r0,12
|
||||
rlwimi. r0,r7,12,20,31
|
||||
slwi r7,r7,12
|
||||
rlwimi. r0,r4,12,20,31
|
||||
slwi r4,r4,12
|
||||
|
||||
/* Load scale factor & do multiplication */
|
||||
/*
|
||||
* Load scale factor & do multiplication.
|
||||
* We only use the high 32 bits of the tb_to_xs value.
|
||||
* Even with a 1GHz timebase clock, the high 32 bits of
|
||||
* tb_to_xs will be at least 4 million, so the error from
|
||||
* ignoring the low 32 bits will be no more than 0.25ppm.
|
||||
* The error will just make the clock run very very slightly
|
||||
* slow until the next time the kernel updates the VDSO data,
|
||||
* at which point the clock will catch up to the kernel's value,
|
||||
* so there is no long-term error accumulation.
|
||||
*/
|
||||
lwz r5,CFG_TB_TO_XS(r9) /* load values */
|
||||
lwz r6,(CFG_TB_TO_XS+4)(r9)
|
||||
mulhwu r3,r7,r6
|
||||
mullw r10,r7,r5
|
||||
mulhwu r4,r7,r5
|
||||
addc r10,r3,r10
|
||||
mulhwu r4,r4,r5
|
||||
li r3,0
|
||||
|
||||
beq+ 4f /* skip high part computation if 0 */
|
||||
mulhwu r3,r0,r5
|
||||
mullw r7,r0,r5
|
||||
mulhwu r5,r0,r6
|
||||
mullw r6,r0,r6
|
||||
adde r4,r4,r7
|
||||
addze r3,r3
|
||||
mullw r5,r0,r5
|
||||
addc r4,r4,r5
|
||||
addze r3,r3
|
||||
addc r10,r10,r6
|
||||
|
||||
4: addze r4,r4 /* add in carry */
|
||||
lis r7,NSEC_PER_SEC@h
|
||||
ori r7,r7,NSEC_PER_SEC@l
|
||||
mulhwu r4,r4,r7 /* convert to nanoseconds */
|
||||
|
||||
/* At this point, we have seconds & nanoseconds since the xtime
|
||||
* stamp in r3+CA and r4. Load & add the xtime stamp.
|
||||
4:
|
||||
/* At this point, we have seconds since the xtime stamp
|
||||
* as a 32.32 fixed-point number in r3 and r4.
|
||||
* Load & add the xtime stamp.
|
||||
*/
|
||||
#ifdef CONFIG_PPC64
|
||||
lwz r5,STAMP_XTIME+TSPC64_TV_SEC+LOPART(r9)
|
||||
lwz r6,STAMP_XTIME+TSPC64_TV_NSEC+LOPART(r9)
|
||||
#else
|
||||
lwz r5,STAMP_XTIME+TSPC32_TV_SEC(r9)
|
||||
lwz r6,STAMP_XTIME+TSPC32_TV_NSEC(r9)
|
||||
#endif
|
||||
add r4,r4,r6
|
||||
lwz r5,STAMP_XTIME+TSPEC_TV_SEC(r9)
|
||||
lwz r6,STAMP_SEC_FRAC(r9)
|
||||
addc r4,r4,r6
|
||||
adde r3,r3,r5
|
||||
|
||||
/* We now have our result in r3,r4. We create a fake dependency
|
||||
* on that result and re-check the counter
|
||||
/* We create a fake dependency on the result in r3/r4
|
||||
* and re-check the counter
|
||||
*/
|
||||
or r6,r4,r3
|
||||
xor r0,r6,r6
|
||||
add r9,r9,r0
|
||||
lwz r0,(CFG_TB_UPDATE_COUNT+LOPART)(r9)
|
||||
cmpl cr0,r8,r0 /* check if updated */
|
||||
cmplw cr0,r8,r0 /* check if updated */
|
||||
bne- 1b
|
||||
|
||||
/* check for nanosecond overflow and adjust if necessary */
|
||||
cmpw r4,r7
|
||||
bltlr /* all done if no overflow */
|
||||
subf r4,r7,r4 /* adjust if overflow */
|
||||
addi r3,r3,1
|
||||
mulhwu r4,r4,r7 /* convert to micro or nanoseconds */
|
||||
|
||||
blr
|
||||
.cfi_endproc
|
||||
|
@ -33,18 +33,11 @@ V_FUNCTION_BEGIN(__kernel_gettimeofday)
|
||||
bl V_LOCAL_FUNC(__get_datapage) /* get data page */
|
||||
cmpldi r11,0 /* check if tv is NULL */
|
||||
beq 2f
|
||||
bl V_LOCAL_FUNC(__do_get_xsec) /* get xsec from tb & kernel */
|
||||
lis r7,15 /* r7 = 1000000 = USEC_PER_SEC */
|
||||
ori r7,r7,16960
|
||||
rldicl r5,r4,44,20 /* r5 = sec = xsec / XSEC_PER_SEC */
|
||||
rldicr r6,r5,20,43 /* r6 = sec * XSEC_PER_SEC */
|
||||
std r5,TVAL64_TV_SEC(r11) /* store sec in tv */
|
||||
subf r0,r6,r4 /* r0 = xsec = (xsec - r6) */
|
||||
mulld r0,r0,r7 /* usec = (xsec * USEC_PER_SEC) /
|
||||
* XSEC_PER_SEC
|
||||
*/
|
||||
rldicl r0,r0,44,20
|
||||
std r0,TVAL64_TV_USEC(r11) /* store usec in tv */
|
||||
lis r7,1000000@ha /* load up USEC_PER_SEC */
|
||||
addi r7,r7,1000000@l
|
||||
bl V_LOCAL_FUNC(__do_get_tspec) /* get sec/us from tb & kernel */
|
||||
std r4,TVAL64_TV_SEC(r11) /* store sec in tv */
|
||||
std r5,TVAL64_TV_USEC(r11) /* store usec in tv */
|
||||
2: cmpldi r10,0 /* check if tz is NULL */
|
||||
beq 1f
|
||||
lwz r4,CFG_TZ_MINUTEWEST(r3)/* fill tz */
|
||||
@ -77,6 +70,8 @@ V_FUNCTION_BEGIN(__kernel_clock_gettime)
|
||||
.cfi_register lr,r12
|
||||
mr r11,r4 /* r11 saves tp */
|
||||
bl V_LOCAL_FUNC(__get_datapage) /* get data page */
|
||||
lis r7,NSEC_PER_SEC@h /* want nanoseconds */
|
||||
ori r7,r7,NSEC_PER_SEC@l
|
||||
50: bl V_LOCAL_FUNC(__do_get_tspec) /* get time from tb & kernel */
|
||||
bne cr1,80f /* if not monotonic, all done */
|
||||
|
||||
@ -171,49 +166,12 @@ V_FUNCTION_END(__kernel_clock_getres)
|
||||
|
||||
|
||||
/*
|
||||
* This is the core of gettimeofday(), it returns the xsec
|
||||
* value in r4 and expects the datapage ptr (non clobbered)
|
||||
* in r3. clobbers r0,r4,r5,r6,r7,r8
|
||||
* When returning, r8 contains the counter value that can be reused
|
||||
*/
|
||||
V_FUNCTION_BEGIN(__do_get_xsec)
|
||||
.cfi_startproc
|
||||
/* check for update count & load values */
|
||||
1: ld r8,CFG_TB_UPDATE_COUNT(r3)
|
||||
andi. r0,r8,1 /* pending update ? loop */
|
||||
bne- 1b
|
||||
xor r0,r8,r8 /* create dependency */
|
||||
add r3,r3,r0
|
||||
|
||||
/* Get TB & offset it. We use the MFTB macro which will generate
|
||||
* workaround code for Cell.
|
||||
*/
|
||||
MFTB(r7)
|
||||
ld r9,CFG_TB_ORIG_STAMP(r3)
|
||||
subf r7,r9,r7
|
||||
|
||||
/* Scale result */
|
||||
ld r5,CFG_TB_TO_XS(r3)
|
||||
mulhdu r7,r7,r5
|
||||
|
||||
/* Add stamp since epoch */
|
||||
ld r6,CFG_STAMP_XSEC(r3)
|
||||
add r4,r6,r7
|
||||
|
||||
xor r0,r4,r4
|
||||
add r3,r3,r0
|
||||
ld r0,CFG_TB_UPDATE_COUNT(r3)
|
||||
cmpld cr0,r0,r8 /* check if updated */
|
||||
bne- 1b
|
||||
blr
|
||||
.cfi_endproc
|
||||
V_FUNCTION_END(__do_get_xsec)
|
||||
|
||||
/*
|
||||
* This is the core of clock_gettime(), it returns the current
|
||||
* time in seconds and nanoseconds in r4 and r5.
|
||||
* This is the core of clock_gettime() and gettimeofday(),
|
||||
* it returns the current time in r4 (seconds) and r5.
|
||||
* On entry, r7 gives the resolution of r5, either USEC_PER_SEC
|
||||
* or NSEC_PER_SEC, giving r5 in microseconds or nanoseconds.
|
||||
* It expects the datapage ptr in r3 and doesn't clobber it.
|
||||
* It clobbers r0 and r6 and returns NSEC_PER_SEC in r7.
|
||||
* It clobbers r0, r6 and r9.
|
||||
* On return, r8 contains the counter value that can be reused.
|
||||
* This clobbers cr0 but not any other cr field.
|
||||
*/
|
||||
@ -229,18 +187,18 @@ V_FUNCTION_BEGIN(__do_get_tspec)
|
||||
/* Get TB & offset it. We use the MFTB macro which will generate
|
||||
* workaround code for Cell.
|
||||
*/
|
||||
MFTB(r7)
|
||||
MFTB(r6)
|
||||
ld r9,CFG_TB_ORIG_STAMP(r3)
|
||||
subf r7,r9,r7
|
||||
subf r6,r9,r6
|
||||
|
||||
/* Scale result */
|
||||
ld r5,CFG_TB_TO_XS(r3)
|
||||
sldi r7,r7,12 /* compute time since stamp_xtime */
|
||||
mulhdu r6,r7,r5 /* in units of 2^-32 seconds */
|
||||
sldi r6,r6,12 /* compute time since stamp_xtime */
|
||||
mulhdu r6,r6,r5 /* in units of 2^-32 seconds */
|
||||
|
||||
/* Add stamp since epoch */
|
||||
ld r4,STAMP_XTIME+TSPC64_TV_SEC(r3)
|
||||
ld r5,STAMP_XTIME+TSPC64_TV_NSEC(r3)
|
||||
lwz r5,STAMP_SEC_FRAC(r3)
|
||||
or r0,r4,r5
|
||||
or r0,r0,r6
|
||||
xor r0,r0,r0
|
||||
@ -250,17 +208,11 @@ V_FUNCTION_BEGIN(__do_get_tspec)
|
||||
bne- 1b /* reload if so */
|
||||
|
||||
/* convert to seconds & nanoseconds and add to stamp */
|
||||
lis r7,NSEC_PER_SEC@h
|
||||
ori r7,r7,NSEC_PER_SEC@l
|
||||
mulhwu r0,r6,r7 /* compute nanoseconds and */
|
||||
add r6,r6,r5 /* add on fractional seconds of xtime */
|
||||
mulhwu r5,r6,r7 /* compute micro or nanoseconds and */
|
||||
srdi r6,r6,32 /* seconds since stamp_xtime */
|
||||
clrldi r0,r0,32
|
||||
add r5,r5,r0 /* add nanoseconds together */
|
||||
cmpd r5,r7 /* overflow? */
|
||||
clrldi r5,r5,32
|
||||
add r4,r4,r6
|
||||
bltlr /* all done if no overflow */
|
||||
subf r5,r7,r5 /* if overflow, adjust */
|
||||
addi r4,r4,1
|
||||
blr
|
||||
.cfi_endproc
|
||||
V_FUNCTION_END(__do_get_tspec)
|
||||
|
Loading…
Reference in New Issue
Block a user