Merge tag 'drm-intel-next-2016-03-30' of git://anongit.freedesktop.org/drm-intel into drm-next

- VBT code refactor for a clean split between parsing&using of firmware
  information (Jani)
- untangle the pll computation code, and splitting up the monster
  i9xx_crtc_compute_clocks (Ander)
- dsi support for bxt (Jani, Shashank Sharma and others)
- color manager (i.e. de-gamma, color conversion matrix & gamma support) from
  Lionel Landwerlin
- Vulkan hsw support in the command parser (Jordan Justen)
- large-scale renaming of intel_engine_cs variables/parameters to avoid the epic
  ring vs. engine confusion introduced in gen8 (Tvrtko Ursulin)
- few atomic patches from Maarten&Matt, big one is two-stage wm programming on ilk-bdw
- refactor driver load and add infrastructure to inject load failures for
  testing, from Imre
- various small things all over

* tag 'drm-intel-next-2016-03-30' of git://anongit.freedesktop.org/drm-intel: (179 commits)
  drm/i915: Update DRIVER_DATE to 20160330
  drm/i915: Call intel_dp_mst_resume() before resuming displays
  drm/i915: Fix races on fbdev
  drm/i915: remove unused dev_priv->render_reclock_avail
  drm/i915: move sdvo mappings to vbt data
  drm/i915: move edp low vswing config to vbt data
  drm/i915: use a substruct in vbt data for edp
  drm/i915: replace for_each_engine()
  drm/i915: introduce for_each_engine_id()
  drm/i915/bxt: Fix DSI HW state readout
  drm/i915: Remove vblank wait from hsw_enable_ips, v2.
  drm/i915: Tidy aliasing_gtt_bind_vma()
  drm/i915: Split PNV version of crtc_compute_clock()
  drm/i915: Split g4x_crtc_compute_clock()
  drm/i915: Split i8xx_crtc_compute_clock()
  drm/i915: Split CHV and VLV specific crtc_compute_clock() hooks
  drm/i915: Merge ironlake_compute_clocks() and ironlake_crtc_compute_clock()
  drm/i915: Move fp divisor calculation into ironlake_compute_dpll()
  drm/i915: Pass crtc_state->dpll directly to ->find_dpll()
  drm/i915: Simplify ironlake_crtc_compute_clock() CPU eDP case
  ...
This commit is contained in:
Dave Airlie 2016-04-06 09:40:07 +10:00
commit 85bd5ac371
68 changed files with 8985 additions and 6988 deletions

View File

@ -2153,7 +2153,11 @@ void intel_crt_init(struct drm_device *dev)
<td valign="top" >ENUM</td>
<td valign="top" >{ "Automatic", "Full", "Limited 16:235" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
<td valign="top" >When this property is set to Limited 16:235
and CTM is set, the hardware will be programmed with the
result of the multiplication of CTM by the limited range
matrix to ensure the pixels normaly in the range 0..1.0 are
remapped to the range 16/255..235/255.</td>
</tr>
<tr>
<td valign="top" >“audio”</td>
@ -3334,7 +3338,7 @@ int num_ioctls;</synopsis>
<title>Video BIOS Table (VBT)</title>
!Pdrivers/gpu/drm/i915/intel_bios.c Video BIOS Table (VBT)
!Idrivers/gpu/drm/i915/intel_bios.c
!Idrivers/gpu/drm/i915/intel_bios.h
!Idrivers/gpu/drm/i915/intel_vbt_defs.h
</sect2>
</sect1>

View File

@ -56,3 +56,9 @@ config DRM_I915_USERPTR
selected to enabled full userptr support.
If in doubt, say "Y".
menu "drm/i915 Debugging"
depends on DRM_I915
depends on EXPERT
source drivers/gpu/drm/i915/Kconfig.debug
endmenu

View File

@ -0,0 +1,12 @@
config DRM_I915_DEBUG
bool "Enable additional driver debugging"
depends on DRM_I915
default n
help
Choose this option to turn on extra driver debugging that may affect
performance but will catch some internal issues.
Recommended for driver developers only.
If in doubt, say "N".

View File

@ -55,7 +55,9 @@ i915-y += intel_audio.o \
intel_atomic.o \
intel_atomic_plane.o \
intel_bios.o \
intel_color.o \
intel_display.o \
intel_dpll_mgr.o \
intel_fbc.o \
intel_fifo_underrun.o \
intel_frontbuffer.o \

View File

@ -444,6 +444,7 @@ static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
REG64(CL_PRIMITIVES_COUNT),
REG64(PS_INVOCATION_COUNT),
REG64(PS_DEPTH_COUNT),
REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
REG32(OACONTROL), /* Only allowed for LRI and SRM. See below. */
REG64(MI_PREDICATE_SRC0),
REG64(MI_PREDICATE_SRC1),
@ -471,6 +472,25 @@ static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
REG32(GEN7_L3SQCREG1),
REG32(GEN7_L3CNTLREG2),
REG32(GEN7_L3CNTLREG3),
};
static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
REG64_IDX(HSW_CS_GPR, 0),
REG64_IDX(HSW_CS_GPR, 1),
REG64_IDX(HSW_CS_GPR, 2),
REG64_IDX(HSW_CS_GPR, 3),
REG64_IDX(HSW_CS_GPR, 4),
REG64_IDX(HSW_CS_GPR, 5),
REG64_IDX(HSW_CS_GPR, 6),
REG64_IDX(HSW_CS_GPR, 7),
REG64_IDX(HSW_CS_GPR, 8),
REG64_IDX(HSW_CS_GPR, 9),
REG64_IDX(HSW_CS_GPR, 10),
REG64_IDX(HSW_CS_GPR, 11),
REG64_IDX(HSW_CS_GPR, 12),
REG64_IDX(HSW_CS_GPR, 13),
REG64_IDX(HSW_CS_GPR, 14),
REG64_IDX(HSW_CS_GPR, 15),
REG32(HSW_SCRATCH1,
.mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
.value = 0),
@ -500,6 +520,33 @@ static const struct drm_i915_reg_descriptor hsw_master_regs[] = {
#undef REG64
#undef REG32
struct drm_i915_reg_table {
const struct drm_i915_reg_descriptor *regs;
int num_regs;
bool master;
};
static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false },
{ ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true },
};
static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false },
{ ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true },
};
static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false },
{ hsw_render_regs, ARRAY_SIZE(hsw_render_regs), false },
{ hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true },
};
static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false },
{ hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true },
};
static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
{
u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
@ -555,7 +602,7 @@ static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
return 0;
}
static bool validate_cmds_sorted(struct intel_engine_cs *ring,
static bool validate_cmds_sorted(struct intel_engine_cs *engine,
const struct drm_i915_cmd_table *cmd_tables,
int cmd_table_count)
{
@ -577,7 +624,7 @@ static bool validate_cmds_sorted(struct intel_engine_cs *ring,
if (curr < previous) {
DRM_ERROR("CMD: table not sorted ring=%d table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
ring->id, i, j, curr, previous);
engine->id, i, j, curr, previous);
ret = false;
}
@ -611,11 +658,18 @@ static bool check_sorted(int ring_id,
return ret;
}
static bool validate_regs_sorted(struct intel_engine_cs *ring)
static bool validate_regs_sorted(struct intel_engine_cs *engine)
{
return check_sorted(ring->id, ring->reg_table, ring->reg_count) &&
check_sorted(ring->id, ring->master_reg_table,
ring->master_reg_count);
int i;
const struct drm_i915_reg_table *table;
for (i = 0; i < engine->reg_table_count; i++) {
table = &engine->reg_tables[i];
if (!check_sorted(engine->id, table->regs, table->num_regs))
return false;
}
return true;
}
struct cmd_node {
@ -639,13 +693,13 @@ struct cmd_node {
*/
#define CMD_HASH_MASK STD_MI_OPCODE_MASK
static int init_hash_table(struct intel_engine_cs *ring,
static int init_hash_table(struct intel_engine_cs *engine,
const struct drm_i915_cmd_table *cmd_tables,
int cmd_table_count)
{
int i, j;
hash_init(ring->cmd_hash);
hash_init(engine->cmd_hash);
for (i = 0; i < cmd_table_count; i++) {
const struct drm_i915_cmd_table *table = &cmd_tables[i];
@ -660,7 +714,7 @@ static int init_hash_table(struct intel_engine_cs *ring,
return -ENOMEM;
desc_node->desc = desc;
hash_add(ring->cmd_hash, &desc_node->node,
hash_add(engine->cmd_hash, &desc_node->node,
desc->cmd.value & CMD_HASH_MASK);
}
}
@ -668,13 +722,13 @@ static int init_hash_table(struct intel_engine_cs *ring,
return 0;
}
static void fini_hash_table(struct intel_engine_cs *ring)
static void fini_hash_table(struct intel_engine_cs *engine)
{
struct hlist_node *tmp;
struct cmd_node *desc_node;
int i;
hash_for_each_safe(ring->cmd_hash, i, tmp, desc_node, node) {
hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
hash_del(&desc_node->node);
kfree(desc_node);
}
@ -690,18 +744,18 @@ static void fini_hash_table(struct intel_engine_cs *ring)
*
* Return: non-zero if initialization fails
*/
int i915_cmd_parser_init_ring(struct intel_engine_cs *ring)
int i915_cmd_parser_init_ring(struct intel_engine_cs *engine)
{
const struct drm_i915_cmd_table *cmd_tables;
int cmd_table_count;
int ret;
if (!IS_GEN7(ring->dev))
if (!IS_GEN7(engine->dev))
return 0;
switch (ring->id) {
switch (engine->id) {
case RCS:
if (IS_HASWELL(ring->dev)) {
if (IS_HASWELL(engine->dev)) {
cmd_tables = hsw_render_ring_cmds;
cmd_table_count =
ARRAY_SIZE(hsw_render_ring_cmds);
@ -710,26 +764,23 @@ int i915_cmd_parser_init_ring(struct intel_engine_cs *ring)
cmd_table_count = ARRAY_SIZE(gen7_render_cmds);
}
ring->reg_table = gen7_render_regs;
ring->reg_count = ARRAY_SIZE(gen7_render_regs);
if (IS_HASWELL(ring->dev)) {
ring->master_reg_table = hsw_master_regs;
ring->master_reg_count = ARRAY_SIZE(hsw_master_regs);
if (IS_HASWELL(engine->dev)) {
engine->reg_tables = hsw_render_reg_tables;
engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
} else {
ring->master_reg_table = ivb_master_regs;
ring->master_reg_count = ARRAY_SIZE(ivb_master_regs);
engine->reg_tables = ivb_render_reg_tables;
engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
}
ring->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
break;
case VCS:
cmd_tables = gen7_video_cmds;
cmd_table_count = ARRAY_SIZE(gen7_video_cmds);
ring->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
break;
case BCS:
if (IS_HASWELL(ring->dev)) {
if (IS_HASWELL(engine->dev)) {
cmd_tables = hsw_blt_ring_cmds;
cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmds);
} else {
@ -737,44 +788,41 @@ int i915_cmd_parser_init_ring(struct intel_engine_cs *ring)
cmd_table_count = ARRAY_SIZE(gen7_blt_cmds);
}
ring->reg_table = gen7_blt_regs;
ring->reg_count = ARRAY_SIZE(gen7_blt_regs);
if (IS_HASWELL(ring->dev)) {
ring->master_reg_table = hsw_master_regs;
ring->master_reg_count = ARRAY_SIZE(hsw_master_regs);
if (IS_HASWELL(engine->dev)) {
engine->reg_tables = hsw_blt_reg_tables;
engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
} else {
ring->master_reg_table = ivb_master_regs;
ring->master_reg_count = ARRAY_SIZE(ivb_master_regs);
engine->reg_tables = ivb_blt_reg_tables;
engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
}
ring->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
break;
case VECS:
cmd_tables = hsw_vebox_cmds;
cmd_table_count = ARRAY_SIZE(hsw_vebox_cmds);
/* VECS can use the same length_mask function as VCS */
ring->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
break;
default:
DRM_ERROR("CMD: cmd_parser_init with unknown ring: %d\n",
ring->id);
engine->id);
BUG();
}
BUG_ON(!validate_cmds_sorted(ring, cmd_tables, cmd_table_count));
BUG_ON(!validate_regs_sorted(ring));
BUG_ON(!validate_cmds_sorted(engine, cmd_tables, cmd_table_count));
BUG_ON(!validate_regs_sorted(engine));
WARN_ON(!hash_empty(ring->cmd_hash));
WARN_ON(!hash_empty(engine->cmd_hash));
ret = init_hash_table(ring, cmd_tables, cmd_table_count);
ret = init_hash_table(engine, cmd_tables, cmd_table_count);
if (ret) {
DRM_ERROR("CMD: cmd_parser_init failed!\n");
fini_hash_table(ring);
fini_hash_table(engine);
return ret;
}
ring->needs_cmd_parser = true;
engine->needs_cmd_parser = true;
return 0;
}
@ -786,21 +834,21 @@ int i915_cmd_parser_init_ring(struct intel_engine_cs *ring)
* Releases any resources related to command parsing that may have been
* initialized for the specified ring.
*/
void i915_cmd_parser_fini_ring(struct intel_engine_cs *ring)
void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine)
{
if (!ring->needs_cmd_parser)
if (!engine->needs_cmd_parser)
return;
fini_hash_table(ring);
fini_hash_table(engine);
}
static const struct drm_i915_cmd_descriptor*
find_cmd_in_table(struct intel_engine_cs *ring,
find_cmd_in_table(struct intel_engine_cs *engine,
u32 cmd_header)
{
struct cmd_node *desc_node;
hash_for_each_possible(ring->cmd_hash, desc_node, node,
hash_for_each_possible(engine->cmd_hash, desc_node, node,
cmd_header & CMD_HASH_MASK) {
const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
u32 masked_cmd = desc->cmd.mask & cmd_header;
@ -822,18 +870,18 @@ find_cmd_in_table(struct intel_engine_cs *ring,
* ring's default length encoding and returns default_desc.
*/
static const struct drm_i915_cmd_descriptor*
find_cmd(struct intel_engine_cs *ring,
find_cmd(struct intel_engine_cs *engine,
u32 cmd_header,
struct drm_i915_cmd_descriptor *default_desc)
{
const struct drm_i915_cmd_descriptor *desc;
u32 mask;
desc = find_cmd_in_table(ring, cmd_header);
desc = find_cmd_in_table(engine, cmd_header);
if (desc)
return desc;
mask = ring->get_cmd_length_mask(cmd_header);
mask = engine->get_cmd_length_mask(cmd_header);
if (!mask)
return NULL;
@ -848,12 +896,31 @@ static const struct drm_i915_reg_descriptor *
find_reg(const struct drm_i915_reg_descriptor *table,
int count, u32 addr)
{
if (table) {
int i;
int i;
for (i = 0; i < count; i++) {
if (i915_mmio_reg_offset(table[i].addr) == addr)
return &table[i];
for (i = 0; i < count; i++) {
if (i915_mmio_reg_offset(table[i].addr) == addr)
return &table[i];
}
return NULL;
}
static const struct drm_i915_reg_descriptor *
find_reg_in_tables(const struct drm_i915_reg_table *tables,
int count, bool is_master, u32 addr)
{
int i;
const struct drm_i915_reg_table *table;
const struct drm_i915_reg_descriptor *reg;
for (i = 0; i < count; i++) {
table = &tables[i];
if (!table->master || is_master) {
reg = find_reg(table->regs, table->num_regs,
addr);
if (reg != NULL)
return reg;
}
}
@ -963,18 +1030,18 @@ unpin_src:
*
* Return: true if the ring requires software command parsing
*/
bool i915_needs_cmd_parser(struct intel_engine_cs *ring)
bool i915_needs_cmd_parser(struct intel_engine_cs *engine)
{
if (!ring->needs_cmd_parser)
if (!engine->needs_cmd_parser)
return false;
if (!USES_PPGTT(ring->dev))
if (!USES_PPGTT(engine->dev))
return false;
return (i915.enable_cmd_parser == 1);
}
static bool check_cmd(const struct intel_engine_cs *ring,
static bool check_cmd(const struct intel_engine_cs *engine,
const struct drm_i915_cmd_descriptor *desc,
const u32 *cmd, u32 length,
const bool is_master,
@ -1004,17 +1071,14 @@ static bool check_cmd(const struct intel_engine_cs *ring,
offset += step) {
const u32 reg_addr = cmd[offset] & desc->reg.mask;
const struct drm_i915_reg_descriptor *reg =
find_reg(ring->reg_table, ring->reg_count,
reg_addr);
if (!reg && is_master)
reg = find_reg(ring->master_reg_table,
ring->master_reg_count,
reg_addr);
find_reg_in_tables(engine->reg_tables,
engine->reg_table_count,
is_master,
reg_addr);
if (!reg) {
DRM_DEBUG_DRIVER("CMD: Rejected register 0x%08X in command: 0x%08X (ring=%d)\n",
reg_addr, *cmd, ring->id);
reg_addr, *cmd, engine->id);
return false;
}
@ -1087,7 +1151,7 @@ static bool check_cmd(const struct intel_engine_cs *ring,
*cmd,
desc->bits[i].mask,
desc->bits[i].expected,
dword, ring->id);
dword, engine->id);
return false;
}
}
@ -1113,7 +1177,7 @@ static bool check_cmd(const struct intel_engine_cs *ring,
* Return: non-zero if the parser finds violations or otherwise fails; -EACCES
* if the batch appears legal but should use hardware parsing
*/
int i915_parse_cmds(struct intel_engine_cs *ring,
int i915_parse_cmds(struct intel_engine_cs *engine,
struct drm_i915_gem_object *batch_obj,
struct drm_i915_gem_object *shadow_batch_obj,
u32 batch_start_offset,
@ -1147,7 +1211,7 @@ int i915_parse_cmds(struct intel_engine_cs *ring,
if (*cmd == MI_BATCH_BUFFER_END)
break;
desc = find_cmd(ring, *cmd, &default_desc);
desc = find_cmd(engine, *cmd, &default_desc);
if (!desc) {
DRM_DEBUG_DRIVER("CMD: Unrecognized command: 0x%08X\n",
*cmd);
@ -1179,7 +1243,7 @@ int i915_parse_cmds(struct intel_engine_cs *ring,
break;
}
if (!check_cmd(ring, desc, cmd, length, is_master,
if (!check_cmd(engine, desc, cmd, length, is_master,
&oacontrol_set)) {
ret = -EINVAL;
break;
@ -1223,6 +1287,7 @@ int i915_cmd_parser_get_version(void)
* 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
* 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
* 5. GPGPU dispatch compute indirect registers.
* 6. TIMESTAMP register and Haswell CS GPR registers
*/
return 5;
return 6;
}

View File

@ -129,10 +129,10 @@ static void
describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
struct i915_vma *vma;
int pin_count = 0;
int i;
enum intel_engine_id id;
seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
&obj->base,
@ -143,9 +143,9 @@ describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
obj->base.size / 1024,
obj->base.read_domains,
obj->base.write_domain);
for_each_ring(ring, dev_priv, i)
for_each_engine_id(engine, dev_priv, id)
seq_printf(m, "%x ",
i915_gem_request_get_seqno(obj->last_read_req[i]));
i915_gem_request_get_seqno(obj->last_read_req[id]));
seq_printf(m, "] %x %x%s%s%s",
i915_gem_request_get_seqno(obj->last_write_req),
i915_gem_request_get_seqno(obj->last_fenced_req),
@ -184,7 +184,7 @@ describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
}
if (obj->last_write_req != NULL)
seq_printf(m, " (%s)",
i915_gem_request_get_ring(obj->last_write_req)->name);
i915_gem_request_get_engine(obj->last_write_req)->name);
if (obj->frontbuffer_bits)
seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
}
@ -203,7 +203,7 @@ static int i915_gem_object_list_info(struct seq_file *m, void *data)
struct list_head *head;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_address_space *vm = &dev_priv->gtt.base;
struct i915_address_space *vm = &dev_priv->ggtt.base;
struct i915_vma *vma;
u64 total_obj_size, total_gtt_size;
int count, ret;
@ -397,15 +397,15 @@ static void print_batch_pool_stats(struct seq_file *m,
{
struct drm_i915_gem_object *obj;
struct file_stats stats;
struct intel_engine_cs *ring;
int i, j;
struct intel_engine_cs *engine;
int j;
memset(&stats, 0, sizeof(stats));
for_each_ring(ring, dev_priv, i) {
for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
for_each_engine(engine, dev_priv) {
for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
list_for_each_entry(obj,
&ring->batch_pool.cache_list[j],
&engine->batch_pool.cache_list[j],
batch_pool_link)
per_file_stats(0, obj, &stats);
}
@ -433,7 +433,7 @@ static int i915_gem_object_info(struct seq_file *m, void* data)
u32 count, mappable_count, purgeable_count;
u64 size, mappable_size, purgeable_size;
struct drm_i915_gem_object *obj;
struct i915_address_space *vm = &dev_priv->gtt.base;
struct i915_address_space *vm = &dev_priv->ggtt.base;
struct drm_file *file;
struct i915_vma *vma;
int ret;
@ -492,8 +492,8 @@ static int i915_gem_object_info(struct seq_file *m, void* data)
count, size);
seq_printf(m, "%llu [%llu] gtt total\n",
dev_priv->gtt.base.total,
(u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
dev_priv->ggtt.base.total,
(u64)dev_priv->ggtt.mappable_end - dev_priv->ggtt.base.start);
seq_putc(m, '\n');
print_batch_pool_stats(m, dev_priv);
@ -591,14 +591,13 @@ static int i915_gem_pageflip_info(struct seq_file *m, void *data)
pipe, plane);
}
if (work->flip_queued_req) {
struct intel_engine_cs *ring =
i915_gem_request_get_ring(work->flip_queued_req);
struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
ring->name,
engine->name,
i915_gem_request_get_seqno(work->flip_queued_req),
dev_priv->next_seqno,
ring->get_seqno(ring, true),
engine->get_seqno(engine, true),
i915_gem_request_completed(work->flip_queued_req, true));
} else
seq_printf(m, "Flip not associated with any ring\n");
@ -637,28 +636,28 @@ static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
int total = 0;
int ret, i, j;
int ret, j;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
for_each_ring(ring, dev_priv, i) {
for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
for_each_engine(engine, dev_priv) {
for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
int count;
count = 0;
list_for_each_entry(obj,
&ring->batch_pool.cache_list[j],
&engine->batch_pool.cache_list[j],
batch_pool_link)
count++;
seq_printf(m, "%s cache[%d]: %d objects\n",
ring->name, j, count);
engine->name, j, count);
list_for_each_entry(obj,
&ring->batch_pool.cache_list[j],
&engine->batch_pool.cache_list[j],
batch_pool_link) {
seq_puts(m, " ");
describe_obj(m, obj);
@ -681,26 +680,26 @@ static int i915_gem_request_info(struct seq_file *m, void *data)
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
struct drm_i915_gem_request *req;
int ret, any, i;
int ret, any;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
any = 0;
for_each_ring(ring, dev_priv, i) {
for_each_engine(engine, dev_priv) {
int count;
count = 0;
list_for_each_entry(req, &ring->request_list, list)
list_for_each_entry(req, &engine->request_list, list)
count++;
if (count == 0)
continue;
seq_printf(m, "%s requests: %d\n", ring->name, count);
list_for_each_entry(req, &ring->request_list, list) {
seq_printf(m, "%s requests: %d\n", engine->name, count);
list_for_each_entry(req, &engine->request_list, list) {
struct task_struct *task;
rcu_read_lock();
@ -726,11 +725,11 @@ static int i915_gem_request_info(struct seq_file *m, void *data)
}
static void i915_ring_seqno_info(struct seq_file *m,
struct intel_engine_cs *ring)
struct intel_engine_cs *engine)
{
if (ring->get_seqno) {
if (engine->get_seqno) {
seq_printf(m, "Current sequence (%s): %x\n",
ring->name, ring->get_seqno(ring, false));
engine->name, engine->get_seqno(engine, false));
}
}
@ -739,16 +738,16 @@ static int i915_gem_seqno_info(struct seq_file *m, void *data)
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int ret, i;
struct intel_engine_cs *engine;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
for_each_ring(ring, dev_priv, i)
i915_ring_seqno_info(m, ring);
for_each_engine(engine, dev_priv)
i915_ring_seqno_info(m, engine);
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
@ -762,7 +761,7 @@ static int i915_interrupt_info(struct seq_file *m, void *data)
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
int ret, i, pipe;
ret = mutex_lock_interruptible(&dev->struct_mutex);
@ -934,13 +933,13 @@ static int i915_interrupt_info(struct seq_file *m, void *data)
seq_printf(m, "Graphics Interrupt mask: %08x\n",
I915_READ(GTIMR));
}
for_each_ring(ring, dev_priv, i) {
for_each_engine(engine, dev_priv) {
if (INTEL_INFO(dev)->gen >= 6) {
seq_printf(m,
"Graphics Interrupt mask (%s): %08x\n",
ring->name, I915_READ_IMR(ring));
engine->name, I915_READ_IMR(engine));
}
i915_ring_seqno_info(m, ring);
i915_ring_seqno_info(m, engine);
}
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
@ -981,12 +980,12 @@ static int i915_hws_info(struct seq_file *m, void *data)
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
const u32 *hws;
int i;
ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
hws = ring->status_page.page_addr;
engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
hws = engine->status_page.page_addr;
if (hws == NULL)
return 0;
@ -1331,11 +1330,12 @@ static int i915_hangcheck_info(struct seq_file *m, void *unused)
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
u64 acthd[I915_NUM_RINGS];
u32 seqno[I915_NUM_RINGS];
struct intel_engine_cs *engine;
u64 acthd[I915_NUM_ENGINES];
u32 seqno[I915_NUM_ENGINES];
u32 instdone[I915_NUM_INSTDONE_REG];
int i, j;
enum intel_engine_id id;
int j;
if (!i915.enable_hangcheck) {
seq_printf(m, "Hangcheck disabled\n");
@ -1344,9 +1344,9 @@ static int i915_hangcheck_info(struct seq_file *m, void *unused)
intel_runtime_pm_get(dev_priv);
for_each_ring(ring, dev_priv, i) {
seqno[i] = ring->get_seqno(ring, false);
acthd[i] = intel_ring_get_active_head(ring);
for_each_engine_id(engine, dev_priv, id) {
seqno[id] = engine->get_seqno(engine, false);
acthd[id] = intel_ring_get_active_head(engine);
}
i915_get_extra_instdone(dev, instdone);
@ -1360,19 +1360,17 @@ static int i915_hangcheck_info(struct seq_file *m, void *unused)
} else
seq_printf(m, "Hangcheck inactive\n");
for_each_ring(ring, dev_priv, i) {
seq_printf(m, "%s:\n", ring->name);
for_each_engine_id(engine, dev_priv, id) {
seq_printf(m, "%s:\n", engine->name);
seq_printf(m, "\tseqno = %x [current %x]\n",
ring->hangcheck.seqno, seqno[i]);
engine->hangcheck.seqno, seqno[id]);
seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
(long long)ring->hangcheck.acthd,
(long long)acthd[i]);
seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
(long long)ring->hangcheck.max_acthd);
seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
(long long)engine->hangcheck.acthd,
(long long)acthd[id]);
seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
if (ring->id == RCS) {
if (engine->id == RCS) {
seq_puts(m, "\tinstdone read =");
for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
@ -1382,7 +1380,7 @@ static int i915_hangcheck_info(struct seq_file *m, void *unused)
for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
seq_printf(m, " 0x%08x",
ring->hangcheck.instdone[j]);
engine->hangcheck.instdone[j]);
seq_puts(m, "\n");
}
@ -1948,9 +1946,10 @@ static int i915_context_status(struct seq_file *m, void *unused)
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
struct intel_context *ctx;
int ret, i;
enum intel_engine_id id;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
@ -1968,13 +1967,13 @@ static int i915_context_status(struct seq_file *m, void *unused)
if (i915.enable_execlists) {
seq_putc(m, '\n');
for_each_ring(ring, dev_priv, i) {
for_each_engine_id(engine, dev_priv, id) {
struct drm_i915_gem_object *ctx_obj =
ctx->engine[i].state;
ctx->engine[id].state;
struct intel_ringbuffer *ringbuf =
ctx->engine[i].ringbuf;
ctx->engine[id].ringbuf;
seq_printf(m, "%s: ", ring->name);
seq_printf(m, "%s: ", engine->name);
if (ctx_obj)
describe_obj(m, ctx_obj);
if (ringbuf)
@ -1995,22 +1994,22 @@ static int i915_context_status(struct seq_file *m, void *unused)
static void i915_dump_lrc_obj(struct seq_file *m,
struct intel_context *ctx,
struct intel_engine_cs *ring)
struct intel_engine_cs *engine)
{
struct page *page;
uint32_t *reg_state;
int j;
struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
unsigned long ggtt_offset = 0;
if (ctx_obj == NULL) {
seq_printf(m, "Context on %s with no gem object\n",
ring->name);
engine->name);
return;
}
seq_printf(m, "CONTEXT: %s %u\n", ring->name,
intel_execlists_ctx_id(ctx, ring));
seq_printf(m, "CONTEXT: %s %u\n", engine->name,
intel_execlists_ctx_id(ctx, engine));
if (!i915_gem_obj_ggtt_bound(ctx_obj))
seq_puts(m, "\tNot bound in GGTT\n");
@ -2043,9 +2042,9 @@ static int i915_dump_lrc(struct seq_file *m, void *unused)
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
struct intel_context *ctx;
int ret, i;
int ret;
if (!i915.enable_execlists) {
seq_printf(m, "Logical Ring Contexts are disabled\n");
@ -2058,8 +2057,8 @@ static int i915_dump_lrc(struct seq_file *m, void *unused)
list_for_each_entry(ctx, &dev_priv->context_list, link)
if (ctx != dev_priv->kernel_context)
for_each_ring(ring, dev_priv, i)
i915_dump_lrc_obj(m, ctx, ring);
for_each_engine(engine, dev_priv)
i915_dump_lrc_obj(m, ctx, engine);
mutex_unlock(&dev->struct_mutex);
@ -2071,15 +2070,14 @@ static int i915_execlists(struct seq_file *m, void *data)
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
u32 status_pointer;
u8 read_pointer;
u8 write_pointer;
u32 status;
u32 ctx_id;
struct list_head *cursor;
int ring_id, i;
int ret;
int i, ret;
if (!i915.enable_execlists) {
seq_puts(m, "Logical Ring Contexts are disabled\n");
@ -2092,22 +2090,22 @@ static int i915_execlists(struct seq_file *m, void *data)
intel_runtime_pm_get(dev_priv);
for_each_ring(ring, dev_priv, ring_id) {
for_each_engine(engine, dev_priv) {
struct drm_i915_gem_request *head_req = NULL;
int count = 0;
unsigned long flags;
seq_printf(m, "%s\n", ring->name);
seq_printf(m, "%s\n", engine->name);
status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
status, ctx_id);
status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
read_pointer = ring->next_context_status_buffer;
read_pointer = engine->next_context_status_buffer;
write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
if (read_pointer > write_pointer)
write_pointer += GEN8_CSB_ENTRIES;
@ -2115,24 +2113,25 @@ static int i915_execlists(struct seq_file *m, void *data)
read_pointer, write_pointer);
for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
i, status, ctx_id);
}
spin_lock_irqsave(&ring->execlist_lock, flags);
list_for_each(cursor, &ring->execlist_queue)
spin_lock_irqsave(&engine->execlist_lock, flags);
list_for_each(cursor, &engine->execlist_queue)
count++;
head_req = list_first_entry_or_null(&ring->execlist_queue,
struct drm_i915_gem_request, execlist_link);
spin_unlock_irqrestore(&ring->execlist_lock, flags);
head_req = list_first_entry_or_null(&engine->execlist_queue,
struct drm_i915_gem_request,
execlist_link);
spin_unlock_irqrestore(&engine->execlist_lock, flags);
seq_printf(m, "\t%d requests in queue\n", count);
if (head_req) {
seq_printf(m, "\tHead request id: %u\n",
intel_execlists_ctx_id(head_req->ctx, ring));
intel_execlists_ctx_id(head_req->ctx, engine));
seq_printf(m, "\tHead request tail: %u\n",
head_req->tail);
}
@ -2248,19 +2247,19 @@ static int per_file_ctx(int id, void *ptr, void *data)
static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
int unused, i;
int i;
if (!ppgtt)
return;
for_each_ring(ring, dev_priv, unused) {
seq_printf(m, "%s\n", ring->name);
for_each_engine(engine, dev_priv) {
seq_printf(m, "%s\n", engine->name);
for (i = 0; i < 4; i++) {
u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
pdp <<= 32;
pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
}
}
@ -2269,19 +2268,22 @@ static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int i;
struct intel_engine_cs *engine;
if (INTEL_INFO(dev)->gen == 6)
seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
for_each_ring(ring, dev_priv, i) {
seq_printf(m, "%s\n", ring->name);
for_each_engine(engine, dev_priv) {
seq_printf(m, "%s\n", engine->name);
if (INTEL_INFO(dev)->gen == 7)
seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
seq_printf(m, "GFX_MODE: 0x%08x\n",
I915_READ(RING_MODE_GEN7(engine)));
seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
I915_READ(RING_PP_DIR_BASE(engine)));
seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
I915_READ(RING_PP_DIR_BASE_READ(engine)));
seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
I915_READ(RING_PP_DIR_DCLV(engine)));
}
if (dev_priv->mm.aliasing_ppgtt) {
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
@ -2336,12 +2338,11 @@ out_put:
static int count_irq_waiters(struct drm_i915_private *i915)
{
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
int count = 0;
int i;
for_each_ring(ring, i915, i)
count += ring->irq_refcount;
for_each_engine(engine, i915)
count += engine->irq_refcount;
return count;
}
@ -2449,9 +2450,8 @@ static void i915_guc_client_info(struct seq_file *m,
struct drm_i915_private *dev_priv,
struct i915_guc_client *client)
{
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
uint64_t tot = 0;
uint32_t i;
seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
client->priority, client->ctx_index, client->proc_desc_offset);
@ -2464,11 +2464,11 @@ static void i915_guc_client_info(struct seq_file *m,
seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
seq_printf(m, "\tLast submission result: %d\n", client->retcode);
for_each_ring(ring, dev_priv, i) {
for_each_engine(engine, dev_priv) {
seq_printf(m, "\tSubmissions: %llu %s\n",
client->submissions[ring->guc_id],
ring->name);
tot += client->submissions[ring->guc_id];
client->submissions[engine->guc_id],
engine->name);
tot += client->submissions[engine->guc_id];
}
seq_printf(m, "\tTotal: %llu\n", tot);
}
@ -2480,8 +2480,7 @@ static int i915_guc_info(struct seq_file *m, void *data)
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_guc guc;
struct i915_guc_client client = {};
struct intel_engine_cs *ring;
enum intel_ring_id i;
struct intel_engine_cs *engine;
u64 total = 0;
if (!HAS_GUC_SCHED(dev_priv->dev))
@ -2504,11 +2503,11 @@ static int i915_guc_info(struct seq_file *m, void *data)
seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
seq_printf(m, "\nGuC submissions:\n");
for_each_ring(ring, dev_priv, i) {
for_each_engine(engine, dev_priv) {
seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
ring->name, guc.submissions[ring->guc_id],
guc.last_seqno[ring->guc_id]);
total += guc.submissions[ring->guc_id];
engine->name, guc.submissions[engine->guc_id],
guc.last_seqno[engine->guc_id]);
total += guc.submissions[engine->guc_id];
}
seq_printf(m, "\t%s: %llu\n", "Total", total);
@ -3130,9 +3129,10 @@ static int i915_semaphore_status(struct seq_file *m, void *unused)
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
int i, j, ret;
enum intel_engine_id id;
int j, ret;
if (!i915_semaphore_is_enabled(dev)) {
seq_puts(m, "Semaphores are disabled\n");
@ -3151,14 +3151,14 @@ static int i915_semaphore_status(struct seq_file *m, void *unused)
page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
seqno = (uint64_t *)kmap_atomic(page);
for_each_ring(ring, dev_priv, i) {
for_each_engine_id(engine, dev_priv, id) {
uint64_t offset;
seq_printf(m, "%s\n", ring->name);
seq_printf(m, "%s\n", engine->name);
seq_puts(m, " Last signal:");
for (j = 0; j < num_rings; j++) {
offset = i * I915_NUM_RINGS + j;
offset = id * I915_NUM_ENGINES + j;
seq_printf(m, "0x%08llx (0x%02llx) ",
seqno[offset], offset * 8);
}
@ -3166,7 +3166,7 @@ static int i915_semaphore_status(struct seq_file *m, void *unused)
seq_puts(m, " Last wait: ");
for (j = 0; j < num_rings; j++) {
offset = i + (j * I915_NUM_RINGS);
offset = id + (j * I915_NUM_ENGINES);
seq_printf(m, "0x%08llx (0x%02llx) ",
seqno[offset], offset * 8);
}
@ -3176,18 +3176,18 @@ static int i915_semaphore_status(struct seq_file *m, void *unused)
kunmap_atomic(seqno);
} else {
seq_puts(m, " Last signal:");
for_each_ring(ring, dev_priv, i)
for_each_engine(engine, dev_priv)
for (j = 0; j < num_rings; j++)
seq_printf(m, "0x%08x\n",
I915_READ(ring->semaphore.mbox.signal[j]));
I915_READ(engine->semaphore.mbox.signal[j]));
seq_putc(m, '\n');
}
seq_puts(m, "\nSync seqno:\n");
for_each_ring(ring, dev_priv, i) {
for (j = 0; j < num_rings; j++) {
seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
}
for_each_engine(engine, dev_priv) {
for (j = 0; j < num_rings; j++)
seq_printf(m, " 0x%08x ",
engine->semaphore.sync_seqno[j]);
seq_putc(m, '\n');
}
seq_putc(m, '\n');
@ -3209,8 +3209,8 @@ static int i915_shared_dplls_info(struct seq_file *m, void *unused)
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
pll->config.crtc_mask, pll->active, yesno(pll->on));
seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
seq_printf(m, " tracked hardware state:\n");
seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
seq_printf(m, " dpll_md: 0x%08x\n",
@ -3228,11 +3228,12 @@ static int i915_wa_registers(struct seq_file *m, void *unused)
{
int i;
int ret;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_workarounds *workarounds = &dev_priv->workarounds;
enum intel_engine_id id;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
@ -3241,9 +3242,9 @@ static int i915_wa_registers(struct seq_file *m, void *unused)
intel_runtime_pm_get(dev_priv);
seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
for_each_ring(ring, dev_priv, i)
for_each_engine_id(engine, dev_priv, id)
seq_printf(m, "HW whitelist count for %s: %d\n",
ring->name, workarounds->hw_whitelist_count[i]);
engine->name, workarounds->hw_whitelist_count[id]);
for (i = 0; i < workarounds->count; ++i) {
i915_reg_t addr;
u32 mask, value, read;

View File

@ -50,6 +50,66 @@
#include <linux/pm_runtime.h>
#include <linux/oom.h>
static unsigned int i915_load_fail_count;
bool __i915_inject_load_failure(const char *func, int line)
{
if (i915_load_fail_count >= i915.inject_load_failure)
return false;
if (++i915_load_fail_count == i915.inject_load_failure) {
DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
i915.inject_load_failure, func, line);
return true;
}
return false;
}
#define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
#define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
"providing the dmesg log by booting with drm.debug=0xf"
void
__i915_printk(struct drm_i915_private *dev_priv, const char *level,
const char *fmt, ...)
{
static bool shown_bug_once;
struct device *dev = dev_priv->dev->dev;
bool is_error = level[1] <= KERN_ERR[1];
bool is_debug = level[1] == KERN_DEBUG[1];
struct va_format vaf;
va_list args;
if (is_debug && !(drm_debug & DRM_UT_DRIVER))
return;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
dev_printk(level, dev, "[" DRM_NAME ":%ps] %pV",
__builtin_return_address(0), &vaf);
if (is_error && !shown_bug_once) {
dev_notice(dev, "%s", FDO_BUG_MSG);
shown_bug_once = true;
}
va_end(args);
}
static bool i915_error_injected(struct drm_i915_private *dev_priv)
{
return i915.inject_load_failure &&
i915_load_fail_count == i915.inject_load_failure;
}
#define i915_load_error(dev_priv, fmt, ...) \
__i915_printk(dev_priv, \
i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
fmt, ##__VA_ARGS__)
static int i915_getparam(struct drm_device *dev, void *data,
struct drm_file *file_priv)
@ -87,16 +147,16 @@ static int i915_getparam(struct drm_device *dev, void *data,
value = 1;
break;
case I915_PARAM_HAS_BSD:
value = intel_ring_initialized(&dev_priv->ring[VCS]);
value = intel_engine_initialized(&dev_priv->engine[VCS]);
break;
case I915_PARAM_HAS_BLT:
value = intel_ring_initialized(&dev_priv->ring[BCS]);
value = intel_engine_initialized(&dev_priv->engine[BCS]);
break;
case I915_PARAM_HAS_VEBOX:
value = intel_ring_initialized(&dev_priv->ring[VECS]);
value = intel_engine_initialized(&dev_priv->engine[VECS]);
break;
case I915_PARAM_HAS_BSD2:
value = intel_ring_initialized(&dev_priv->ring[VCS2]);
value = intel_engine_initialized(&dev_priv->engine[VCS2]);
break;
case I915_PARAM_HAS_RELAXED_FENCING:
value = 1;
@ -370,6 +430,9 @@ static int i915_load_modeset_init(struct drm_device *dev)
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
if (i915_inject_load_failure())
return -ENODEV;
ret = intel_bios_init(dev_priv);
if (ret)
DRM_INFO("failed to find VBIOS tables\n");
@ -430,11 +493,9 @@ static int i915_load_modeset_init(struct drm_device *dev)
* Some ports require correctly set-up hpd registers for detection to
* work properly (leading to ghost connected connector status), e.g. VGA
* on gm45. Hence we can only set up the initial fbdev config after hpd
* irqs are fully enabled. Now we should scan for the initial config
* only once hotplug handling is enabled, but due to screwed-up locking
* around kms/fbdev init we can't protect the fdbev initial config
* scanning against hotplug events. Hence do this first and ignore the
* tiny window where we will loose hotplug notifactions.
* irqs are fully enabled. We protect the fbdev initial config scanning
* against hotplug events by waiting in intel_fbdev_output_poll_changed
* until the asynchronous thread has finished.
*/
intel_fbdev_initial_config_async(dev);
@ -444,7 +505,7 @@ static int i915_load_modeset_init(struct drm_device *dev)
cleanup_gem:
mutex_lock(&dev->struct_mutex);
i915_gem_cleanup_ringbuffer(dev);
i915_gem_cleanup_engines(dev);
i915_gem_context_fini(dev);
mutex_unlock(&dev->struct_mutex);
cleanup_irq:
@ -453,6 +514,7 @@ cleanup_irq:
intel_teardown_gmbus(dev);
cleanup_csr:
intel_csr_ucode_fini(dev_priv);
intel_power_domains_fini(dev_priv);
vga_switcheroo_unregister_client(dev->pdev);
cleanup_vga_client:
vga_client_register(dev->pdev, NULL, NULL, NULL);
@ -472,8 +534,8 @@ static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
if (!ap)
return -ENOMEM;
ap->ranges[0].base = dev_priv->gtt.mappable_base;
ap->ranges[0].size = dev_priv->gtt.mappable_end;
ap->ranges[0].base = dev_priv->ggtt.mappable_base;
ap->ranges[0].size = dev_priv->ggtt.mappable_end;
primary =
pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
@ -853,6 +915,10 @@ static void intel_device_info_runtime_init(struct drm_device *dev)
else if (INTEL_INFO(dev)->gen >= 9)
gen9_sseu_info_init(dev);
/* Snooping is broken on BXT A stepping. */
info->has_snoop = !info->has_llc;
info->has_snoop &= !IS_BXT_REVID(dev, 0, BXT_REVID_A1);
DRM_DEBUG_DRIVER("slice total: %u\n", info->slice_total);
DRM_DEBUG_DRIVER("subslice total: %u\n", info->subslice_total);
DRM_DEBUG_DRIVER("subslice per slice: %u\n", info->subslice_per_slice);
@ -929,6 +995,84 @@ static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
destroy_workqueue(dev_priv->wq);
}
/**
* i915_driver_init_early - setup state not requiring device access
* @dev_priv: device private
*
* Initialize everything that is a "SW-only" state, that is state not
* requiring accessing the device or exposing the driver via kernel internal
* or userspace interfaces. Example steps belonging here: lock initialization,
* system memory allocation, setting up device specific attributes and
* function hooks not requiring accessing the device.
*/
static int i915_driver_init_early(struct drm_i915_private *dev_priv,
struct drm_device *dev,
struct intel_device_info *info)
{
struct intel_device_info *device_info;
int ret = 0;
if (i915_inject_load_failure())
return -ENODEV;
/* Setup the write-once "constant" device info */
device_info = (struct intel_device_info *)&dev_priv->info;
memcpy(device_info, info, sizeof(dev_priv->info));
device_info->device_id = dev->pdev->device;
spin_lock_init(&dev_priv->irq_lock);
spin_lock_init(&dev_priv->gpu_error.lock);
mutex_init(&dev_priv->backlight_lock);
spin_lock_init(&dev_priv->uncore.lock);
spin_lock_init(&dev_priv->mm.object_stat_lock);
spin_lock_init(&dev_priv->mmio_flip_lock);
mutex_init(&dev_priv->sb_lock);
mutex_init(&dev_priv->modeset_restore_lock);
mutex_init(&dev_priv->av_mutex);
mutex_init(&dev_priv->wm.wm_mutex);
mutex_init(&dev_priv->pps_mutex);
ret = i915_workqueues_init(dev_priv);
if (ret < 0)
return ret;
/* This must be called before any calls to HAS_PCH_* */
intel_detect_pch(dev);
intel_pm_setup(dev);
intel_init_dpio(dev_priv);
intel_power_domains_init(dev_priv);
intel_irq_init(dev_priv);
intel_init_display_hooks(dev_priv);
intel_init_clock_gating_hooks(dev_priv);
intel_init_audio_hooks(dev_priv);
i915_gem_load_init(dev);
intel_display_crc_init(dev);
i915_dump_device_info(dev_priv);
/* Not all pre-production machines fall into this category, only the
* very first ones. Almost everything should work, except for maybe
* suspend/resume. And we don't implement workarounds that affect only
* pre-production machines. */
if (IS_HSW_EARLY_SDV(dev))
DRM_INFO("This is an early pre-production Haswell machine. "
"It may not be fully functional.\n");
return 0;
}
/**
* i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
* @dev_priv: device private
*/
static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
{
i915_gem_load_cleanup(dev_priv->dev);
i915_workqueues_cleanup(dev_priv);
}
static int i915_mmio_setup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
@ -970,84 +1114,73 @@ static void i915_mmio_cleanup(struct drm_device *dev)
}
/**
* i915_driver_load - setup chip and create an initial config
* @dev: DRM device
* @flags: startup flags
* i915_driver_init_mmio - setup device MMIO
* @dev_priv: device private
*
* The driver load routine has to do several things:
* - drive output discovery via intel_modeset_init()
* - initialize the memory manager
* - allocate initial config memory
* - setup the DRM framebuffer with the allocated memory
* Setup minimal device state necessary for MMIO accesses later in the
* initialization sequence. The setup here should avoid any other device-wide
* side effects or exposing the driver via kernel internal or user space
* interfaces.
*/
int i915_driver_load(struct drm_device *dev, unsigned long flags)
static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
{
struct drm_i915_private *dev_priv;
struct intel_device_info *info, *device_info;
int ret = 0;
uint32_t aperture_size;
struct drm_device *dev = dev_priv->dev;
int ret;
info = (struct intel_device_info *) flags;
if (i915_inject_load_failure())
return -ENODEV;
dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
if (dev_priv == NULL)
return -ENOMEM;
dev->dev_private = dev_priv;
dev_priv->dev = dev;
/* Setup the write-once "constant" device info */
device_info = (struct intel_device_info *)&dev_priv->info;
memcpy(device_info, info, sizeof(dev_priv->info));
device_info->device_id = dev->pdev->device;
spin_lock_init(&dev_priv->irq_lock);
spin_lock_init(&dev_priv->gpu_error.lock);
mutex_init(&dev_priv->backlight_lock);
spin_lock_init(&dev_priv->uncore.lock);
spin_lock_init(&dev_priv->mm.object_stat_lock);
spin_lock_init(&dev_priv->mmio_flip_lock);
mutex_init(&dev_priv->sb_lock);
mutex_init(&dev_priv->modeset_restore_lock);
mutex_init(&dev_priv->av_mutex);
ret = i915_workqueues_init(dev_priv);
if (ret < 0)
goto out_free_priv;
intel_pm_setup(dev);
intel_runtime_pm_get(dev_priv);
intel_display_crc_init(dev);
i915_dump_device_info(dev_priv);
/* Not all pre-production machines fall into this category, only the
* very first ones. Almost everything should work, except for maybe
* suspend/resume. And we don't implement workarounds that affect only
* pre-production machines. */
if (IS_HSW_EARLY_SDV(dev))
DRM_INFO("This is an early pre-production Haswell machine. "
"It may not be fully functional.\n");
if (i915_get_bridge_dev(dev)) {
ret = -EIO;
goto out_runtime_pm_put;
}
if (i915_get_bridge_dev(dev))
return -EIO;
ret = i915_mmio_setup(dev);
if (ret < 0)
goto put_bridge;
/* This must be called before any calls to HAS_PCH_* */
intel_detect_pch(dev);
intel_uncore_init(dev);
return 0;
put_bridge:
pci_dev_put(dev_priv->bridge_dev);
return ret;
}
/**
* i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
* @dev_priv: device private
*/
static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
intel_uncore_fini(dev);
i915_mmio_cleanup(dev);
pci_dev_put(dev_priv->bridge_dev);
}
/**
* i915_driver_init_hw - setup state requiring device access
* @dev_priv: device private
*
* Setup state that requires accessing the device, but doesn't require
* exposing the driver via kernel internal or userspace interfaces.
*/
static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
uint32_t aperture_size;
int ret;
if (i915_inject_load_failure())
return -ENODEV;
intel_device_info_runtime_init(dev);
ret = i915_gem_gtt_init(dev);
if (ret)
goto out_uncore_fini;
return ret;
/* WARNING: Apparently we must kick fbdev drivers before vgacon,
* otherwise the vga fbdev driver falls over. */
@ -1080,26 +1213,27 @@ int i915_driver_load(struct drm_device *dev, unsigned long flags)
if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
dma_set_coherent_mask(&dev->pdev->dev, DMA_BIT_MASK(32));
aperture_size = dev_priv->gtt.mappable_end;
aperture_size = dev_priv->ggtt.mappable_end;
dev_priv->gtt.mappable =
io_mapping_create_wc(dev_priv->gtt.mappable_base,
dev_priv->ggtt.mappable =
io_mapping_create_wc(dev_priv->ggtt.mappable_base,
aperture_size);
if (dev_priv->gtt.mappable == NULL) {
if (dev_priv->ggtt.mappable == NULL) {
ret = -EIO;
goto out_gtt;
}
dev_priv->gtt.mtrr = arch_phys_wc_add(dev_priv->gtt.mappable_base,
dev_priv->ggtt.mtrr = arch_phys_wc_add(dev_priv->ggtt.mappable_base,
aperture_size);
intel_irq_init(dev_priv);
pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
PM_QOS_DEFAULT_VALUE);
intel_uncore_sanitize(dev);
intel_opregion_setup(dev);
i915_gem_load_init(dev);
i915_gem_shrinker_init(dev_priv);
i915_gem_load_init_fences(dev_priv);
/* On the 945G/GM, the chipset reports the MSI capability on the
* integrated graphics even though the support isn't actually there
@ -1117,24 +1251,43 @@ int i915_driver_load(struct drm_device *dev, unsigned long flags)
DRM_DEBUG_DRIVER("can't enable MSI");
}
intel_device_info_runtime_init(dev);
return 0;
intel_init_dpio(dev_priv);
out_gtt:
i915_global_gtt_cleanup(dev);
if (INTEL_INFO(dev)->num_pipes) {
ret = drm_vblank_init(dev, INTEL_INFO(dev)->num_pipes);
if (ret)
goto out_gem_unload;
}
return ret;
}
intel_power_domains_init(dev_priv);
/**
* i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
* @dev_priv: device private
*/
static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
ret = i915_load_modeset_init(dev);
if (ret < 0) {
DRM_ERROR("failed to init modeset\n");
goto out_power_well;
}
if (dev->pdev->msi_enabled)
pci_disable_msi(dev->pdev);
pm_qos_remove_request(&dev_priv->pm_qos);
arch_phys_wc_del(dev_priv->ggtt.mtrr);
io_mapping_free(dev_priv->ggtt.mappable);
i915_global_gtt_cleanup(dev);
}
/**
* i915_driver_register - register the driver with the rest of the system
* @dev_priv: device private
*
* Perform any steps necessary to make the driver available via kernel
* internal or userspace interfaces.
*/
static void i915_driver_register(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
i915_gem_shrinker_init(dev_priv);
/*
* Notify a valid surface after modesetting,
* when running inside a VM.
@ -1144,48 +1297,107 @@ int i915_driver_load(struct drm_device *dev, unsigned long flags)
i915_setup_sysfs(dev);
if (INTEL_INFO(dev)->num_pipes) {
if (INTEL_INFO(dev_priv)->num_pipes) {
/* Must be done after probing outputs */
intel_opregion_init(dev);
acpi_video_register();
}
if (IS_GEN5(dev))
if (IS_GEN5(dev_priv))
intel_gpu_ips_init(dev_priv);
intel_runtime_pm_enable(dev_priv);
i915_audio_component_init(dev_priv);
}
/**
* i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
* @dev_priv: device private
*/
static void i915_driver_unregister(struct drm_i915_private *dev_priv)
{
i915_audio_component_cleanup(dev_priv);
intel_gpu_ips_teardown();
acpi_video_unregister();
intel_opregion_fini(dev_priv->dev);
i915_teardown_sysfs(dev_priv->dev);
i915_gem_shrinker_cleanup(dev_priv);
}
/**
* i915_driver_load - setup chip and create an initial config
* @dev: DRM device
* @flags: startup flags
*
* The driver load routine has to do several things:
* - drive output discovery via intel_modeset_init()
* - initialize the memory manager
* - allocate initial config memory
* - setup the DRM framebuffer with the allocated memory
*/
int i915_driver_load(struct drm_device *dev, unsigned long flags)
{
struct drm_i915_private *dev_priv;
int ret = 0;
dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
if (dev_priv == NULL)
return -ENOMEM;
dev->dev_private = dev_priv;
/* Must be set before calling __i915_printk */
dev_priv->dev = dev;
ret = i915_driver_init_early(dev_priv, dev,
(struct intel_device_info *)flags);
if (ret < 0)
goto out_free_priv;
intel_runtime_pm_get(dev_priv);
ret = i915_driver_init_mmio(dev_priv);
if (ret < 0)
goto out_runtime_pm_put;
ret = i915_driver_init_hw(dev_priv);
if (ret < 0)
goto out_cleanup_mmio;
/*
* TODO: move the vblank init and parts of modeset init steps into one
* of the i915_driver_init_/i915_driver_register functions according
* to the role/effect of the given init step.
*/
if (INTEL_INFO(dev)->num_pipes) {
ret = drm_vblank_init(dev, INTEL_INFO(dev)->num_pipes);
if (ret)
goto out_cleanup_hw;
}
ret = i915_load_modeset_init(dev);
if (ret < 0)
goto out_cleanup_vblank;
i915_driver_register(dev_priv);
intel_runtime_pm_enable(dev_priv);
intel_runtime_pm_put(dev_priv);
return 0;
out_power_well:
intel_power_domains_fini(dev_priv);
out_cleanup_vblank:
drm_vblank_cleanup(dev);
out_gem_unload:
i915_gem_shrinker_cleanup(dev_priv);
if (dev->pdev->msi_enabled)
pci_disable_msi(dev->pdev);
intel_teardown_mchbar(dev);
pm_qos_remove_request(&dev_priv->pm_qos);
arch_phys_wc_del(dev_priv->gtt.mtrr);
io_mapping_free(dev_priv->gtt.mappable);
out_gtt:
i915_global_gtt_cleanup(dev);
out_uncore_fini:
intel_uncore_fini(dev);
i915_mmio_cleanup(dev);
put_bridge:
pci_dev_put(dev_priv->bridge_dev);
i915_gem_load_cleanup(dev);
out_cleanup_hw:
i915_driver_cleanup_hw(dev_priv);
out_cleanup_mmio:
i915_driver_cleanup_mmio(dev_priv);
out_runtime_pm_put:
intel_runtime_pm_put(dev_priv);
i915_workqueues_cleanup(dev_priv);
i915_driver_cleanup_early(dev_priv);
out_free_priv:
i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
kfree(dev_priv);
return ret;
@ -1198,26 +1410,15 @@ int i915_driver_unload(struct drm_device *dev)
intel_fbdev_fini(dev);
i915_audio_component_cleanup(dev_priv);
ret = i915_gem_suspend(dev);
if (ret) {
DRM_ERROR("failed to idle hardware: %d\n", ret);
return ret;
}
intel_power_domains_fini(dev_priv);
intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
intel_gpu_ips_teardown();
i915_teardown_sysfs(dev);
i915_gem_shrinker_cleanup(dev_priv);
io_mapping_free(dev_priv->gtt.mappable);
arch_phys_wc_del(dev_priv->gtt.mtrr);
acpi_video_unregister();
i915_driver_unregister(dev_priv);
drm_vblank_cleanup(dev);
@ -1246,31 +1447,24 @@ int i915_driver_unload(struct drm_device *dev)
cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
i915_destroy_error_state(dev);
if (dev->pdev->msi_enabled)
pci_disable_msi(dev->pdev);
intel_opregion_fini(dev);
/* Flush any outstanding unpin_work. */
flush_workqueue(dev_priv->wq);
intel_guc_ucode_fini(dev);
mutex_lock(&dev->struct_mutex);
i915_gem_cleanup_ringbuffer(dev);
i915_gem_cleanup_engines(dev);
i915_gem_context_fini(dev);
mutex_unlock(&dev->struct_mutex);
intel_fbc_cleanup_cfb(dev_priv);
pm_qos_remove_request(&dev_priv->pm_qos);
intel_power_domains_fini(dev_priv);
i915_global_gtt_cleanup(dev);
i915_driver_cleanup_hw(dev_priv);
i915_driver_cleanup_mmio(dev_priv);
intel_uncore_fini(dev);
i915_mmio_cleanup(dev);
intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
i915_gem_load_cleanup(dev);
pci_dev_put(dev_priv->bridge_dev);
i915_workqueues_cleanup(dev_priv);
i915_driver_cleanup_early(dev_priv);
kfree(dev_priv);
return 0;

View File

@ -66,6 +66,11 @@ static struct drm_driver driver;
#define IVB_CURSOR_OFFSETS \
.cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
#define BDW_COLORS \
.color = { .degamma_lut_size = 512, .gamma_lut_size = 512 }
#define CHV_COLORS \
.color = { .degamma_lut_size = 65, .gamma_lut_size = 257 }
static const struct intel_device_info intel_i830_info = {
.gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
.has_overlay = 1, .overlay_needs_physical = 1,
@ -288,24 +293,28 @@ static const struct intel_device_info intel_haswell_m_info = {
.is_mobile = 1,
};
#define BDW_FEATURES \
HSW_FEATURES, \
BDW_COLORS
static const struct intel_device_info intel_broadwell_d_info = {
HSW_FEATURES,
BDW_FEATURES,
.gen = 8,
};
static const struct intel_device_info intel_broadwell_m_info = {
HSW_FEATURES,
BDW_FEATURES,
.gen = 8, .is_mobile = 1,
};
static const struct intel_device_info intel_broadwell_gt3d_info = {
HSW_FEATURES,
BDW_FEATURES,
.gen = 8,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
};
static const struct intel_device_info intel_broadwell_gt3m_info = {
HSW_FEATURES,
BDW_FEATURES,
.gen = 8, .is_mobile = 1,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
};
@ -318,16 +327,17 @@ static const struct intel_device_info intel_cherryview_info = {
.display_mmio_offset = VLV_DISPLAY_BASE,
GEN_CHV_PIPEOFFSETS,
CURSOR_OFFSETS,
CHV_COLORS,
};
static const struct intel_device_info intel_skylake_info = {
HSW_FEATURES,
BDW_FEATURES,
.is_skylake = 1,
.gen = 9,
};
static const struct intel_device_info intel_skylake_gt3_info = {
HSW_FEATURES,
BDW_FEATURES,
.is_skylake = 1,
.gen = 9,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
@ -345,17 +355,18 @@ static const struct intel_device_info intel_broxton_info = {
.has_fbc = 1,
GEN_DEFAULT_PIPEOFFSETS,
IVB_CURSOR_OFFSETS,
BDW_COLORS,
};
static const struct intel_device_info intel_kabylake_info = {
HSW_FEATURES,
BDW_FEATURES,
.is_preliminary = 1,
.is_kabylake = 1,
.gen = 9,
};
static const struct intel_device_info intel_kabylake_gt3_info = {
HSW_FEATURES,
BDW_FEATURES,
.is_preliminary = 1,
.is_kabylake = 1,
.gen = 9,
@ -504,6 +515,7 @@ void intel_detect_pch(struct drm_device *dev)
WARN_ON(!IS_SKYLAKE(dev) &&
!IS_KABYLAKE(dev));
} else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
(id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
pch->subsystem_vendor == 0x1af4 &&
pch->subsystem_device == 0x1100)) {
@ -758,10 +770,10 @@ static int i915_drm_resume(struct drm_device *dev)
dev_priv->display.hpd_irq_setup(dev);
spin_unlock_irq(&dev_priv->irq_lock);
intel_display_resume(dev);
intel_dp_mst_resume(dev);
intel_display_resume(dev);
/*
* ... but also need to make sure that hotplug processing
* doesn't cause havoc. Like in the driver load code we don't
@ -881,7 +893,7 @@ int i915_reset(struct drm_device *dev)
simulated = dev_priv->gpu_error.stop_rings != 0;
ret = intel_gpu_reset(dev);
ret = intel_gpu_reset(dev, ALL_ENGINES);
/* Also reset the gpu hangman. */
if (simulated) {

View File

@ -53,13 +53,14 @@
#include <linux/kref.h>
#include <linux/pm_qos.h>
#include "intel_guc.h"
#include "intel_dpll_mgr.h"
/* General customization:
*/
#define DRIVER_NAME "i915"
#define DRIVER_DESC "Intel Graphics"
#define DRIVER_DATE "20160229"
#define DRIVER_DATE "20160330"
#undef WARN_ON
/* Many gcc seem to no see through this and fall over :( */
@ -97,6 +98,10 @@
#define I915_STATE_WARN_ON(x) \
I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
bool __i915_inject_load_failure(const char *func, int line);
#define i915_inject_load_failure() \
__i915_inject_load_failure(__func__, __LINE__)
static inline const char *yesno(bool v)
{
return v ? "yes" : "no";
@ -122,9 +127,35 @@ enum transcoder {
TRANSCODER_B,
TRANSCODER_C,
TRANSCODER_EDP,
TRANSCODER_DSI_A,
TRANSCODER_DSI_C,
I915_MAX_TRANSCODERS
};
#define transcoder_name(t) ((t) + 'A')
static inline const char *transcoder_name(enum transcoder transcoder)
{
switch (transcoder) {
case TRANSCODER_A:
return "A";
case TRANSCODER_B:
return "B";
case TRANSCODER_C:
return "C";
case TRANSCODER_EDP:
return "EDP";
case TRANSCODER_DSI_A:
return "DSI A";
case TRANSCODER_DSI_C:
return "DSI C";
default:
return "<invalid>";
}
}
static inline bool transcoder_is_dsi(enum transcoder transcoder)
{
return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
}
/*
* I915_MAX_PLANES in the enum below is the maximum (across all platforms)
@ -176,6 +207,8 @@ enum intel_display_power_domain {
POWER_DOMAIN_TRANSCODER_B,
POWER_DOMAIN_TRANSCODER_C,
POWER_DOMAIN_TRANSCODER_EDP,
POWER_DOMAIN_TRANSCODER_DSI_A,
POWER_DOMAIN_TRANSCODER_DSI_C,
POWER_DOMAIN_PORT_DDI_A_LANES,
POWER_DOMAIN_PORT_DDI_B_LANES,
POWER_DOMAIN_PORT_DDI_C_LANES,
@ -273,6 +306,10 @@ struct i915_hotplug {
(__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
(__s)++)
#define for_each_port_masked(__port, __ports_mask) \
for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
for_each_if ((__ports_mask) & (1 << (__port)))
#define for_each_crtc(dev, crtc) \
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
@ -340,81 +377,6 @@ struct drm_i915_file_private {
unsigned int bsd_ring;
};
enum intel_dpll_id {
DPLL_ID_PRIVATE = -1, /* non-shared dpll in use */
/* real shared dpll ids must be >= 0 */
DPLL_ID_PCH_PLL_A = 0,
DPLL_ID_PCH_PLL_B = 1,
/* hsw/bdw */
DPLL_ID_WRPLL1 = 0,
DPLL_ID_WRPLL2 = 1,
DPLL_ID_SPLL = 2,
/* skl */
DPLL_ID_SKL_DPLL1 = 0,
DPLL_ID_SKL_DPLL2 = 1,
DPLL_ID_SKL_DPLL3 = 2,
};
#define I915_NUM_PLLS 3
struct intel_dpll_hw_state {
/* i9xx, pch plls */
uint32_t dpll;
uint32_t dpll_md;
uint32_t fp0;
uint32_t fp1;
/* hsw, bdw */
uint32_t wrpll;
uint32_t spll;
/* skl */
/*
* DPLL_CTRL1 has 6 bits for each each this DPLL. We store those in
* lower part of ctrl1 and they get shifted into position when writing
* the register. This allows us to easily compare the state to share
* the DPLL.
*/
uint32_t ctrl1;
/* HDMI only, 0 when used for DP */
uint32_t cfgcr1, cfgcr2;
/* bxt */
uint32_t ebb0, ebb4, pll0, pll1, pll2, pll3, pll6, pll8, pll9, pll10,
pcsdw12;
};
struct intel_shared_dpll_config {
unsigned crtc_mask; /* mask of CRTCs sharing this PLL */
struct intel_dpll_hw_state hw_state;
};
struct intel_shared_dpll {
struct intel_shared_dpll_config config;
int active; /* count of number of active CRTCs (i.e. DPMS on) */
bool on; /* is the PLL actually active? Disabled during modeset */
const char *name;
/* should match the index in the dev_priv->shared_dplls array */
enum intel_dpll_id id;
/* The mode_set hook is optional and should be used together with the
* intel_prepare_shared_dpll function. */
void (*mode_set)(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll);
void (*enable)(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll);
void (*disable)(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll);
bool (*get_hw_state)(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state);
};
#define SKL_DPLL0 0
#define SKL_DPLL1 1
#define SKL_DPLL2 2
#define SKL_DPLL3 3
/* Used by dp and fdi links */
struct intel_link_m_n {
uint32_t tu;
@ -533,7 +495,7 @@ struct drm_i915_error_state {
u32 cpu_ring_head;
u32 cpu_ring_tail;
u32 semaphore_seqno[I915_NUM_RINGS - 1];
u32 semaphore_seqno[I915_NUM_ENGINES - 1];
/* Register state */
u32 start;
@ -553,7 +515,7 @@ struct drm_i915_error_state {
u32 fault_reg;
u64 faddr;
u32 rc_psmi; /* sleep state */
u32 semaphore_mboxes[I915_NUM_RINGS - 1];
u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
struct drm_i915_error_object {
int page_count;
@ -561,6 +523,8 @@ struct drm_i915_error_state {
u32 *pages[0];
} *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
struct drm_i915_error_object *wa_ctx;
struct drm_i915_error_request {
long jiffies;
u32 seqno;
@ -577,12 +541,12 @@ struct drm_i915_error_state {
pid_t pid;
char comm[TASK_COMM_LEN];
} ring[I915_NUM_RINGS];
} ring[I915_NUM_ENGINES];
struct drm_i915_error_buffer {
u32 size;
u32 name;
u32 rseqno[I915_NUM_RINGS], wseqno;
u32 rseqno[I915_NUM_ENGINES], wseqno;
u64 gtt_offset;
u32 read_domains;
u32 write_domain;
@ -611,27 +575,12 @@ struct dpll;
struct drm_i915_display_funcs {
int (*get_display_clock_speed)(struct drm_device *dev);
int (*get_fifo_size)(struct drm_device *dev, int plane);
/**
* find_dpll() - Find the best values for the PLL
* @limit: limits for the PLL
* @crtc: current CRTC
* @target: target frequency in kHz
* @refclk: reference clock frequency in kHz
* @match_clock: if provided, @best_clock P divider must
* match the P divider from @match_clock
* used for LVDS downclocking
* @best_clock: best PLL values found
*
* Returns true on success, false on failure.
*/
bool (*find_dpll)(const struct intel_limit *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk,
struct dpll *match_clock,
struct dpll *best_clock);
int (*compute_pipe_wm)(struct intel_crtc *crtc,
struct drm_atomic_state *state);
void (*program_watermarks)(struct intel_crtc_state *cstate);
int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
int (*compute_intermediate_wm)(struct drm_device *dev,
struct intel_crtc *intel_crtc,
struct intel_crtc_state *newstate);
void (*initial_watermarks)(struct intel_crtc_state *cstate);
void (*optimize_watermarks)(struct intel_crtc_state *cstate);
void (*update_wm)(struct drm_crtc *crtc);
int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
@ -662,6 +611,9 @@ struct drm_i915_display_funcs {
/* render clock increase/decrease */
/* display clock increase/decrease */
/* pll clock increase/decrease */
void (*load_csc_matrix)(struct drm_crtc *crtc);
void (*load_luts)(struct drm_crtc *crtc);
};
enum forcewake_domain_id {
@ -750,6 +702,7 @@ struct intel_csr {
i915_reg_t mmioaddr[8];
uint32_t mmiodata[8];
uint32_t dc_state;
uint32_t allowed_dc_mask;
};
#define DEV_INFO_FOR_EACH_FLAG(func, sep) \
@ -779,6 +732,7 @@ struct intel_csr {
func(overlay_needs_physical) sep \
func(supports_tv) sep \
func(has_llc) sep \
func(has_snoop) sep \
func(has_ddi) sep \
func(has_fpga_dbg)
@ -810,6 +764,11 @@ struct intel_device_info {
u8 has_slice_pg:1;
u8 has_subslice_pg:1;
u8 has_eu_pg:1;
struct color_luts {
u16 degamma_lut_size;
u16 gamma_lut_size;
} color;
};
#undef DEFINE_FLAG
@ -891,7 +850,7 @@ struct intel_context {
struct i915_vma *lrc_vma;
u64 lrc_desc;
uint32_t *lrc_reg_state;
} engine[I915_NUM_RINGS];
} engine[I915_NUM_ENGINES];
struct list_head link;
};
@ -1482,21 +1441,22 @@ struct intel_vbt_data {
unsigned int lvds_use_ssc:1;
unsigned int display_clock_mode:1;
unsigned int fdi_rx_polarity_inverted:1;
unsigned int has_mipi:1;
int lvds_ssc_freq;
unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
enum drrs_support_type drrs_type;
/* eDP */
int edp_rate;
int edp_lanes;
int edp_preemphasis;
int edp_vswing;
bool edp_initialized;
bool edp_support;
int edp_bpp;
struct edp_power_seq edp_pps;
struct {
int rate;
int lanes;
int preemphasis;
int vswing;
bool low_vswing;
bool initialized;
bool support;
int bpp;
struct edp_power_seq pps;
} edp;
struct {
bool full_link;
@ -1516,7 +1476,6 @@ struct intel_vbt_data {
/* MIPI DSI */
struct {
u16 port;
u16 panel_id;
struct mipi_config *config;
struct mipi_pps_data *pps;
@ -1532,6 +1491,7 @@ struct intel_vbt_data {
union child_device_config *child_dev;
struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
struct sdvo_device_mapping sdvo_mappings[2];
};
enum intel_ddb_partitioning {
@ -1706,7 +1666,7 @@ struct i915_wa_reg {
struct i915_workarounds {
struct i915_wa_reg reg[I915_MAX_WA_REGS];
u32 count;
u32 hw_whitelist_count[I915_NUM_RINGS];
u32 hw_whitelist_count[I915_NUM_ENGINES];
};
struct i915_virtual_gpu {
@ -1719,7 +1679,7 @@ struct i915_execbuffer_params {
uint32_t dispatch_flags;
uint32_t args_batch_start_offset;
uint64_t batch_obj_vm_offset;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
struct drm_i915_gem_object *batch_obj;
struct intel_context *ctx;
struct drm_i915_gem_request *request;
@ -1771,7 +1731,7 @@ struct drm_i915_private {
wait_queue_head_t gmbus_wait_queue;
struct pci_dev *bridge_dev;
struct intel_engine_cs ring[I915_NUM_RINGS];
struct intel_engine_cs engine[I915_NUM_ENGINES];
struct drm_i915_gem_object *semaphore_obj;
uint32_t last_seqno, next_seqno;
@ -1829,6 +1789,7 @@ struct drm_i915_private {
unsigned int skl_boot_cdclk;
unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
unsigned int max_dotclk_freq;
unsigned int rawclk_freq;
unsigned int hpll_freq;
unsigned int czclk_freq;
@ -1855,7 +1816,7 @@ struct drm_i915_private {
struct drm_atomic_state *modeset_restore_state;
struct list_head vm_list; /* Global list of all address spaces */
struct i915_gtt gtt; /* VM representing the global address space */
struct i915_ggtt ggtt; /* VM representing the global address space */
struct i915_gem_mm mm;
DECLARE_HASHTABLE(mm_structs, 7);
@ -1863,8 +1824,6 @@ struct drm_i915_private {
/* Kernel Modesetting */
struct sdvo_device_mapping sdvo_mappings[2];
struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
wait_queue_head_t pending_flip_queue;
@ -1876,6 +1835,7 @@ struct drm_i915_private {
/* dpll and cdclk state is protected by connection_mutex */
int num_shared_dpll;
struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
const struct intel_dpll_mgr *dpll_mgr;
unsigned int active_crtcs;
unsigned int min_pixclk[I915_MAX_PIPES];
@ -1884,9 +1844,6 @@ struct drm_i915_private {
struct i915_workarounds workarounds;
/* Reclocking support */
bool render_reclock_avail;
struct i915_frontbuffer_tracking fb_tracking;
u16 orig_clock;
@ -1980,6 +1937,13 @@ struct drm_i915_private {
};
uint8_t max_level;
/*
* Should be held around atomic WM register writing; also
* protects * intel_crtc->wm.active and
* cstate->wm.need_postvbl_update.
*/
struct mutex wm_mutex;
} wm;
struct i915_runtime_pm pm;
@ -1989,15 +1953,13 @@ struct drm_i915_private {
int (*execbuf_submit)(struct i915_execbuffer_params *params,
struct drm_i915_gem_execbuffer2 *args,
struct list_head *vmas);
int (*init_rings)(struct drm_device *dev);
void (*cleanup_ring)(struct intel_engine_cs *ring);
void (*stop_ring)(struct intel_engine_cs *ring);
int (*init_engines)(struct drm_device *dev);
void (*cleanup_engine)(struct intel_engine_cs *engine);
void (*stop_engine)(struct intel_engine_cs *engine);
} gt;
struct intel_context *kernel_context;
bool edp_low_vswing;
/* perform PHY state sanity checks? */
bool chv_phy_assert[2];
@ -2024,10 +1986,28 @@ static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
return container_of(guc, struct drm_i915_private, guc);
}
/* Iterate over initialised rings */
#define for_each_ring(ring__, dev_priv__, i__) \
for ((i__) = 0; (i__) < I915_NUM_RINGS; (i__)++) \
for_each_if ((((ring__) = &(dev_priv__)->ring[(i__)]), intel_ring_initialized((ring__))))
/* Simple iterator over all initialised engines */
#define for_each_engine(engine__, dev_priv__) \
for ((engine__) = &(dev_priv__)->engine[0]; \
(engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
(engine__)++) \
for_each_if (intel_engine_initialized(engine__))
/* Iterator with engine_id */
#define for_each_engine_id(engine__, dev_priv__, id__) \
for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
(engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
(engine__)++) \
for_each_if (((id__) = (engine__)->id, \
intel_engine_initialized(engine__)))
/* Iterator over subset of engines selected by mask */
#define for_each_engine_masked(engine__, dev_priv__, mask__) \
for ((engine__) = &(dev_priv__)->engine[0]; \
(engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
(engine__)++) \
for_each_if (((mask__) & intel_engine_flag(engine__)) && \
intel_engine_initialized(engine__))
enum hdmi_force_audio {
HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
@ -2097,7 +2077,7 @@ struct drm_i915_gem_object {
struct drm_mm_node *stolen;
struct list_head global_list;
struct list_head ring_list[I915_NUM_RINGS];
struct list_head engine_list[I915_NUM_ENGINES];
/** Used in execbuf to temporarily hold a ref */
struct list_head obj_exec_link;
@ -2108,7 +2088,7 @@ struct drm_i915_gem_object {
* rendering and so a non-zero seqno), and is not set if it i s on
* inactive (ready to be unbound) list.
*/
unsigned int active:I915_NUM_RINGS;
unsigned int active:I915_NUM_ENGINES;
/**
* This is set if the object has been written to since last bound
@ -2187,7 +2167,7 @@ struct drm_i915_gem_object {
* read request. This allows for the CPU to read from an active
* buffer by only waiting for the write to complete.
* */
struct drm_i915_gem_request *last_read_req[I915_NUM_RINGS];
struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES];
struct drm_i915_gem_request *last_write_req;
/** Breadcrumb of last fenced GPU access to the buffer. */
struct drm_i915_gem_request *last_fenced_req;
@ -2242,7 +2222,7 @@ struct drm_i915_gem_request {
/** On Which ring this request was generated */
struct drm_i915_private *i915;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
/** GEM sequence number associated with the previous request,
* when the HWS breadcrumb is equal to this the GPU is processing
@ -2335,9 +2315,9 @@ i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
}
static inline struct intel_engine_cs *
i915_gem_request_get_ring(struct drm_i915_gem_request *req)
i915_gem_request_get_engine(struct drm_i915_gem_request *req)
{
return req ? req->ring : NULL;
return req ? req->engine : NULL;
}
static inline struct drm_i915_gem_request *
@ -2351,7 +2331,7 @@ i915_gem_request_reference(struct drm_i915_gem_request *req)
static inline void
i915_gem_request_unreference(struct drm_i915_gem_request *req)
{
WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
WARN_ON(!mutex_is_locked(&req->engine->dev->struct_mutex));
kref_put(&req->ref, i915_gem_request_free);
}
@ -2363,7 +2343,7 @@ i915_gem_request_unreference__unlocked(struct drm_i915_gem_request *req)
if (!req)
return;
dev = req->ring->dev;
dev = req->engine->dev;
if (kref_put_mutex(&req->ref, i915_gem_request_free, &dev->struct_mutex))
mutex_unlock(&dev->struct_mutex);
}
@ -2611,11 +2591,14 @@ struct drm_i915_cmd_table {
#define BLT_RING (1<<BCS)
#define VEBOX_RING (1<<VECS)
#define BSD2_RING (1<<VCS2)
#define ALL_ENGINES (~0)
#define HAS_BSD(dev) (INTEL_INFO(dev)->ring_mask & BSD_RING)
#define HAS_BSD2(dev) (INTEL_INFO(dev)->ring_mask & BSD2_RING)
#define HAS_BLT(dev) (INTEL_INFO(dev)->ring_mask & BLT_RING)
#define HAS_VEBOX(dev) (INTEL_INFO(dev)->ring_mask & VEBOX_RING)
#define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
#define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
#define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
__I915__(dev)->ellc_size)
#define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
@ -2695,6 +2678,7 @@ struct drm_i915_cmd_table {
#define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
#define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
#define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
#define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
#define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
#define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
@ -2726,6 +2710,13 @@ extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
extern int i915_resume_switcheroo(struct drm_device *dev);
/* i915_dma.c */
void __printf(3, 4)
__i915_printk(struct drm_i915_private *dev_priv, const char *level,
const char *fmt, ...);
#define i915_report_error(dev_priv, fmt, ...) \
__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
extern int i915_driver_load(struct drm_device *, unsigned long flags);
extern int i915_driver_unload(struct drm_device *);
extern int i915_driver_open(struct drm_device *dev, struct drm_file *file);
@ -2738,9 +2729,10 @@ extern void i915_driver_postclose(struct drm_device *dev,
extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg);
#endif
extern int intel_gpu_reset(struct drm_device *dev);
extern int intel_gpu_reset(struct drm_device *dev, u32 engine_mask);
extern bool intel_has_gpu_reset(struct drm_device *dev);
extern int i915_reset(struct drm_device *dev);
extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
@ -2757,7 +2749,7 @@ bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
/* i915_irq.c */
void i915_queue_hangcheck(struct drm_device *dev);
__printf(3, 4)
void i915_handle_error(struct drm_device *dev, bool wedged,
void i915_handle_error(struct drm_device *dev, u32 engine_mask,
const char *fmt, ...);
extern void intel_irq_init(struct drm_i915_private *dev_priv);
@ -2893,6 +2885,7 @@ int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
void i915_gem_load_init(struct drm_device *dev);
void i915_gem_load_cleanup(struct drm_device *dev);
void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
void *i915_gem_object_alloc(struct drm_device *dev);
void i915_gem_object_free(struct drm_i915_gem_object *obj);
void i915_gem_object_init(struct drm_i915_gem_object *obj,
@ -3006,14 +2999,14 @@ i915_seqno_passed(uint32_t seq1, uint32_t seq2)
static inline bool i915_gem_request_started(struct drm_i915_gem_request *req,
bool lazy_coherency)
{
u32 seqno = req->ring->get_seqno(req->ring, lazy_coherency);
u32 seqno = req->engine->get_seqno(req->engine, lazy_coherency);
return i915_seqno_passed(seqno, req->previous_seqno);
}
static inline bool i915_gem_request_completed(struct drm_i915_gem_request *req,
bool lazy_coherency)
{
u32 seqno = req->ring->get_seqno(req->ring, lazy_coherency);
u32 seqno = req->engine->get_seqno(req->engine, lazy_coherency);
return i915_seqno_passed(seqno, req->seqno);
}
@ -3021,10 +3014,10 @@ int __must_check i915_gem_get_seqno(struct drm_device *dev, u32 *seqno);
int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
struct drm_i915_gem_request *
i915_gem_find_active_request(struct intel_engine_cs *ring);
i915_gem_find_active_request(struct intel_engine_cs *engine);
bool i915_gem_retire_requests(struct drm_device *dev);
void i915_gem_retire_requests_ring(struct intel_engine_cs *ring);
void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
int __must_check i915_gem_check_wedge(struct i915_gpu_error *error,
bool interruptible);
@ -3059,11 +3052,11 @@ static inline bool i915_stop_ring_allow_warn(struct drm_i915_private *dev_priv)
void i915_gem_reset(struct drm_device *dev);
bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
int __must_check i915_gem_init(struct drm_device *dev);
int i915_gem_init_rings(struct drm_device *dev);
int i915_gem_init_engines(struct drm_device *dev);
int __must_check i915_gem_init_hw(struct drm_device *dev);
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice);
void i915_gem_init_swizzling(struct drm_device *dev);
void i915_gem_cleanup_ringbuffer(struct drm_device *dev);
void i915_gem_cleanup_engines(struct drm_device *dev);
int __must_check i915_gpu_idle(struct drm_device *dev);
int __must_check i915_gem_suspend(struct drm_device *dev);
void __i915_add_request(struct drm_i915_gem_request *req,
@ -3155,7 +3148,7 @@ bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
/* Some GGTT VM helpers */
#define i915_obj_to_ggtt(obj) \
(&((struct drm_i915_private *)(obj)->base.dev->dev_private)->gtt.base)
(&((struct drm_i915_private *)(obj)->base.dev->dev_private)->ggtt.base)
static inline struct i915_hw_ppgtt *
i915_vm_to_ppgtt(struct i915_address_space *vm)
@ -3342,7 +3335,7 @@ static inline void i915_error_state_buf_release(
{
kfree(eb->buf);
}
void i915_capture_error_state(struct drm_device *dev, bool wedge,
void i915_capture_error_state(struct drm_device *dev, u32 engine_mask,
const char *error_msg);
void i915_error_state_get(struct drm_device *dev,
struct i915_error_state_file_priv *error_priv);
@ -3354,10 +3347,10 @@ const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
/* i915_cmd_parser.c */
int i915_cmd_parser_get_version(void);
int i915_cmd_parser_init_ring(struct intel_engine_cs *ring);
void i915_cmd_parser_fini_ring(struct intel_engine_cs *ring);
bool i915_needs_cmd_parser(struct intel_engine_cs *ring);
int i915_parse_cmds(struct intel_engine_cs *ring,
int i915_cmd_parser_init_ring(struct intel_engine_cs *engine);
void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine);
bool i915_needs_cmd_parser(struct intel_engine_cs *engine);
int i915_parse_cmds(struct intel_engine_cs *engine,
struct drm_i915_gem_object *batch_obj,
struct drm_i915_gem_object *shadow_batch_obj,
u32 batch_start_offset,
@ -3391,6 +3384,10 @@ extern void intel_i2c_reset(struct drm_device *dev);
/* intel_bios.c */
int intel_bios_init(struct drm_i915_private *dev_priv);
bool intel_bios_is_valid_vbt(const void *buf, size_t size);
bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
/* intel_opregion.c */
#ifdef CONFIG_ACPI
@ -3628,11 +3625,11 @@ wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
}
}
static inline void i915_trace_irq_get(struct intel_engine_cs *ring,
static inline void i915_trace_irq_get(struct intel_engine_cs *engine,
struct drm_i915_gem_request *req)
{
if (ring->trace_irq_req == NULL && ring->irq_get(ring))
i915_gem_request_assign(&ring->trace_irq_req, req);
if (engine->trace_irq_req == NULL && engine->irq_get(engine))
i915_gem_request_assign(&engine->trace_irq_req, req);
}
#endif

View File

@ -132,7 +132,7 @@ i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_get_aperture *args = data;
struct i915_gtt *ggtt = &dev_priv->gtt;
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct i915_vma *vma;
size_t pinned;
@ -146,7 +146,7 @@ i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
pinned += vma->node.size;
mutex_unlock(&dev->struct_mutex);
args->aper_size = dev_priv->gtt.base.total;
args->aper_size = dev_priv->ggtt.base.total;
args->aper_available_size = args->aper_size - pinned;
return 0;
@ -807,7 +807,7 @@ i915_gem_gtt_pwrite_fast(struct drm_device *dev,
* source page isn't available. Return the error and we'll
* retry in the slow path.
*/
if (fast_user_write(dev_priv->gtt.mappable, page_base,
if (fast_user_write(dev_priv->ggtt.mappable, page_base,
page_offset, user_data, page_length)) {
ret = -EFAULT;
goto out_flush;
@ -1141,9 +1141,9 @@ static void fake_irq(unsigned long data)
}
static bool missed_irq(struct drm_i915_private *dev_priv,
struct intel_engine_cs *ring)
struct intel_engine_cs *engine)
{
return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
}
static unsigned long local_clock_us(unsigned *cpu)
@ -1193,7 +1193,7 @@ static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
* takes to sleep on a request, on the order of a microsecond.
*/
if (req->ring->irq_refcount)
if (req->engine->irq_refcount)
return -EBUSY;
/* Only spin if we know the GPU is processing this request */
@ -1243,11 +1243,11 @@ int __i915_wait_request(struct drm_i915_gem_request *req,
s64 *timeout,
struct intel_rps_client *rps)
{
struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
struct drm_device *dev = ring->dev;
struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
struct drm_device *dev = engine->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const bool irq_test_in_progress =
ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
DEFINE_WAIT(wait);
unsigned long timeout_expire;
@ -1288,7 +1288,7 @@ int __i915_wait_request(struct drm_i915_gem_request *req,
if (ret == 0)
goto out;
if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
ret = -ENODEV;
goto out;
}
@ -1296,7 +1296,7 @@ int __i915_wait_request(struct drm_i915_gem_request *req,
for (;;) {
struct timer_list timer;
prepare_to_wait(&ring->irq_queue, &wait, state);
prepare_to_wait(&engine->irq_queue, &wait, state);
/* We need to check whether any gpu reset happened in between
* the caller grabbing the seqno and now ... */
@ -1325,11 +1325,11 @@ int __i915_wait_request(struct drm_i915_gem_request *req,
}
timer.function = NULL;
if (timeout || missed_irq(dev_priv, ring)) {
if (timeout || missed_irq(dev_priv, engine)) {
unsigned long expire;
setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
mod_timer(&timer, expire);
}
@ -1341,9 +1341,9 @@ int __i915_wait_request(struct drm_i915_gem_request *req,
}
}
if (!irq_test_in_progress)
ring->irq_put(ring);
engine->irq_put(engine);
finish_wait(&ring->irq_queue, &wait);
finish_wait(&engine->irq_queue, &wait);
out:
trace_i915_gem_request_wait_end(req);
@ -1370,7 +1370,6 @@ out:
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
struct drm_file *file)
{
struct drm_i915_private *dev_private;
struct drm_i915_file_private *file_priv;
WARN_ON(!req || !file || req->file_priv);
@ -1381,7 +1380,6 @@ int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
if (req->file_priv)
return -EINVAL;
dev_private = req->ring->dev->dev_private;
file_priv = file->driver_priv;
spin_lock(&file_priv->mm.lock);
@ -1434,7 +1432,7 @@ static void i915_gem_request_retire(struct drm_i915_gem_request *request)
static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *engine = req->ring;
struct intel_engine_cs *engine = req->engine;
struct drm_i915_gem_request *tmp;
lockdep_assert_held(&engine->dev->struct_mutex);
@ -1466,7 +1464,7 @@ i915_wait_request(struct drm_i915_gem_request *req)
BUG_ON(req == NULL);
dev = req->ring->dev;
dev = req->engine->dev;
dev_priv = dev->dev_private;
interruptible = dev_priv->mm.interruptible;
@ -1505,14 +1503,14 @@ i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
if (ret)
return ret;
i = obj->last_write_req->ring->id;
i = obj->last_write_req->engine->id;
if (obj->last_read_req[i] == obj->last_write_req)
i915_gem_object_retire__read(obj, i);
else
i915_gem_object_retire__write(obj);
}
} else {
for (i = 0; i < I915_NUM_RINGS; i++) {
for (i = 0; i < I915_NUM_ENGINES; i++) {
if (obj->last_read_req[i] == NULL)
continue;
@ -1532,7 +1530,7 @@ static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
struct drm_i915_gem_request *req)
{
int ring = req->ring->id;
int ring = req->engine->id;
if (obj->last_read_req[ring] == req)
i915_gem_object_retire__read(obj, ring);
@ -1552,7 +1550,7 @@ i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_request *requests[I915_NUM_RINGS];
struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
unsigned reset_counter;
int ret, i, n = 0;
@ -1577,7 +1575,7 @@ i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
requests[n++] = i915_gem_request_reference(req);
} else {
for (i = 0; i < I915_NUM_RINGS; i++) {
for (i = 0; i < I915_NUM_ENGINES; i++) {
struct drm_i915_gem_request *req;
req = obj->last_read_req[i];
@ -1827,7 +1825,7 @@ int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
}
/* Use a partial view if the object is bigger than the aperture. */
if (obj->base.size >= dev_priv->gtt.mappable_end &&
if (obj->base.size >= dev_priv->ggtt.mappable_end &&
obj->tiling_mode == I915_TILING_NONE) {
static const unsigned int chunk_size = 256; // 1 MiB
@ -1855,7 +1853,7 @@ int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
goto unpin;
/* Finally, remap it using the new GTT offset */
pfn = dev_priv->gtt.mappable_base +
pfn = dev_priv->ggtt.mappable_base +
i915_gem_obj_ggtt_offset_view(obj, &view);
pfn >>= PAGE_SHIFT;
@ -2404,17 +2402,17 @@ void i915_vma_move_to_active(struct i915_vma *vma,
struct drm_i915_gem_request *req)
{
struct drm_i915_gem_object *obj = vma->obj;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
ring = i915_gem_request_get_ring(req);
engine = i915_gem_request_get_engine(req);
/* Add a reference if we're newly entering the active list. */
if (obj->active == 0)
drm_gem_object_reference(&obj->base);
obj->active |= intel_ring_flag(ring);
obj->active |= intel_engine_flag(engine);
list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
i915_gem_request_assign(&obj->last_read_req[ring->id], req);
list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
i915_gem_request_assign(&obj->last_read_req[engine->id], req);
list_move_tail(&vma->vm_link, &vma->vm->active_list);
}
@ -2423,7 +2421,7 @@ static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
{
RQ_BUG_ON(obj->last_write_req == NULL);
RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
RQ_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
i915_gem_request_assign(&obj->last_write_req, NULL);
intel_fb_obj_flush(obj, true, ORIGIN_CS);
@ -2437,10 +2435,10 @@ i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
RQ_BUG_ON(obj->last_read_req[ring] == NULL);
RQ_BUG_ON(!(obj->active & (1 << ring)));
list_del_init(&obj->ring_list[ring]);
list_del_init(&obj->engine_list[ring]);
i915_gem_request_assign(&obj->last_read_req[ring], NULL);
if (obj->last_write_req && obj->last_write_req->ring->id == ring)
if (obj->last_write_req && obj->last_write_req->engine->id == ring)
i915_gem_object_retire__write(obj);
obj->active &= ~(1 << ring);
@ -2467,23 +2465,23 @@ static int
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int ret, i, j;
struct intel_engine_cs *engine;
int ret, j;
/* Carefully retire all requests without writing to the rings */
for_each_ring(ring, dev_priv, i) {
ret = intel_ring_idle(ring);
for_each_engine(engine, dev_priv) {
ret = intel_engine_idle(engine);
if (ret)
return ret;
}
i915_gem_retire_requests(dev);
/* Finally reset hw state */
for_each_ring(ring, dev_priv, i) {
intel_ring_init_seqno(ring, seqno);
for_each_engine(engine, dev_priv) {
intel_ring_init_seqno(engine, seqno);
for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
ring->semaphore.sync_seqno[j] = 0;
for (j = 0; j < ARRAY_SIZE(engine->semaphore.sync_seqno); j++)
engine->semaphore.sync_seqno[j] = 0;
}
return 0;
@ -2542,7 +2540,7 @@ void __i915_add_request(struct drm_i915_gem_request *request,
struct drm_i915_gem_object *obj,
bool flush_caches)
{
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
struct drm_i915_private *dev_priv;
struct intel_ringbuffer *ringbuf;
u32 request_start;
@ -2551,8 +2549,8 @@ void __i915_add_request(struct drm_i915_gem_request *request,
if (WARN_ON(request == NULL))
return;
ring = request->ring;
dev_priv = ring->dev->dev_private;
engine = request->engine;
dev_priv = request->i915;
ringbuf = request->ringbuf;
/*
@ -2587,9 +2585,9 @@ void __i915_add_request(struct drm_i915_gem_request *request,
request->postfix = intel_ring_get_tail(ringbuf);
if (i915.enable_execlists)
ret = ring->emit_request(request);
ret = engine->emit_request(request);
else {
ret = ring->add_request(request);
ret = engine->add_request(request);
request->tail = intel_ring_get_tail(ringbuf);
}
@ -2607,13 +2605,13 @@ void __i915_add_request(struct drm_i915_gem_request *request,
request->batch_obj = obj;
request->emitted_jiffies = jiffies;
request->previous_seqno = ring->last_submitted_seqno;
ring->last_submitted_seqno = request->seqno;
list_add_tail(&request->list, &ring->request_list);
request->previous_seqno = engine->last_submitted_seqno;
engine->last_submitted_seqno = request->seqno;
list_add_tail(&request->list, &engine->request_list);
trace_i915_gem_request_add(request);
i915_queue_hangcheck(ring->dev);
i915_queue_hangcheck(engine->dev);
queue_delayed_work(dev_priv->wq,
&dev_priv->mm.retire_work,
@ -2680,7 +2678,7 @@ void i915_gem_request_free(struct kref *req_ref)
if (ctx) {
if (i915.enable_execlists && ctx != req->i915->kernel_context)
intel_lr_context_unpin(ctx, req->ring);
intel_lr_context_unpin(ctx, req->engine);
i915_gem_context_unreference(ctx);
}
@ -2689,11 +2687,11 @@ void i915_gem_request_free(struct kref *req_ref)
}
static inline int
__i915_gem_request_alloc(struct intel_engine_cs *ring,
__i915_gem_request_alloc(struct intel_engine_cs *engine,
struct intel_context *ctx,
struct drm_i915_gem_request **req_out)
{
struct drm_i915_private *dev_priv = to_i915(ring->dev);
struct drm_i915_private *dev_priv = to_i915(engine->dev);
struct drm_i915_gem_request *req;
int ret;
@ -2706,13 +2704,13 @@ __i915_gem_request_alloc(struct intel_engine_cs *ring,
if (req == NULL)
return -ENOMEM;
ret = i915_gem_get_seqno(ring->dev, &req->seqno);
ret = i915_gem_get_seqno(engine->dev, &req->seqno);
if (ret)
goto err;
kref_init(&req->ref);
req->i915 = dev_priv;
req->ring = ring;
req->engine = engine;
req->ctx = ctx;
i915_gem_context_reference(req->ctx);
@ -2787,11 +2785,11 @@ void i915_gem_request_cancel(struct drm_i915_gem_request *req)
}
struct drm_i915_gem_request *
i915_gem_find_active_request(struct intel_engine_cs *ring)
i915_gem_find_active_request(struct intel_engine_cs *engine)
{
struct drm_i915_gem_request *request;
list_for_each_entry(request, &ring->request_list, list) {
list_for_each_entry(request, &engine->request_list, list) {
if (i915_gem_request_completed(request, false))
continue;
@ -2801,38 +2799,38 @@ i915_gem_find_active_request(struct intel_engine_cs *ring)
return NULL;
}
static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
struct intel_engine_cs *ring)
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
struct intel_engine_cs *engine)
{
struct drm_i915_gem_request *request;
bool ring_hung;
request = i915_gem_find_active_request(ring);
request = i915_gem_find_active_request(engine);
if (request == NULL)
return;
ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
i915_set_reset_status(dev_priv, request->ctx, ring_hung);
list_for_each_entry_continue(request, &ring->request_list, list)
list_for_each_entry_continue(request, &engine->request_list, list)
i915_set_reset_status(dev_priv, request->ctx, false);
}
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
struct intel_engine_cs *ring)
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
struct intel_engine_cs *engine)
{
struct intel_ringbuffer *buffer;
while (!list_empty(&ring->active_list)) {
while (!list_empty(&engine->active_list)) {
struct drm_i915_gem_object *obj;
obj = list_first_entry(&ring->active_list,
obj = list_first_entry(&engine->active_list,
struct drm_i915_gem_object,
ring_list[ring->id]);
engine_list[engine->id]);
i915_gem_object_retire__read(obj, ring->id);
i915_gem_object_retire__read(obj, engine->id);
}
/*
@ -2842,14 +2840,14 @@ static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
*/
if (i915.enable_execlists) {
spin_lock_irq(&ring->execlist_lock);
spin_lock_irq(&engine->execlist_lock);
/* list_splice_tail_init checks for empty lists */
list_splice_tail_init(&ring->execlist_queue,
&ring->execlist_retired_req_list);
list_splice_tail_init(&engine->execlist_queue,
&engine->execlist_retired_req_list);
spin_unlock_irq(&ring->execlist_lock);
intel_execlists_retire_requests(ring);
spin_unlock_irq(&engine->execlist_lock);
intel_execlists_retire_requests(engine);
}
/*
@ -2859,10 +2857,10 @@ static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
* implicit references on things like e.g. ppgtt address spaces through
* the request.
*/
while (!list_empty(&ring->request_list)) {
while (!list_empty(&engine->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
request = list_first_entry(&engine->request_list,
struct drm_i915_gem_request,
list);
@ -2876,7 +2874,7 @@ static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
* upon reset is less than when we start. Do one more pass over
* all the ringbuffers to reset last_retired_head.
*/
list_for_each_entry(buffer, &ring->buffers, link) {
list_for_each_entry(buffer, &engine->buffers, link) {
buffer->last_retired_head = buffer->tail;
intel_ring_update_space(buffer);
}
@ -2885,19 +2883,18 @@ static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
void i915_gem_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int i;
struct intel_engine_cs *engine;
/*
* Before we free the objects from the requests, we need to inspect
* them for finding the guilty party. As the requests only borrow
* their reference to the objects, the inspection must be done first.
*/
for_each_ring(ring, dev_priv, i)
i915_gem_reset_ring_status(dev_priv, ring);
for_each_engine(engine, dev_priv)
i915_gem_reset_engine_status(dev_priv, engine);
for_each_ring(ring, dev_priv, i)
i915_gem_reset_ring_cleanup(dev_priv, ring);
for_each_engine(engine, dev_priv)
i915_gem_reset_engine_cleanup(dev_priv, engine);
i915_gem_context_reset(dev);
@ -2910,19 +2907,19 @@ void i915_gem_reset(struct drm_device *dev)
* This function clears the request list as sequence numbers are passed.
*/
void
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
{
WARN_ON(i915_verify_lists(ring->dev));
WARN_ON(i915_verify_lists(engine->dev));
/* Retire requests first as we use it above for the early return.
* If we retire requests last, we may use a later seqno and so clear
* the requests lists without clearing the active list, leading to
* confusion.
*/
while (!list_empty(&ring->request_list)) {
while (!list_empty(&engine->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
request = list_first_entry(&engine->request_list,
struct drm_i915_gem_request,
list);
@ -2936,45 +2933,44 @@ i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
* by the ringbuffer to the flushing/inactive lists as appropriate,
* before we free the context associated with the requests.
*/
while (!list_empty(&ring->active_list)) {
while (!list_empty(&engine->active_list)) {
struct drm_i915_gem_object *obj;
obj = list_first_entry(&ring->active_list,
struct drm_i915_gem_object,
ring_list[ring->id]);
obj = list_first_entry(&engine->active_list,
struct drm_i915_gem_object,
engine_list[engine->id]);
if (!list_empty(&obj->last_read_req[ring->id]->list))
if (!list_empty(&obj->last_read_req[engine->id]->list))
break;
i915_gem_object_retire__read(obj, ring->id);
i915_gem_object_retire__read(obj, engine->id);
}
if (unlikely(ring->trace_irq_req &&
i915_gem_request_completed(ring->trace_irq_req, true))) {
ring->irq_put(ring);
i915_gem_request_assign(&ring->trace_irq_req, NULL);
if (unlikely(engine->trace_irq_req &&
i915_gem_request_completed(engine->trace_irq_req, true))) {
engine->irq_put(engine);
i915_gem_request_assign(&engine->trace_irq_req, NULL);
}
WARN_ON(i915_verify_lists(ring->dev));
WARN_ON(i915_verify_lists(engine->dev));
}
bool
i915_gem_retire_requests(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
bool idle = true;
int i;
for_each_ring(ring, dev_priv, i) {
i915_gem_retire_requests_ring(ring);
idle &= list_empty(&ring->request_list);
for_each_engine(engine, dev_priv) {
i915_gem_retire_requests_ring(engine);
idle &= list_empty(&engine->request_list);
if (i915.enable_execlists) {
spin_lock_irq(&ring->execlist_lock);
idle &= list_empty(&ring->execlist_queue);
spin_unlock_irq(&ring->execlist_lock);
spin_lock_irq(&engine->execlist_lock);
idle &= list_empty(&engine->execlist_queue);
spin_unlock_irq(&engine->execlist_lock);
intel_execlists_retire_requests(ring);
intel_execlists_retire_requests(engine);
}
}
@ -3011,25 +3007,21 @@ i915_gem_idle_work_handler(struct work_struct *work)
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), mm.idle_work.work);
struct drm_device *dev = dev_priv->dev;
struct intel_engine_cs *ring;
int i;
struct intel_engine_cs *engine;
for_each_ring(ring, dev_priv, i)
if (!list_empty(&ring->request_list))
for_each_engine(engine, dev_priv)
if (!list_empty(&engine->request_list))
return;
/* we probably should sync with hangcheck here, using cancel_work_sync.
* Also locking seems to be fubar here, ring->request_list is protected
* Also locking seems to be fubar here, engine->request_list is protected
* by dev->struct_mutex. */
intel_mark_idle(dev);
if (mutex_trylock(&dev->struct_mutex)) {
struct intel_engine_cs *ring;
int i;
for_each_ring(ring, dev_priv, i)
i915_gem_batch_pool_fini(&ring->batch_pool);
for_each_engine(engine, dev_priv)
i915_gem_batch_pool_fini(&engine->batch_pool);
mutex_unlock(&dev->struct_mutex);
}
@ -3048,7 +3040,7 @@ i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
if (!obj->active)
return 0;
for (i = 0; i < I915_NUM_RINGS; i++) {
for (i = 0; i < I915_NUM_ENGINES; i++) {
struct drm_i915_gem_request *req;
req = obj->last_read_req[i];
@ -3096,7 +3088,7 @@ i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_wait *args = data;
struct drm_i915_gem_object *obj;
struct drm_i915_gem_request *req[I915_NUM_RINGS];
struct drm_i915_gem_request *req[I915_NUM_ENGINES];
unsigned reset_counter;
int i, n = 0;
int ret;
@ -3133,7 +3125,7 @@ i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
drm_gem_object_unreference(&obj->base);
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
for (i = 0; i < I915_NUM_RINGS; i++) {
for (i = 0; i < I915_NUM_ENGINES; i++) {
if (obj->last_read_req[i] == NULL)
continue;
@ -3166,7 +3158,7 @@ __i915_gem_object_sync(struct drm_i915_gem_object *obj,
struct intel_engine_cs *from;
int ret;
from = i915_gem_request_get_ring(from_req);
from = i915_gem_request_get_engine(from_req);
if (to == from)
return 0;
@ -3260,7 +3252,7 @@ i915_gem_object_sync(struct drm_i915_gem_object *obj,
struct drm_i915_gem_request **to_req)
{
const bool readonly = obj->base.pending_write_domain == 0;
struct drm_i915_gem_request *req[I915_NUM_RINGS];
struct drm_i915_gem_request *req[I915_NUM_ENGINES];
int ret, i, n;
if (!obj->active)
@ -3274,7 +3266,7 @@ i915_gem_object_sync(struct drm_i915_gem_object *obj,
if (obj->last_write_req)
req[n++] = obj->last_write_req;
} else {
for (i = 0; i < I915_NUM_RINGS; i++)
for (i = 0; i < I915_NUM_ENGINES; i++)
if (obj->last_read_req[i])
req[n++] = obj->last_read_req[i];
}
@ -3391,15 +3383,15 @@ int __i915_vma_unbind_no_wait(struct i915_vma *vma)
int i915_gpu_idle(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int ret, i;
struct intel_engine_cs *engine;
int ret;
/* Flush everything onto the inactive list. */
for_each_ring(ring, dev_priv, i) {
for_each_engine(engine, dev_priv) {
if (!i915.enable_execlists) {
struct drm_i915_gem_request *req;
req = i915_gem_request_alloc(ring, NULL);
req = i915_gem_request_alloc(engine, NULL);
if (IS_ERR(req))
return PTR_ERR(req);
@ -3412,7 +3404,7 @@ int i915_gpu_idle(struct drm_device *dev)
i915_add_request_no_flush(req);
}
ret = intel_ring_idle(ring);
ret = intel_engine_idle(engine);
if (ret)
return ret;
}
@ -3513,7 +3505,7 @@ i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
end = vm->total;
if (flags & PIN_MAPPABLE)
end = min_t(u64, end, dev_priv->gtt.mappable_end);
end = min_t(u64, end, dev_priv->ggtt.mappable_end);
if (flags & PIN_ZONE_4G)
end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
@ -3774,7 +3766,7 @@ i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
vma = i915_gem_obj_to_ggtt(obj);
if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
list_move_tail(&vma->vm_link,
&to_i915(obj->base.dev)->gtt.base.inactive_list);
&to_i915(obj->base.dev)->ggtt.base.inactive_list);
return 0;
}
@ -3949,7 +3941,7 @@ int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
* cacheline, whereas normally such cachelines would get
* invalidated.
*/
if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
return -ENODEV;
level = I915_CACHE_LLC;
@ -4211,7 +4203,7 @@ void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
(vma->node.start & (fence_alignment - 1)) == 0);
mappable = (vma->node.start + fence_size <=
to_i915(obj->base.dev)->gtt.mappable_end);
to_i915(obj->base.dev)->ggtt.mappable_end);
obj->map_and_fenceable = mappable && fenceable;
}
@ -4359,15 +4351,15 @@ i915_gem_busy_ioctl(struct drm_device *dev, void *data,
if (obj->active) {
int i;
for (i = 0; i < I915_NUM_RINGS; i++) {
for (i = 0; i < I915_NUM_ENGINES; i++) {
struct drm_i915_gem_request *req;
req = obj->last_read_req[i];
if (req)
args->busy |= 1 << (16 + req->ring->exec_id);
args->busy |= 1 << (16 + req->engine->exec_id);
}
if (obj->last_write_req)
args->busy |= obj->last_write_req->ring->exec_id;
args->busy |= obj->last_write_req->engine->exec_id;
}
unref:
@ -4447,8 +4439,8 @@ void i915_gem_object_init(struct drm_i915_gem_object *obj,
int i;
INIT_LIST_HEAD(&obj->global_list);
for (i = 0; i < I915_NUM_RINGS; i++)
INIT_LIST_HEAD(&obj->ring_list[i]);
for (i = 0; i < I915_NUM_ENGINES; i++)
INIT_LIST_HEAD(&obj->engine_list[i]);
INIT_LIST_HEAD(&obj->obj_exec_link);
INIT_LIST_HEAD(&obj->vma_list);
INIT_LIST_HEAD(&obj->batch_pool_link);
@ -4653,14 +4645,13 @@ void i915_gem_vma_destroy(struct i915_vma *vma)
}
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
i915_gem_stop_engines(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int i;
struct intel_engine_cs *engine;
for_each_ring(ring, dev_priv, i)
dev_priv->gt.stop_ring(ring);
for_each_engine(engine, dev_priv)
dev_priv->gt.stop_engine(engine);
}
int
@ -4676,7 +4667,7 @@ i915_gem_suspend(struct drm_device *dev)
i915_gem_retire_requests(dev);
i915_gem_stop_ringbuffers(dev);
i915_gem_stop_engines(dev);
mutex_unlock(&dev->struct_mutex);
cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
@ -4697,8 +4688,8 @@ err:
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
{
struct intel_engine_cs *ring = req->ring;
struct drm_device *dev = ring->dev;
struct intel_engine_cs *engine = req->engine;
struct drm_device *dev = engine->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
int i, ret;
@ -4716,12 +4707,12 @@ int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
* at initialization time.
*/
for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
intel_ring_emit(ring, remap_info[i]);
intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
intel_ring_emit(engine, remap_info[i]);
}
intel_ring_advance(ring);
intel_ring_advance(engine);
return ret;
}
@ -4778,7 +4769,7 @@ static void init_unused_rings(struct drm_device *dev)
}
}
int i915_gem_init_rings(struct drm_device *dev)
int i915_gem_init_engines(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
@ -4814,13 +4805,13 @@ int i915_gem_init_rings(struct drm_device *dev)
return 0;
cleanup_vebox_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
intel_cleanup_engine(&dev_priv->engine[VECS]);
cleanup_blt_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
intel_cleanup_engine(&dev_priv->engine[BCS]);
cleanup_bsd_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
intel_cleanup_engine(&dev_priv->engine[VCS]);
cleanup_render_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
intel_cleanup_engine(&dev_priv->engine[RCS]);
return ret;
}
@ -4829,8 +4820,8 @@ int
i915_gem_init_hw(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int ret, i, j;
struct intel_engine_cs *engine;
int ret, j;
if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
return -EIO;
@ -4876,8 +4867,8 @@ i915_gem_init_hw(struct drm_device *dev)
}
/* Need to do basic initialisation of all rings first: */
for_each_ring(ring, dev_priv, i) {
ret = ring->init_hw(ring);
for_each_engine(engine, dev_priv) {
ret = engine->init_hw(engine);
if (ret)
goto out;
}
@ -4901,34 +4892,36 @@ i915_gem_init_hw(struct drm_device *dev)
goto out;
/* Now it is safe to go back round and do everything else: */
for_each_ring(ring, dev_priv, i) {
for_each_engine(engine, dev_priv) {
struct drm_i915_gem_request *req;
req = i915_gem_request_alloc(ring, NULL);
req = i915_gem_request_alloc(engine, NULL);
if (IS_ERR(req)) {
ret = PTR_ERR(req);
i915_gem_cleanup_ringbuffer(dev);
i915_gem_cleanup_engines(dev);
goto out;
}
if (ring->id == RCS) {
if (engine->id == RCS) {
for (j = 0; j < NUM_L3_SLICES(dev); j++)
i915_gem_l3_remap(req, j);
}
ret = i915_ppgtt_init_ring(req);
if (ret && ret != -EIO) {
DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
DRM_ERROR("PPGTT enable %s failed %d\n",
engine->name, ret);
i915_gem_request_cancel(req);
i915_gem_cleanup_ringbuffer(dev);
i915_gem_cleanup_engines(dev);
goto out;
}
ret = i915_gem_context_enable(req);
if (ret && ret != -EIO) {
DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
DRM_ERROR("Context enable %s failed %d\n",
engine->name, ret);
i915_gem_request_cancel(req);
i915_gem_cleanup_ringbuffer(dev);
i915_gem_cleanup_engines(dev);
goto out;
}
@ -4952,14 +4945,14 @@ int i915_gem_init(struct drm_device *dev)
if (!i915.enable_execlists) {
dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
dev_priv->gt.init_rings = i915_gem_init_rings;
dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
dev_priv->gt.stop_ring = intel_stop_ring_buffer;
dev_priv->gt.init_engines = i915_gem_init_engines;
dev_priv->gt.cleanup_engine = intel_cleanup_engine;
dev_priv->gt.stop_engine = intel_stop_engine;
} else {
dev_priv->gt.execbuf_submit = intel_execlists_submission;
dev_priv->gt.init_rings = intel_logical_rings_init;
dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
dev_priv->gt.stop_ring = intel_logical_ring_stop;
dev_priv->gt.init_engines = intel_logical_rings_init;
dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
dev_priv->gt.stop_engine = intel_logical_ring_stop;
}
/* This is just a security blanket to placate dragons.
@ -4980,7 +4973,7 @@ int i915_gem_init(struct drm_device *dev)
if (ret)
goto out_unlock;
ret = dev_priv->gt.init_rings(dev);
ret = dev_priv->gt.init_engines(dev);
if (ret)
goto out_unlock;
@ -5003,29 +4996,52 @@ out_unlock:
}
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
i915_gem_cleanup_engines(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int i;
struct intel_engine_cs *engine;
for_each_ring(ring, dev_priv, i)
dev_priv->gt.cleanup_ring(ring);
for_each_engine(engine, dev_priv)
dev_priv->gt.cleanup_engine(engine);
if (i915.enable_execlists)
/*
* Neither the BIOS, ourselves or any other kernel
* expects the system to be in execlists mode on startup,
* so we need to reset the GPU back to legacy mode.
*/
intel_gpu_reset(dev);
if (i915.enable_execlists)
/*
* Neither the BIOS, ourselves or any other kernel
* expects the system to be in execlists mode on startup,
* so we need to reset the GPU back to legacy mode.
*/
intel_gpu_reset(dev, ALL_ENGINES);
}
static void
init_ring_lists(struct intel_engine_cs *ring)
init_engine_lists(struct intel_engine_cs *engine)
{
INIT_LIST_HEAD(&ring->active_list);
INIT_LIST_HEAD(&ring->request_list);
INIT_LIST_HEAD(&engine->active_list);
INIT_LIST_HEAD(&engine->request_list);
}
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
!IS_CHERRYVIEW(dev_priv))
dev_priv->num_fence_regs = 32;
else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
IS_I945GM(dev_priv) || IS_G33(dev_priv))
dev_priv->num_fence_regs = 16;
else
dev_priv->num_fence_regs = 8;
if (intel_vgpu_active(dev))
dev_priv->num_fence_regs =
I915_READ(vgtif_reg(avail_rs.fence_num));
/* Initialize fence registers to zero */
i915_gem_restore_fences(dev);
i915_gem_detect_bit_6_swizzle(dev);
}
void
@ -5055,8 +5071,8 @@ i915_gem_load_init(struct drm_device *dev)
INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
INIT_LIST_HEAD(&dev_priv->mm.bound_list);
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
for (i = 0; i < I915_NUM_RINGS; i++)
init_ring_lists(&dev_priv->ring[i]);
for (i = 0; i < I915_NUM_ENGINES; i++)
init_engine_lists(&dev_priv->engine[i]);
for (i = 0; i < I915_MAX_NUM_FENCES; i++)
INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
@ -5067,17 +5083,6 @@ i915_gem_load_init(struct drm_device *dev)
dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
dev_priv->num_fence_regs = 32;
else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
dev_priv->num_fence_regs = 16;
else
dev_priv->num_fence_regs = 8;
if (intel_vgpu_active(dev))
dev_priv->num_fence_regs =
I915_READ(vgtif_reg(avail_rs.fence_num));
/*
* Set initial sequence number for requests.
* Using this number allows the wraparound to happen early,
@ -5086,11 +5091,8 @@ i915_gem_load_init(struct drm_device *dev)
dev_priv->next_seqno = ((u32)~0 - 0x1100);
dev_priv->last_seqno = ((u32)~0 - 0x1101);
/* Initialize fence registers to zero */
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
i915_gem_restore_fences(dev);
i915_gem_detect_bit_6_swizzle(dev);
init_waitqueue_head(&dev_priv->pending_flip_queue);
dev_priv->mm.interruptible = true;

View File

@ -345,12 +345,12 @@ void i915_gem_context_reset(struct drm_device *dev)
intel_lr_context_reset(dev, ctx);
}
for (i = 0; i < I915_NUM_RINGS; i++) {
struct intel_engine_cs *ring = &dev_priv->ring[i];
for (i = 0; i < I915_NUM_ENGINES; i++) {
struct intel_engine_cs *engine = &dev_priv->engine[i];
if (ring->last_context) {
i915_gem_context_unpin(ring->last_context, ring);
ring->last_context = NULL;
if (engine->last_context) {
i915_gem_context_unpin(engine->last_context, engine);
engine->last_context = NULL;
}
}
@ -413,7 +413,7 @@ void i915_gem_context_fini(struct drm_device *dev)
/* The only known way to stop the gpu from accessing the hw context is
* to reset it. Do this as the very last operation to avoid confusing
* other code, leading to spurious errors. */
intel_gpu_reset(dev);
intel_gpu_reset(dev, ALL_ENGINES);
/* When default context is created and switched to, base object refcount
* will be 2 (+1 from object creation and +1 from do_switch()).
@ -421,17 +421,17 @@ void i915_gem_context_fini(struct drm_device *dev)
* to default context. So we need to unreference the base object once
* to offset the do_switch part, so that i915_gem_context_unreference()
* can then free the base object correctly. */
WARN_ON(!dev_priv->ring[RCS].last_context);
WARN_ON(!dev_priv->engine[RCS].last_context);
i915_gem_object_ggtt_unpin(dctx->legacy_hw_ctx.rcs_state);
}
for (i = I915_NUM_RINGS; --i >= 0;) {
struct intel_engine_cs *ring = &dev_priv->ring[i];
for (i = I915_NUM_ENGINES; --i >= 0;) {
struct intel_engine_cs *engine = &dev_priv->engine[i];
if (ring->last_context) {
i915_gem_context_unpin(ring->last_context, ring);
ring->last_context = NULL;
if (engine->last_context) {
i915_gem_context_unpin(engine->last_context, engine);
engine->last_context = NULL;
}
}
@ -441,14 +441,14 @@ void i915_gem_context_fini(struct drm_device *dev)
int i915_gem_context_enable(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
int ret;
if (i915.enable_execlists) {
if (ring->init_context == NULL)
if (engine->init_context == NULL)
return 0;
ret = ring->init_context(req);
ret = engine->init_context(req);
} else
ret = i915_switch_context(req);
@ -510,35 +510,35 @@ i915_gem_context_get(struct drm_i915_file_private *file_priv, u32 id)
static inline int
mi_set_context(struct drm_i915_gem_request *req, u32 hw_flags)
{
struct intel_engine_cs *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
u32 flags = hw_flags | MI_MM_SPACE_GTT;
const int num_rings =
/* Use an extended w/a on ivb+ if signalling from other rings */
i915_semaphore_is_enabled(ring->dev) ?
hweight32(INTEL_INFO(ring->dev)->ring_mask) - 1 :
i915_semaphore_is_enabled(engine->dev) ?
hweight32(INTEL_INFO(engine->dev)->ring_mask) - 1 :
0;
int len, i, ret;
int len, ret;
/* w/a: If Flush TLB Invalidation Mode is enabled, driver must do a TLB
* invalidation prior to MI_SET_CONTEXT. On GEN6 we don't set the value
* explicitly, so we rely on the value at ring init, stored in
* itlb_before_ctx_switch.
*/
if (IS_GEN6(ring->dev)) {
ret = ring->flush(req, I915_GEM_GPU_DOMAINS, 0);
if (IS_GEN6(engine->dev)) {
ret = engine->flush(req, I915_GEM_GPU_DOMAINS, 0);
if (ret)
return ret;
}
/* These flags are for resource streamer on HSW+ */
if (IS_HASWELL(ring->dev) || INTEL_INFO(ring->dev)->gen >= 8)
if (IS_HASWELL(engine->dev) || INTEL_INFO(engine->dev)->gen >= 8)
flags |= (HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN);
else if (INTEL_INFO(ring->dev)->gen < 8)
else if (INTEL_INFO(engine->dev)->gen < 8)
flags |= (MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN);
len = 4;
if (INTEL_INFO(ring->dev)->gen >= 7)
if (INTEL_INFO(engine->dev)->gen >= 7)
len += 2 + (num_rings ? 4*num_rings + 2 : 0);
ret = intel_ring_begin(req, len);
@ -546,54 +546,61 @@ mi_set_context(struct drm_i915_gem_request *req, u32 hw_flags)
return ret;
/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
if (INTEL_INFO(ring->dev)->gen >= 7) {
intel_ring_emit(ring, MI_ARB_ON_OFF | MI_ARB_DISABLE);
if (INTEL_INFO(engine->dev)->gen >= 7) {
intel_ring_emit(engine, MI_ARB_ON_OFF | MI_ARB_DISABLE);
if (num_rings) {
struct intel_engine_cs *signaller;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_rings));
for_each_ring(signaller, to_i915(ring->dev), i) {
if (signaller == ring)
intel_ring_emit(engine,
MI_LOAD_REGISTER_IMM(num_rings));
for_each_engine(signaller, to_i915(engine->dev)) {
if (signaller == engine)
continue;
intel_ring_emit_reg(ring, RING_PSMI_CTL(signaller->mmio_base));
intel_ring_emit(ring, _MASKED_BIT_ENABLE(GEN6_PSMI_SLEEP_MSG_DISABLE));
intel_ring_emit_reg(engine,
RING_PSMI_CTL(signaller->mmio_base));
intel_ring_emit(engine,
_MASKED_BIT_ENABLE(GEN6_PSMI_SLEEP_MSG_DISABLE));
}
}
}
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_SET_CONTEXT);
intel_ring_emit(ring, i915_gem_obj_ggtt_offset(req->ctx->legacy_hw_ctx.rcs_state) |
intel_ring_emit(engine, MI_NOOP);
intel_ring_emit(engine, MI_SET_CONTEXT);
intel_ring_emit(engine,
i915_gem_obj_ggtt_offset(req->ctx->legacy_hw_ctx.rcs_state) |
flags);
/*
* w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
* WaMiSetContext_Hang:snb,ivb,vlv
*/
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(engine, MI_NOOP);
if (INTEL_INFO(ring->dev)->gen >= 7) {
if (INTEL_INFO(engine->dev)->gen >= 7) {
if (num_rings) {
struct intel_engine_cs *signaller;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_rings));
for_each_ring(signaller, to_i915(ring->dev), i) {
if (signaller == ring)
intel_ring_emit(engine,
MI_LOAD_REGISTER_IMM(num_rings));
for_each_engine(signaller, to_i915(engine->dev)) {
if (signaller == engine)
continue;
intel_ring_emit_reg(ring, RING_PSMI_CTL(signaller->mmio_base));
intel_ring_emit(ring, _MASKED_BIT_DISABLE(GEN6_PSMI_SLEEP_MSG_DISABLE));
intel_ring_emit_reg(engine,
RING_PSMI_CTL(signaller->mmio_base));
intel_ring_emit(engine,
_MASKED_BIT_DISABLE(GEN6_PSMI_SLEEP_MSG_DISABLE));
}
}
intel_ring_emit(ring, MI_ARB_ON_OFF | MI_ARB_ENABLE);
intel_ring_emit(engine, MI_ARB_ON_OFF | MI_ARB_ENABLE);
}
intel_ring_advance(ring);
intel_ring_advance(engine);
return ret;
}
static inline bool should_skip_switch(struct intel_engine_cs *ring,
static inline bool should_skip_switch(struct intel_engine_cs *engine,
struct intel_context *from,
struct intel_context *to)
{
@ -601,42 +608,42 @@ static inline bool should_skip_switch(struct intel_engine_cs *ring,
return false;
if (to->ppgtt && from == to &&
!(intel_ring_flag(ring) & to->ppgtt->pd_dirty_rings))
!(intel_engine_flag(engine) & to->ppgtt->pd_dirty_rings))
return true;
return false;
}
static bool
needs_pd_load_pre(struct intel_engine_cs *ring, struct intel_context *to)
needs_pd_load_pre(struct intel_engine_cs *engine, struct intel_context *to)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct drm_i915_private *dev_priv = engine->dev->dev_private;
if (!to->ppgtt)
return false;
if (INTEL_INFO(ring->dev)->gen < 8)
if (INTEL_INFO(engine->dev)->gen < 8)
return true;
if (ring != &dev_priv->ring[RCS])
if (engine != &dev_priv->engine[RCS])
return true;
return false;
}
static bool
needs_pd_load_post(struct intel_engine_cs *ring, struct intel_context *to,
u32 hw_flags)
needs_pd_load_post(struct intel_engine_cs *engine, struct intel_context *to,
u32 hw_flags)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct drm_i915_private *dev_priv = engine->dev->dev_private;
if (!to->ppgtt)
return false;
if (!IS_GEN8(ring->dev))
if (!IS_GEN8(engine->dev))
return false;
if (ring != &dev_priv->ring[RCS])
if (engine != &dev_priv->engine[RCS])
return false;
if (hw_flags & MI_RESTORE_INHIBIT)
@ -648,25 +655,26 @@ needs_pd_load_post(struct intel_engine_cs *ring, struct intel_context *to,
static int do_switch(struct drm_i915_gem_request *req)
{
struct intel_context *to = req->ctx;
struct intel_engine_cs *ring = req->ring;
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct intel_context *from = ring->last_context;
struct intel_engine_cs *engine = req->engine;
struct drm_i915_private *dev_priv = req->i915;
struct intel_context *from = engine->last_context;
u32 hw_flags = 0;
bool uninitialized = false;
int ret, i;
if (from != NULL && ring == &dev_priv->ring[RCS]) {
if (from != NULL && engine == &dev_priv->engine[RCS]) {
BUG_ON(from->legacy_hw_ctx.rcs_state == NULL);
BUG_ON(!i915_gem_obj_is_pinned(from->legacy_hw_ctx.rcs_state));
}
if (should_skip_switch(ring, from, to))
if (should_skip_switch(engine, from, to))
return 0;
/* Trying to pin first makes error handling easier. */
if (ring == &dev_priv->ring[RCS]) {
if (engine == &dev_priv->engine[RCS]) {
ret = i915_gem_obj_ggtt_pin(to->legacy_hw_ctx.rcs_state,
get_context_alignment(ring->dev), 0);
get_context_alignment(engine->dev),
0);
if (ret)
return ret;
}
@ -676,23 +684,23 @@ static int do_switch(struct drm_i915_gem_request *req)
* evict_everything - as a last ditch gtt defrag effort that also
* switches to the default context. Hence we need to reload from here.
*/
from = ring->last_context;
from = engine->last_context;
if (needs_pd_load_pre(ring, to)) {
if (needs_pd_load_pre(engine, to)) {
/* Older GENs and non render rings still want the load first,
* "PP_DCLV followed by PP_DIR_BASE register through Load
* Register Immediate commands in Ring Buffer before submitting
* a context."*/
trace_switch_mm(ring, to);
trace_switch_mm(engine, to);
ret = to->ppgtt->switch_mm(to->ppgtt, req);
if (ret)
goto unpin_out;
/* Doing a PD load always reloads the page dirs */
to->ppgtt->pd_dirty_rings &= ~intel_ring_flag(ring);
to->ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
}
if (ring != &dev_priv->ring[RCS]) {
if (engine != &dev_priv->engine[RCS]) {
if (from)
i915_gem_context_unreference(from);
goto done;
@ -717,14 +725,14 @@ static int do_switch(struct drm_i915_gem_request *req)
* space. This means we must enforce that a page table load
* occur when this occurs. */
} else if (to->ppgtt &&
(intel_ring_flag(ring) & to->ppgtt->pd_dirty_rings)) {
(intel_engine_flag(engine) & to->ppgtt->pd_dirty_rings)) {
hw_flags |= MI_FORCE_RESTORE;
to->ppgtt->pd_dirty_rings &= ~intel_ring_flag(ring);
to->ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
}
/* We should never emit switch_mm more than once */
WARN_ON(needs_pd_load_pre(ring, to) &&
needs_pd_load_post(ring, to, hw_flags));
WARN_ON(needs_pd_load_pre(engine, to) &&
needs_pd_load_post(engine, to, hw_flags));
ret = mi_set_context(req, hw_flags);
if (ret)
@ -733,8 +741,8 @@ static int do_switch(struct drm_i915_gem_request *req)
/* GEN8 does *not* require an explicit reload if the PDPs have been
* setup, and we do not wish to move them.
*/
if (needs_pd_load_post(ring, to, hw_flags)) {
trace_switch_mm(ring, to);
if (needs_pd_load_post(engine, to, hw_flags)) {
trace_switch_mm(engine, to);
ret = to->ppgtt->switch_mm(to->ppgtt, req);
/* The hardware context switch is emitted, but we haven't
* actually changed the state - so it's probably safe to bail
@ -787,11 +795,11 @@ static int do_switch(struct drm_i915_gem_request *req)
done:
i915_gem_context_reference(to);
ring->last_context = to;
engine->last_context = to;
if (uninitialized) {
if (ring->init_context) {
ret = ring->init_context(req);
if (engine->init_context) {
ret = engine->init_context(req);
if (ret)
DRM_ERROR("ring init context: %d\n", ret);
}
@ -800,7 +808,7 @@ done:
return 0;
unpin_out:
if (ring->id == RCS)
if (engine->id == RCS)
i915_gem_object_ggtt_unpin(to->legacy_hw_ctx.rcs_state);
return ret;
}
@ -820,18 +828,18 @@ unpin_out:
*/
int i915_switch_context(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct intel_engine_cs *engine = req->engine;
struct drm_i915_private *dev_priv = req->i915;
WARN_ON(i915.enable_execlists);
WARN_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
if (req->ctx->legacy_hw_ctx.rcs_state == NULL) { /* We have the fake context */
if (req->ctx != ring->last_context) {
if (req->ctx != engine->last_context) {
i915_gem_context_reference(req->ctx);
if (ring->last_context)
i915_gem_context_unreference(ring->last_context);
ring->last_context = req->ctx;
if (engine->last_context)
i915_gem_context_unreference(engine->last_context);
engine->last_context = req->ctx;
}
return 0;
}
@ -937,7 +945,7 @@ int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
else if (to_i915(dev)->mm.aliasing_ppgtt)
args->value = to_i915(dev)->mm.aliasing_ppgtt->base.total;
else
args->value = to_i915(dev)->gtt.base.total;
args->value = to_i915(dev)->ggtt.base.total;
break;
default:
ret = -EINVAL;

View File

@ -36,29 +36,29 @@ i915_verify_lists(struct drm_device *dev)
static int warned;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_object *obj;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
int err = 0;
int i;
if (warned)
return 0;
for_each_ring(ring, dev_priv, i) {
list_for_each_entry(obj, &ring->active_list, ring_list[ring->id]) {
for_each_engine(engine, dev_priv) {
list_for_each_entry(obj, &engine->active_list,
engine_list[engine->id]) {
if (obj->base.dev != dev ||
!atomic_read(&obj->base.refcount.refcount)) {
DRM_ERROR("%s: freed active obj %p\n",
ring->name, obj);
engine->name, obj);
err++;
break;
} else if (!obj->active ||
obj->last_read_req[ring->id] == NULL) {
obj->last_read_req[engine->id] == NULL) {
DRM_ERROR("%s: invalid active obj %p\n",
ring->name, obj);
engine->name, obj);
err++;
} else if (obj->base.write_domain) {
DRM_ERROR("%s: invalid write obj %p (w %x)\n",
ring->name,
engine->name,
obj, obj->base.write_domain);
err++;
}

View File

@ -330,7 +330,7 @@ relocate_entry_gtt(struct drm_i915_gem_object *obj,
/* Map the page containing the relocation we're going to perform. */
offset = i915_gem_obj_ggtt_offset(obj);
offset += reloc->offset;
reloc_page = io_mapping_map_atomic_wc(dev_priv->gtt.mappable,
reloc_page = io_mapping_map_atomic_wc(dev_priv->ggtt.mappable,
offset & PAGE_MASK);
iowrite32(lower_32_bits(delta), reloc_page + offset_in_page(offset));
@ -340,7 +340,7 @@ relocate_entry_gtt(struct drm_i915_gem_object *obj,
if (offset_in_page(offset) == 0) {
io_mapping_unmap_atomic(reloc_page);
reloc_page =
io_mapping_map_atomic_wc(dev_priv->gtt.mappable,
io_mapping_map_atomic_wc(dev_priv->ggtt.mappable,
offset);
}
@ -599,7 +599,7 @@ static bool only_mappable_for_reloc(unsigned int flags)
static int
i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
struct intel_engine_cs *ring,
struct intel_engine_cs *engine,
bool *need_reloc)
{
struct drm_i915_gem_object *obj = vma->obj;
@ -713,7 +713,7 @@ eb_vma_misplaced(struct i915_vma *vma)
}
static int
i915_gem_execbuffer_reserve(struct intel_engine_cs *ring,
i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
struct list_head *vmas,
struct intel_context *ctx,
bool *need_relocs)
@ -723,10 +723,10 @@ i915_gem_execbuffer_reserve(struct intel_engine_cs *ring,
struct i915_address_space *vm;
struct list_head ordered_vmas;
struct list_head pinned_vmas;
bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
bool has_fenced_gpu_access = INTEL_INFO(engine->dev)->gen < 4;
int retry;
i915_gem_retire_requests_ring(ring);
i915_gem_retire_requests_ring(engine);
vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
@ -788,7 +788,9 @@ i915_gem_execbuffer_reserve(struct intel_engine_cs *ring,
if (eb_vma_misplaced(vma))
ret = i915_vma_unbind(vma);
else
ret = i915_gem_execbuffer_reserve_vma(vma, ring, need_relocs);
ret = i915_gem_execbuffer_reserve_vma(vma,
engine,
need_relocs);
if (ret)
goto err;
}
@ -798,7 +800,8 @@ i915_gem_execbuffer_reserve(struct intel_engine_cs *ring,
if (drm_mm_node_allocated(&vma->node))
continue;
ret = i915_gem_execbuffer_reserve_vma(vma, ring, need_relocs);
ret = i915_gem_execbuffer_reserve_vma(vma, engine,
need_relocs);
if (ret)
goto err;
}
@ -821,7 +824,7 @@ static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
struct drm_i915_gem_execbuffer2 *args,
struct drm_file *file,
struct intel_engine_cs *ring,
struct intel_engine_cs *engine,
struct eb_vmas *eb,
struct drm_i915_gem_exec_object2 *exec,
struct intel_context *ctx)
@ -910,7 +913,8 @@ i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
goto err;
need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
ret = i915_gem_execbuffer_reserve(ring, &eb->vmas, ctx, &need_relocs);
ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
&need_relocs);
if (ret)
goto err;
@ -938,7 +942,7 @@ static int
i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
struct list_head *vmas)
{
const unsigned other_rings = ~intel_ring_flag(req->ring);
const unsigned other_rings = ~intel_engine_flag(req->engine);
struct i915_vma *vma;
uint32_t flush_domains = 0;
bool flush_chipset = false;
@ -948,7 +952,7 @@ i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
struct drm_i915_gem_object *obj = vma->obj;
if (obj->active & other_rings) {
ret = i915_gem_object_sync(obj, req->ring, &req);
ret = i915_gem_object_sync(obj, req->engine, &req);
if (ret)
return ret;
}
@ -960,7 +964,7 @@ i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
}
if (flush_chipset)
i915_gem_chipset_flush(req->ring->dev);
i915_gem_chipset_flush(req->engine->dev);
if (flush_domains & I915_GEM_DOMAIN_GTT)
wmb();
@ -1062,12 +1066,12 @@ validate_exec_list(struct drm_device *dev,
static struct intel_context *
i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
struct intel_engine_cs *ring, const u32 ctx_id)
struct intel_engine_cs *engine, const u32 ctx_id)
{
struct intel_context *ctx = NULL;
struct i915_ctx_hang_stats *hs;
if (ring->id != RCS && ctx_id != DEFAULT_CONTEXT_HANDLE)
if (engine->id != RCS && ctx_id != DEFAULT_CONTEXT_HANDLE)
return ERR_PTR(-EINVAL);
ctx = i915_gem_context_get(file->driver_priv, ctx_id);
@ -1080,8 +1084,8 @@ i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
return ERR_PTR(-EIO);
}
if (i915.enable_execlists && !ctx->engine[ring->id].state) {
int ret = intel_lr_context_deferred_alloc(ctx, ring);
if (i915.enable_execlists && !ctx->engine[engine->id].state) {
int ret = intel_lr_context_deferred_alloc(ctx, engine);
if (ret) {
DRM_DEBUG("Could not create LRC %u: %d\n", ctx_id, ret);
return ERR_PTR(ret);
@ -1095,7 +1099,7 @@ void
i915_gem_execbuffer_move_to_active(struct list_head *vmas,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
struct i915_vma *vma;
list_for_each_entry(vma, vmas, exec_list) {
@ -1122,7 +1126,7 @@ i915_gem_execbuffer_move_to_active(struct list_head *vmas,
if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
i915_gem_request_assign(&obj->last_fenced_req, req);
if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
struct drm_i915_private *dev_priv = to_i915(ring->dev);
struct drm_i915_private *dev_priv = to_i915(engine->dev);
list_move_tail(&dev_priv->fence_regs[obj->fence_reg].lru_list,
&dev_priv->mm.fence_list);
}
@ -1136,7 +1140,7 @@ void
i915_gem_execbuffer_retire_commands(struct i915_execbuffer_params *params)
{
/* Unconditionally force add_request to emit a full flush. */
params->ring->gpu_caches_dirty = true;
params->engine->gpu_caches_dirty = true;
/* Add a breadcrumb for the completion of the batch buffer */
__i915_add_request(params->request, params->batch_obj, true);
@ -1146,11 +1150,11 @@ static int
i915_reset_gen7_sol_offsets(struct drm_device *dev,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret, i;
if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS]) {
if (!IS_GEN7(dev) || engine != &dev_priv->engine[RCS]) {
DRM_DEBUG("sol reset is gen7/rcs only\n");
return -EINVAL;
}
@ -1160,18 +1164,18 @@ i915_reset_gen7_sol_offsets(struct drm_device *dev,
return ret;
for (i = 0; i < 4; i++) {
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(ring, GEN7_SO_WRITE_OFFSET(i));
intel_ring_emit(ring, 0);
intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(engine, GEN7_SO_WRITE_OFFSET(i));
intel_ring_emit(engine, 0);
}
intel_ring_advance(ring);
intel_ring_advance(engine);
return 0;
}
static struct drm_i915_gem_object*
i915_gem_execbuffer_parse(struct intel_engine_cs *ring,
i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
struct drm_i915_gem_exec_object2 *shadow_exec_entry,
struct eb_vmas *eb,
struct drm_i915_gem_object *batch_obj,
@ -1183,12 +1187,12 @@ i915_gem_execbuffer_parse(struct intel_engine_cs *ring,
struct i915_vma *vma;
int ret;
shadow_batch_obj = i915_gem_batch_pool_get(&ring->batch_pool,
shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
PAGE_ALIGN(batch_len));
if (IS_ERR(shadow_batch_obj))
return shadow_batch_obj;
ret = i915_parse_cmds(ring,
ret = i915_parse_cmds(engine,
batch_obj,
shadow_batch_obj,
batch_start_offset,
@ -1229,7 +1233,7 @@ i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
struct list_head *vmas)
{
struct drm_device *dev = params->dev;
struct intel_engine_cs *ring = params->ring;
struct intel_engine_cs *engine = params->engine;
struct drm_i915_private *dev_priv = dev->dev_private;
u64 exec_start, exec_len;
int instp_mode;
@ -1244,8 +1248,8 @@ i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
if (ret)
return ret;
WARN(params->ctx->ppgtt && params->ctx->ppgtt->pd_dirty_rings & (1<<ring->id),
"%s didn't clear reload\n", ring->name);
WARN(params->ctx->ppgtt && params->ctx->ppgtt->pd_dirty_rings & (1<<engine->id),
"%s didn't clear reload\n", engine->name);
instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
instp_mask = I915_EXEC_CONSTANTS_MASK;
@ -1253,7 +1257,7 @@ i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
case I915_EXEC_CONSTANTS_REL_GENERAL:
case I915_EXEC_CONSTANTS_ABSOLUTE:
case I915_EXEC_CONSTANTS_REL_SURFACE:
if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
return -EINVAL;
}
@ -1280,17 +1284,17 @@ i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
return -EINVAL;
}
if (ring == &dev_priv->ring[RCS] &&
if (engine == &dev_priv->engine[RCS] &&
instp_mode != dev_priv->relative_constants_mode) {
ret = intel_ring_begin(params->request, 4);
if (ret)
return ret;
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(ring, INSTPM);
intel_ring_emit(ring, instp_mask << 16 | instp_mode);
intel_ring_advance(ring);
intel_ring_emit(engine, MI_NOOP);
intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(engine, INSTPM);
intel_ring_emit(engine, instp_mask << 16 | instp_mode);
intel_ring_advance(engine);
dev_priv->relative_constants_mode = instp_mode;
}
@ -1308,7 +1312,7 @@ i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
if (exec_len == 0)
exec_len = params->batch_obj->base.size;
ret = ring->dispatch_execbuffer(params->request,
ret = engine->dispatch_execbuffer(params->request,
exec_start, exec_len,
params->dispatch_flags);
if (ret)
@ -1365,7 +1369,7 @@ eb_get_batch(struct eb_vmas *eb)
#define I915_USER_RINGS (4)
static const enum intel_ring_id user_ring_map[I915_USER_RINGS + 1] = {
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
[I915_EXEC_DEFAULT] = RCS,
[I915_EXEC_RENDER] = RCS,
[I915_EXEC_BLT] = BCS,
@ -1408,12 +1412,12 @@ eb_select_ring(struct drm_i915_private *dev_priv,
return -EINVAL;
}
*ring = &dev_priv->ring[_VCS(bsd_idx)];
*ring = &dev_priv->engine[_VCS(bsd_idx)];
} else {
*ring = &dev_priv->ring[user_ring_map[user_ring_id]];
*ring = &dev_priv->engine[user_ring_map[user_ring_id]];
}
if (!intel_ring_initialized(*ring)) {
if (!intel_engine_initialized(*ring)) {
DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
return -EINVAL;
}
@ -1432,7 +1436,7 @@ i915_gem_do_execbuffer(struct drm_device *dev, void *data,
struct eb_vmas *eb;
struct drm_i915_gem_object *batch_obj;
struct drm_i915_gem_exec_object2 shadow_exec_entry;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
struct intel_context *ctx;
struct i915_address_space *vm;
struct i915_execbuffer_params params_master; /* XXX: will be removed later */
@ -1459,7 +1463,7 @@ i915_gem_do_execbuffer(struct drm_device *dev, void *data,
if (args->flags & I915_EXEC_IS_PINNED)
dispatch_flags |= I915_DISPATCH_PINNED;
ret = eb_select_ring(dev_priv, file, args, &ring);
ret = eb_select_ring(dev_priv, file, args, &engine);
if (ret)
return ret;
@ -1473,9 +1477,9 @@ i915_gem_do_execbuffer(struct drm_device *dev, void *data,
DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
return -EINVAL;
}
if (ring->id != RCS) {
if (engine->id != RCS) {
DRM_DEBUG("RS is not available on %s\n",
ring->name);
engine->name);
return -EINVAL;
}
@ -1488,7 +1492,7 @@ i915_gem_do_execbuffer(struct drm_device *dev, void *data,
if (ret)
goto pre_mutex_err;
ctx = i915_gem_validate_context(dev, file, ring, ctx_id);
ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
if (IS_ERR(ctx)) {
mutex_unlock(&dev->struct_mutex);
ret = PTR_ERR(ctx);
@ -1500,7 +1504,7 @@ i915_gem_do_execbuffer(struct drm_device *dev, void *data,
if (ctx->ppgtt)
vm = &ctx->ppgtt->base;
else
vm = &dev_priv->gtt.base;
vm = &dev_priv->ggtt.base;
memset(&params_master, 0x00, sizeof(params_master));
@ -1522,7 +1526,8 @@ i915_gem_do_execbuffer(struct drm_device *dev, void *data,
/* Move the objects en-masse into the GTT, evicting if necessary. */
need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
ret = i915_gem_execbuffer_reserve(ring, &eb->vmas, ctx, &need_relocs);
ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
&need_relocs);
if (ret)
goto err;
@ -1531,7 +1536,8 @@ i915_gem_do_execbuffer(struct drm_device *dev, void *data,
ret = i915_gem_execbuffer_relocate(eb);
if (ret) {
if (ret == -EFAULT) {
ret = i915_gem_execbuffer_relocate_slow(dev, args, file, ring,
ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
engine,
eb, exec, ctx);
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
}
@ -1547,16 +1553,16 @@ i915_gem_do_execbuffer(struct drm_device *dev, void *data,
}
params->args_batch_start_offset = args->batch_start_offset;
if (i915_needs_cmd_parser(ring) && args->batch_len) {
if (i915_needs_cmd_parser(engine) && args->batch_len) {
struct drm_i915_gem_object *parsed_batch_obj;
parsed_batch_obj = i915_gem_execbuffer_parse(ring,
&shadow_exec_entry,
eb,
batch_obj,
args->batch_start_offset,
args->batch_len,
file->is_master);
parsed_batch_obj = i915_gem_execbuffer_parse(engine,
&shadow_exec_entry,
eb,
batch_obj,
args->batch_start_offset,
args->batch_len,
file->is_master);
if (IS_ERR(parsed_batch_obj)) {
ret = PTR_ERR(parsed_batch_obj);
goto err;
@ -1608,7 +1614,7 @@ i915_gem_do_execbuffer(struct drm_device *dev, void *data,
params->batch_obj_vm_offset = i915_gem_obj_offset(batch_obj, vm);
/* Allocate a request for this batch buffer nice and early. */
req = i915_gem_request_alloc(ring, ctx);
req = i915_gem_request_alloc(engine, ctx);
if (IS_ERR(req)) {
ret = PTR_ERR(req);
goto err_batch_unpin;
@ -1626,7 +1632,7 @@ i915_gem_do_execbuffer(struct drm_device *dev, void *data,
*/
params->dev = dev;
params->file = file;
params->ring = ring;
params->engine = engine;
params->dispatch_flags = dispatch_flags;
params->batch_obj = batch_obj;
params->ctx = ctx;

View File

@ -658,7 +658,7 @@ static int gen8_write_pdp(struct drm_i915_gem_request *req,
unsigned entry,
dma_addr_t addr)
{
struct intel_engine_cs *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
int ret;
BUG_ON(entry >= 4);
@ -667,13 +667,13 @@ static int gen8_write_pdp(struct drm_i915_gem_request *req,
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(ring, entry));
intel_ring_emit(ring, upper_32_bits(addr));
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(ring, entry));
intel_ring_emit(ring, lower_32_bits(addr));
intel_ring_advance(ring);
intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(engine, GEN8_RING_PDP_UDW(engine, entry));
intel_ring_emit(engine, upper_32_bits(addr));
intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(engine, GEN8_RING_PDP_LDW(engine, entry));
intel_ring_emit(engine, lower_32_bits(addr));
intel_ring_advance(engine);
return 0;
}
@ -1637,7 +1637,7 @@ static void gen6_write_page_range(struct drm_i915_private *dev_priv,
/* Make sure write is complete before other code can use this page
* table. Also require for WC mapped PTEs */
readl(dev_priv->gtt.gsm);
readl(dev_priv->ggtt.gsm);
}
static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
@ -1650,11 +1650,11 @@ static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
int ret;
/* NB: TLBs must be flushed and invalidated before a switch */
ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
if (ret)
return ret;
@ -1662,13 +1662,13 @@ static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
intel_ring_emit(ring, PP_DIR_DCLV_2G);
intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
intel_ring_emit(ring, get_pd_offset(ppgtt));
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
intel_ring_emit(engine, PP_DIR_DCLV_2G);
intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
intel_ring_emit(engine, get_pd_offset(ppgtt));
intel_ring_emit(engine, MI_NOOP);
intel_ring_advance(engine);
return 0;
}
@ -1676,22 +1676,22 @@ static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
return 0;
}
static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
int ret;
/* NB: TLBs must be flushed and invalidated before a switch */
ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
if (ret)
return ret;
@ -1699,17 +1699,17 @@ static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
intel_ring_emit(ring, PP_DIR_DCLV_2G);
intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
intel_ring_emit(ring, get_pd_offset(ppgtt));
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
intel_ring_emit(engine, PP_DIR_DCLV_2G);
intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
intel_ring_emit(engine, get_pd_offset(ppgtt));
intel_ring_emit(engine, MI_NOOP);
intel_ring_advance(engine);
/* XXX: RCS is the only one to auto invalidate the TLBs? */
if (ring->id != RCS) {
ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
if (engine->id != RCS) {
ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
if (ret)
return ret;
}
@ -1720,15 +1720,15 @@ static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
struct drm_device *dev = ppgtt->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
POSTING_READ(RING_PP_DIR_DCLV(ring));
POSTING_READ(RING_PP_DIR_DCLV(engine));
return 0;
}
@ -1736,12 +1736,11 @@ static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
static void gen8_ppgtt_enable(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int j;
struct intel_engine_cs *engine;
for_each_ring(ring, dev_priv, j) {
for_each_engine(engine, dev_priv) {
u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
I915_WRITE(RING_MODE_GEN7(ring),
I915_WRITE(RING_MODE_GEN7(engine),
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
}
}
@ -1749,9 +1748,8 @@ static void gen8_ppgtt_enable(struct drm_device *dev)
static void gen7_ppgtt_enable(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
uint32_t ecochk, ecobits;
int i;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
@ -1765,9 +1763,9 @@ static void gen7_ppgtt_enable(struct drm_device *dev)
}
I915_WRITE(GAM_ECOCHK, ecochk);
for_each_ring(ring, dev_priv, i) {
for_each_engine(engine, dev_priv) {
/* GFX_MODE is per-ring on gen7+ */
I915_WRITE(RING_MODE_GEN7(ring),
I915_WRITE(RING_MODE_GEN7(engine),
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
}
}
@ -1932,7 +1930,7 @@ static int gen6_alloc_va_range(struct i915_address_space *vm,
/* Make sure write is complete before other code can use this page
* table. Also require for WC mapped PTEs */
readl(dev_priv->gtt.gsm);
readl(dev_priv->ggtt.gsm);
mark_tlbs_dirty(ppgtt);
return 0;
@ -2005,23 +2003,23 @@ static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
* allocator works in address space sizes, so it's multiplied by page
* size. We allocate at the top of the GTT to avoid fragmentation.
*/
BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
BUG_ON(!drm_mm_initialized(&dev_priv->ggtt.base.mm));
ret = gen6_init_scratch(vm);
if (ret)
return ret;
alloc:
ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
ret = drm_mm_insert_node_in_range_generic(&dev_priv->ggtt.base.mm,
&ppgtt->node, GEN6_PD_SIZE,
GEN6_PD_ALIGN, 0,
0, dev_priv->gtt.base.total,
0, dev_priv->ggtt.base.total,
DRM_MM_TOPDOWN);
if (ret == -ENOSPC && !retried) {
ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
ret = i915_gem_evict_something(dev, &dev_priv->ggtt.base,
GEN6_PD_SIZE, GEN6_PD_ALIGN,
I915_CACHE_NONE,
0, dev_priv->gtt.base.total,
0, dev_priv->ggtt.base.total,
0);
if (ret)
goto err_out;
@ -2034,7 +2032,7 @@ alloc:
goto err_out;
if (ppgtt->node.start < dev_priv->gtt.mappable_end)
if (ppgtt->node.start < dev_priv->ggtt.mappable_end)
DRM_DEBUG("Forced to use aperture for PDEs\n");
return 0;
@ -2065,7 +2063,7 @@ static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
ppgtt->base.pte_encode = dev_priv->ggtt.base.pte_encode;
if (IS_GEN6(dev)) {
ppgtt->switch_mm = gen6_mm_switch;
} else if (IS_HASWELL(dev)) {
@ -2095,7 +2093,7 @@ static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
ppgtt->pd.base.ggtt_offset =
ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
@ -2192,7 +2190,7 @@ int i915_ppgtt_init_hw(struct drm_device *dev)
int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
{
struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
struct drm_i915_private *dev_priv = req->i915;
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
if (i915.enable_execlists)
@ -2265,7 +2263,7 @@ static bool do_idling(struct drm_i915_private *dev_priv)
{
bool ret = dev_priv->mm.interruptible;
if (unlikely(dev_priv->gtt.do_idle_maps)) {
if (unlikely(dev_priv->ggtt.do_idle_maps)) {
dev_priv->mm.interruptible = false;
if (i915_gpu_idle(dev_priv->dev)) {
DRM_ERROR("Couldn't idle GPU\n");
@ -2279,22 +2277,21 @@ static bool do_idling(struct drm_i915_private *dev_priv)
static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
{
if (unlikely(dev_priv->gtt.do_idle_maps))
if (unlikely(dev_priv->ggtt.do_idle_maps))
dev_priv->mm.interruptible = interruptible;
}
void i915_check_and_clear_faults(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int i;
struct intel_engine_cs *engine;
if (INTEL_INFO(dev)->gen < 6)
return;
for_each_ring(ring, dev_priv, i) {
for_each_engine(engine, dev_priv) {
u32 fault_reg;
fault_reg = I915_READ(RING_FAULT_REG(ring));
fault_reg = I915_READ(RING_FAULT_REG(engine));
if (fault_reg & RING_FAULT_VALID) {
DRM_DEBUG_DRIVER("Unexpected fault\n"
"\tAddr: 0x%08lx\n"
@ -2305,11 +2302,11 @@ void i915_check_and_clear_faults(struct drm_device *dev)
fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
RING_FAULT_SRCID(fault_reg),
RING_FAULT_FAULT_TYPE(fault_reg));
I915_WRITE(RING_FAULT_REG(ring),
I915_WRITE(RING_FAULT_REG(engine),
fault_reg & ~RING_FAULT_VALID);
}
}
POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
}
static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
@ -2334,9 +2331,9 @@ void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
i915_check_and_clear_faults(dev);
dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
dev_priv->gtt.base.start,
dev_priv->gtt.base.total,
dev_priv->ggtt.base.clear_range(&dev_priv->ggtt.base,
dev_priv->ggtt.base.start,
dev_priv->ggtt.base.total,
true);
i915_ggtt_flush(dev_priv);
@ -2370,7 +2367,7 @@ static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
struct drm_i915_private *dev_priv = vm->dev->dev_private;
unsigned first_entry = start >> PAGE_SHIFT;
gen8_pte_t __iomem *gtt_entries =
(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
(gen8_pte_t __iomem *)dev_priv->ggtt.gsm + first_entry;
int i = 0;
struct sg_page_iter sg_iter;
dma_addr_t addr = 0; /* shut up gcc */
@ -2447,7 +2444,7 @@ static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
struct drm_i915_private *dev_priv = vm->dev->dev_private;
unsigned first_entry = start >> PAGE_SHIFT;
gen6_pte_t __iomem *gtt_entries =
(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
(gen6_pte_t __iomem *)dev_priv->ggtt.gsm + first_entry;
int i = 0;
struct sg_page_iter sg_iter;
dma_addr_t addr = 0;
@ -2491,8 +2488,8 @@ static void gen8_ggtt_clear_range(struct i915_address_space *vm,
unsigned first_entry = start >> PAGE_SHIFT;
unsigned num_entries = length >> PAGE_SHIFT;
gen8_pte_t scratch_pte, __iomem *gtt_base =
(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
(gen8_pte_t __iomem *) dev_priv->ggtt.gsm + first_entry;
const int max_entries = gtt_total_entries(dev_priv->ggtt) - first_entry;
int i;
int rpm_atomic_seq;
@ -2522,8 +2519,8 @@ static void gen6_ggtt_clear_range(struct i915_address_space *vm,
unsigned first_entry = start >> PAGE_SHIFT;
unsigned num_entries = length >> PAGE_SHIFT;
gen6_pte_t scratch_pte, __iomem *gtt_base =
(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
(gen6_pte_t __iomem *) dev_priv->ggtt.gsm + first_entry;
const int max_entries = gtt_total_entries(dev_priv->ggtt) - first_entry;
int i;
int rpm_atomic_seq;
@ -2613,32 +2610,31 @@ static int aliasing_gtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
struct drm_device *dev = vma->vm->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj = vma->obj;
struct sg_table *pages = obj->pages;
u32 pte_flags = 0;
u32 pte_flags;
int ret;
ret = i915_get_ggtt_vma_pages(vma);
if (ret)
return ret;
pages = vma->ggtt_view.pages;
/* Currently applicable only to VLV */
if (obj->gt_ro)
pte_flags = 0;
if (vma->obj->gt_ro)
pte_flags |= PTE_READ_ONLY;
if (flags & GLOBAL_BIND) {
vma->vm->insert_entries(vma->vm, pages,
vma->vm->insert_entries(vma->vm,
vma->ggtt_view.pages,
vma->node.start,
cache_level, pte_flags);
}
if (flags & LOCAL_BIND) {
struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
appgtt->base.insert_entries(&appgtt->base, pages,
struct i915_hw_ppgtt *appgtt =
to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
appgtt->base.insert_entries(&appgtt->base,
vma->ggtt_view.pages,
vma->node.start,
cache_level, pte_flags);
}
@ -2718,7 +2714,7 @@ static int i915_gem_setup_global_gtt(struct drm_device *dev,
* of the aperture.
*/
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
struct i915_address_space *ggtt_vm = &dev_priv->ggtt.base;
struct drm_mm_node *entry;
struct drm_i915_gem_object *obj;
unsigned long hole_start, hole_end;
@ -2801,8 +2797,8 @@ static int i915_gem_setup_global_gtt(struct drm_device *dev,
true);
dev_priv->mm.aliasing_ppgtt = ppgtt;
WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
WARN_ON(dev_priv->ggtt.base.bind_vma != ggtt_bind_vma);
dev_priv->ggtt.base.bind_vma = aliasing_gtt_bind_vma;
}
return 0;
@ -2813,8 +2809,8 @@ void i915_gem_init_global_gtt(struct drm_device *dev)
struct drm_i915_private *dev_priv = dev->dev_private;
u64 gtt_size, mappable_size;
gtt_size = dev_priv->gtt.base.total;
mappable_size = dev_priv->gtt.mappable_end;
gtt_size = dev_priv->ggtt.base.total;
mappable_size = dev_priv->ggtt.mappable_end;
i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
}
@ -2822,7 +2818,7 @@ void i915_gem_init_global_gtt(struct drm_device *dev)
void i915_global_gtt_cleanup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_address_space *vm = &dev_priv->gtt.base;
struct i915_address_space *vm = &dev_priv->ggtt.base;
if (dev_priv->mm.aliasing_ppgtt) {
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
@ -2940,10 +2936,10 @@ static int ggtt_probe_common(struct drm_device *dev,
* readback check when writing GTT PTE entries.
*/
if (IS_BROXTON(dev))
dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
dev_priv->ggtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
else
dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
if (!dev_priv->gtt.gsm) {
dev_priv->ggtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
if (!dev_priv->ggtt.gsm) {
DRM_ERROR("Failed to map the gtt page table\n");
return -ENOMEM;
}
@ -2952,11 +2948,11 @@ static int ggtt_probe_common(struct drm_device *dev,
if (IS_ERR(scratch_page)) {
DRM_ERROR("Scratch setup failed\n");
/* iounmap will also get called at remove, but meh */
iounmap(dev_priv->gtt.gsm);
iounmap(dev_priv->ggtt.gsm);
return PTR_ERR(scratch_page);
}
dev_priv->gtt.base.scratch_page = scratch_page;
dev_priv->ggtt.base.scratch_page = scratch_page;
return 0;
}
@ -3034,20 +3030,16 @@ static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
}
static int gen8_gmch_probe(struct drm_device *dev,
u64 *gtt_total,
size_t *stolen,
phys_addr_t *mappable_base,
u64 *mappable_end)
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_device *dev = ggtt->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u64 gtt_size;
u16 snb_gmch_ctl;
int ret;
/* TODO: We're not aware of mappable constraints on gen8 yet */
*mappable_base = pci_resource_start(dev->pdev, 2);
*mappable_end = pci_resource_len(dev->pdev, 2);
ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
@ -3055,56 +3047,51 @@ static int gen8_gmch_probe(struct drm_device *dev,
pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
if (INTEL_INFO(dev)->gen >= 9) {
*stolen = gen9_get_stolen_size(snb_gmch_ctl);
gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
} else if (IS_CHERRYVIEW(dev)) {
*stolen = chv_get_stolen_size(snb_gmch_ctl);
gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
} else {
*stolen = gen8_get_stolen_size(snb_gmch_ctl);
gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
}
*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
chv_setup_private_ppat(dev_priv);
else
bdw_setup_private_ppat(dev_priv);
ret = ggtt_probe_common(dev, gtt_size);
dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
ret = ggtt_probe_common(dev, ggtt->size);
ggtt->base.clear_range = gen8_ggtt_clear_range;
if (IS_CHERRYVIEW(dev_priv))
dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries__BKL;
ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
else
ggtt->base.insert_entries = gen8_ggtt_insert_entries;
ggtt->base.bind_vma = ggtt_bind_vma;
ggtt->base.unbind_vma = ggtt_unbind_vma;
return ret;
}
static int gen6_gmch_probe(struct drm_device *dev,
u64 *gtt_total,
size_t *stolen,
phys_addr_t *mappable_base,
u64 *mappable_end)
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned int gtt_size;
struct drm_device *dev = ggtt->base.dev;
u16 snb_gmch_ctl;
int ret;
*mappable_base = pci_resource_start(dev->pdev, 2);
*mappable_end = pci_resource_len(dev->pdev, 2);
ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
/* 64/512MB is the current min/max we actually know of, but this is just
* a coarse sanity check.
*/
if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
DRM_ERROR("Unknown GMADR size (%llx)\n",
dev_priv->gtt.mappable_end);
if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
return -ENXIO;
}
@ -3112,36 +3099,31 @@ static int gen6_gmch_probe(struct drm_device *dev,
pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
*stolen = gen6_get_stolen_size(snb_gmch_ctl);
ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
ret = ggtt_probe_common(dev, ggtt->size);
ret = ggtt_probe_common(dev, gtt_size);
dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
ggtt->base.clear_range = gen6_ggtt_clear_range;
ggtt->base.insert_entries = gen6_ggtt_insert_entries;
ggtt->base.bind_vma = ggtt_bind_vma;
ggtt->base.unbind_vma = ggtt_unbind_vma;
return ret;
}
static void gen6_gmch_remove(struct i915_address_space *vm)
{
struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
iounmap(gtt->gsm);
iounmap(ggtt->gsm);
free_scratch_page(vm->dev, vm->scratch_page);
}
static int i915_gmch_probe(struct drm_device *dev,
u64 *gtt_total,
size_t *stolen,
phys_addr_t *mappable_base,
u64 *mappable_end)
static int i915_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_device *dev = ggtt->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
@ -3151,15 +3133,16 @@ static int i915_gmch_probe(struct drm_device *dev,
return -EIO;
}
intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
&ggtt->mappable_base, &ggtt->mappable_end);
dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
ggtt->do_idle_maps = needs_idle_maps(dev_priv->dev);
ggtt->base.insert_entries = i915_ggtt_insert_entries;
ggtt->base.clear_range = i915_ggtt_clear_range;
ggtt->base.bind_vma = ggtt_bind_vma;
ggtt->base.unbind_vma = ggtt_unbind_vma;
if (unlikely(dev_priv->gtt.do_idle_maps))
if (unlikely(ggtt->do_idle_maps))
DRM_INFO("applying Ironlake quirks for intel_iommu\n");
return 0;
@ -3173,38 +3156,45 @@ static void i915_gmch_remove(struct i915_address_space *vm)
int i915_gem_gtt_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_gtt *gtt = &dev_priv->gtt;
struct i915_ggtt *ggtt = &dev_priv->ggtt;
int ret;
if (INTEL_INFO(dev)->gen <= 5) {
gtt->gtt_probe = i915_gmch_probe;
gtt->base.cleanup = i915_gmch_remove;
ggtt->probe = i915_gmch_probe;
ggtt->base.cleanup = i915_gmch_remove;
} else if (INTEL_INFO(dev)->gen < 8) {
gtt->gtt_probe = gen6_gmch_probe;
gtt->base.cleanup = gen6_gmch_remove;
ggtt->probe = gen6_gmch_probe;
ggtt->base.cleanup = gen6_gmch_remove;
if (IS_HASWELL(dev) && dev_priv->ellc_size)
gtt->base.pte_encode = iris_pte_encode;
ggtt->base.pte_encode = iris_pte_encode;
else if (IS_HASWELL(dev))
gtt->base.pte_encode = hsw_pte_encode;
ggtt->base.pte_encode = hsw_pte_encode;
else if (IS_VALLEYVIEW(dev))
gtt->base.pte_encode = byt_pte_encode;
ggtt->base.pte_encode = byt_pte_encode;
else if (INTEL_INFO(dev)->gen >= 7)
gtt->base.pte_encode = ivb_pte_encode;
ggtt->base.pte_encode = ivb_pte_encode;
else
gtt->base.pte_encode = snb_pte_encode;
ggtt->base.pte_encode = snb_pte_encode;
} else {
dev_priv->gtt.gtt_probe = gen8_gmch_probe;
dev_priv->gtt.base.cleanup = gen6_gmch_remove;
ggtt->probe = gen8_gmch_probe;
ggtt->base.cleanup = gen6_gmch_remove;
}
gtt->base.dev = dev;
gtt->base.is_ggtt = true;
ggtt->base.dev = dev;
ggtt->base.is_ggtt = true;
ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
&gtt->mappable_base, &gtt->mappable_end);
ret = ggtt->probe(ggtt);
if (ret)
return ret;
if ((ggtt->base.total - 1) >> 32) {
DRM_ERROR("We never expected a Global GTT with more than 32bits"
"of address space! Found %lldM!\n",
ggtt->base.total >> 20);
ggtt->base.total = 1ULL << 32;
ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
}
/*
* Initialise stolen early so that we may reserve preallocated
* objects for the BIOS to KMS transition.
@ -3215,9 +3205,9 @@ int i915_gem_gtt_init(struct drm_device *dev)
/* GMADR is the PCI mmio aperture into the global GTT. */
DRM_INFO("Memory usable by graphics device = %lluM\n",
gtt->base.total >> 20);
DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
ggtt->base.total >> 20);
DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
#ifdef CONFIG_INTEL_IOMMU
if (intel_iommu_gfx_mapped)
DRM_INFO("VT-d active for gfx access\n");
@ -3234,7 +3224,7 @@ int i915_gem_gtt_init(struct drm_device *dev)
return 0;
out_gtt_cleanup:
gtt->base.cleanup(&dev_priv->gtt.base);
ggtt->base.cleanup(&dev_priv->ggtt.base);
return ret;
}
@ -3250,13 +3240,13 @@ void i915_gem_restore_gtt_mappings(struct drm_device *dev)
i915_check_and_clear_faults(dev);
/* First fill our portion of the GTT with scratch pages */
dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
dev_priv->gtt.base.start,
dev_priv->gtt.base.total,
dev_priv->ggtt.base.clear_range(&dev_priv->ggtt.base,
dev_priv->ggtt.base.start,
dev_priv->ggtt.base.total,
true);
/* Cache flush objects bound into GGTT and rebind them. */
vm = &dev_priv->gtt.base;
vm = &dev_priv->ggtt.base;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
flush = false;
list_for_each_entry(vma, &obj->vma_list, obj_link) {
@ -3377,11 +3367,6 @@ rotate_pages(const dma_addr_t *in, unsigned int offset,
unsigned int column, row;
unsigned int src_idx;
if (!sg) {
st->nents = 0;
sg = st->sgl;
}
for (column = 0; column < width; column++) {
src_idx = stride * (height - 1) + column;
for (row = 0; row < height; row++) {
@ -3405,7 +3390,7 @@ static struct sg_table *
intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
struct drm_i915_gem_object *obj)
{
unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
unsigned int size_pages_uv;
struct sg_page_iter sg_iter;
unsigned long i;
@ -3423,7 +3408,7 @@ intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
/* Account for UV plane with NV12. */
if (rot_info->pixel_format == DRM_FORMAT_NV12)
size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
else
size_pages_uv = 0;
@ -3443,11 +3428,14 @@ intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
i++;
}
st->nents = 0;
sg = st->sgl;
/* Rotate the pages. */
sg = rotate_pages(page_addr_list, 0,
rot_info->width_pages, rot_info->height_pages,
rot_info->width_pages,
st, NULL);
rot_info->plane[0].width, rot_info->plane[0].height,
rot_info->plane[0].width,
st, sg);
/* Append the UV plane if NV12. */
if (rot_info->pixel_format == DRM_FORMAT_NV12) {
@ -3459,18 +3447,15 @@ intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
rot_info->uv_start_page = uv_start_page;
rotate_pages(page_addr_list, uv_start_page,
rot_info->width_pages_uv,
rot_info->height_pages_uv,
rot_info->width_pages_uv,
st, sg);
sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
rot_info->plane[1].width, rot_info->plane[1].height,
rot_info->plane[1].width,
st, sg);
}
DRM_DEBUG_KMS(
"Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
obj->base.size, rot_info->pitch, rot_info->height,
rot_info->pixel_format, rot_info->width_pages,
rot_info->height_pages, size_pages + size_pages_uv,
DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
obj->base.size, rot_info->plane[0].width,
rot_info->plane[0].height, size_pages + size_pages_uv,
size_pages);
drm_free_large(page_addr_list);
@ -3482,11 +3467,9 @@ err_sg_alloc:
err_st_alloc:
drm_free_large(page_addr_list);
DRM_DEBUG_KMS(
"Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
obj->base.size, ret, rot_info->pitch, rot_info->height,
rot_info->pixel_format, rot_info->width_pages,
rot_info->height_pages, size_pages + size_pages_uv,
DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
obj->base.size, ret, rot_info->plane[0].width,
rot_info->plane[0].height, size_pages + size_pages_uv,
size_pages);
return ERR_PTR(ret);
}
@ -3634,7 +3617,7 @@ i915_ggtt_view_size(struct drm_i915_gem_object *obj,
if (view->type == I915_GGTT_VIEW_NORMAL) {
return obj->base.size;
} else if (view->type == I915_GGTT_VIEW_ROTATED) {
return view->params.rotated.size;
return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
return view->params.partial.size << PAGE_SHIFT;
} else {

View File

@ -135,16 +135,13 @@ enum i915_ggtt_view_type {
};
struct intel_rotation_info {
unsigned int height;
unsigned int pitch;
unsigned int uv_offset;
uint32_t pixel_format;
uint64_t fb_modifier;
unsigned int width_pages, height_pages;
uint64_t size;
unsigned int width_pages_uv, height_pages_uv;
uint64_t size_uv;
unsigned int uv_start_page;
struct {
/* tiles */
unsigned int width, height;
} plane[2];
};
struct i915_ggtt_view {
@ -342,13 +339,14 @@ struct i915_address_space {
* and correct (in cases like swizzling). That region is referred to as GMADR in
* the spec.
*/
struct i915_gtt {
struct i915_ggtt {
struct i915_address_space base;
size_t stolen_size; /* Total size of stolen memory */
size_t stolen_usable_size; /* Total size minus BIOS reserved */
size_t stolen_reserved_base;
size_t stolen_reserved_size;
size_t size; /* Total size of Global GTT */
u64 mappable_end; /* End offset that we can CPU map */
struct io_mapping *mappable; /* Mapping to our CPU mappable region */
phys_addr_t mappable_base; /* PA of our GMADR */
@ -360,10 +358,7 @@ struct i915_gtt {
int mtrr;
/* global gtt ops */
int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
size_t *stolen, phys_addr_t *mappable_base,
u64 *mappable_end);
int (*probe)(struct i915_ggtt *ggtt);
};
struct i915_hw_ppgtt {

View File

@ -169,15 +169,15 @@ void i915_gem_render_state_fini(struct render_state *so)
drm_gem_object_unreference(&so->obj->base);
}
int i915_gem_render_state_prepare(struct intel_engine_cs *ring,
int i915_gem_render_state_prepare(struct intel_engine_cs *engine,
struct render_state *so)
{
int ret;
if (WARN_ON(ring->id != RCS))
if (WARN_ON(engine->id != RCS))
return -ENOENT;
ret = render_state_init(so, ring->dev);
ret = render_state_init(so, engine->dev);
if (ret)
return ret;
@ -198,21 +198,21 @@ int i915_gem_render_state_init(struct drm_i915_gem_request *req)
struct render_state so;
int ret;
ret = i915_gem_render_state_prepare(req->ring, &so);
ret = i915_gem_render_state_prepare(req->engine, &so);
if (ret)
return ret;
if (so.rodata == NULL)
return 0;
ret = req->ring->dispatch_execbuffer(req, so.ggtt_offset,
ret = req->engine->dispatch_execbuffer(req, so.ggtt_offset,
so.rodata->batch_items * 4,
I915_DISPATCH_SECURE);
if (ret)
goto out;
if (so.aux_batch_size > 8) {
ret = req->ring->dispatch_execbuffer(req,
ret = req->engine->dispatch_execbuffer(req,
(so.ggtt_offset +
so.aux_batch_offset),
so.aux_batch_size,

View File

@ -43,7 +43,7 @@ struct render_state {
int i915_gem_render_state_init(struct drm_i915_gem_request *req);
void i915_gem_render_state_fini(struct render_state *so);
int i915_gem_render_state_prepare(struct intel_engine_cs *ring,
int i915_gem_render_state_prepare(struct intel_engine_cs *engine,
struct render_state *so);
#endif /* _I915_GEM_RENDER_STATE_H_ */

View File

@ -74,7 +74,7 @@ int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
{
return i915_gem_stolen_insert_node_in_range(dev_priv, node, size,
alignment, 0,
dev_priv->gtt.stolen_usable_size);
dev_priv->ggtt.stolen_usable_size);
}
void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
@ -134,7 +134,7 @@ static unsigned long i915_stolen_to_physical(struct drm_device *dev)
I85X_DRB3, &tmp);
tom = tmp * MB(32);
base = tom - tseg_size - dev_priv->gtt.stolen_size;
base = tom - tseg_size - dev_priv->ggtt.stolen_size;
} else if (IS_845G(dev)) {
u32 tseg_size = 0;
u32 tom;
@ -158,7 +158,7 @@ static unsigned long i915_stolen_to_physical(struct drm_device *dev)
I830_DRB3, &tmp);
tom = tmp * MB(32);
base = tom - tseg_size - dev_priv->gtt.stolen_size;
base = tom - tseg_size - dev_priv->ggtt.stolen_size;
} else if (IS_I830(dev)) {
u32 tseg_size = 0;
u32 tom;
@ -178,7 +178,7 @@ static unsigned long i915_stolen_to_physical(struct drm_device *dev)
I830_DRB3, &tmp);
tom = tmp * MB(32);
base = tom - tseg_size - dev_priv->gtt.stolen_size;
base = tom - tseg_size - dev_priv->ggtt.stolen_size;
}
if (base == 0)
@ -189,8 +189,8 @@ static unsigned long i915_stolen_to_physical(struct drm_device *dev)
struct {
u32 start, end;
} stolen[2] = {
{ .start = base, .end = base + dev_priv->gtt.stolen_size, },
{ .start = base, .end = base + dev_priv->gtt.stolen_size, },
{ .start = base, .end = base + dev_priv->ggtt.stolen_size, },
{ .start = base, .end = base + dev_priv->ggtt.stolen_size, },
};
u64 gtt_start, gtt_end;
@ -200,7 +200,7 @@ static unsigned long i915_stolen_to_physical(struct drm_device *dev)
(gtt_start & PGTBL_ADDRESS_HI_MASK) << 28;
else
gtt_start &= PGTBL_ADDRESS_LO_MASK;
gtt_end = gtt_start + gtt_total_entries(dev_priv->gtt) * 4;
gtt_end = gtt_start + gtt_total_entries(dev_priv->ggtt) * 4;
if (gtt_start >= stolen[0].start && gtt_start < stolen[0].end)
stolen[0].end = gtt_start;
@ -211,10 +211,10 @@ static unsigned long i915_stolen_to_physical(struct drm_device *dev)
if (stolen[0].end - stolen[0].start >
stolen[1].end - stolen[1].start) {
base = stolen[0].start;
dev_priv->gtt.stolen_size = stolen[0].end - stolen[0].start;
dev_priv->ggtt.stolen_size = stolen[0].end - stolen[0].start;
} else {
base = stolen[1].start;
dev_priv->gtt.stolen_size = stolen[1].end - stolen[1].start;
dev_priv->ggtt.stolen_size = stolen[1].end - stolen[1].start;
}
if (stolen[0].start != stolen[1].start ||
@ -223,7 +223,7 @@ static unsigned long i915_stolen_to_physical(struct drm_device *dev)
(unsigned long long) gtt_start,
(unsigned long long) gtt_end - 1);
DRM_DEBUG_KMS("Stolen memory adjusted to 0x%x-0x%x\n",
base, base + (u32) dev_priv->gtt.stolen_size - 1);
base, base + (u32) dev_priv->ggtt.stolen_size - 1);
}
}
@ -233,7 +233,7 @@ static unsigned long i915_stolen_to_physical(struct drm_device *dev)
* kernel. So if the region is already marked as busy, something
* is seriously wrong.
*/
r = devm_request_mem_region(dev->dev, base, dev_priv->gtt.stolen_size,
r = devm_request_mem_region(dev->dev, base, dev_priv->ggtt.stolen_size,
"Graphics Stolen Memory");
if (r == NULL) {
/*
@ -245,7 +245,7 @@ static unsigned long i915_stolen_to_physical(struct drm_device *dev)
* reservation starting from 1 instead of 0.
*/
r = devm_request_mem_region(dev->dev, base + 1,
dev_priv->gtt.stolen_size - 1,
dev_priv->ggtt.stolen_size - 1,
"Graphics Stolen Memory");
/*
* GEN3 firmware likes to smash pci bridges into the stolen
@ -253,7 +253,7 @@ static unsigned long i915_stolen_to_physical(struct drm_device *dev)
*/
if (r == NULL && !IS_GEN3(dev)) {
DRM_ERROR("conflict detected with stolen region: [0x%08x - 0x%08x]\n",
base, base + (uint32_t)dev_priv->gtt.stolen_size);
base, base + (uint32_t)dev_priv->ggtt.stolen_size);
base = 0;
}
}
@ -278,7 +278,7 @@ static void g4x_get_stolen_reserved(struct drm_i915_private *dev_priv,
CTG_STOLEN_RESERVED :
ELK_STOLEN_RESERVED);
unsigned long stolen_top = dev_priv->mm.stolen_base +
dev_priv->gtt.stolen_size;
dev_priv->ggtt.stolen_size;
*base = (reg_val & G4X_STOLEN_RESERVED_ADDR2_MASK) << 16;
@ -372,7 +372,7 @@ static void bdw_get_stolen_reserved(struct drm_i915_private *dev_priv,
uint32_t reg_val = I915_READ(GEN6_STOLEN_RESERVED);
unsigned long stolen_top;
stolen_top = dev_priv->mm.stolen_base + dev_priv->gtt.stolen_size;
stolen_top = dev_priv->mm.stolen_base + dev_priv->ggtt.stolen_size;
*base = reg_val & GEN6_STOLEN_RESERVED_ADDR_MASK;
@ -401,14 +401,14 @@ int i915_gem_init_stolen(struct drm_device *dev)
}
#endif
if (dev_priv->gtt.stolen_size == 0)
if (dev_priv->ggtt.stolen_size == 0)
return 0;
dev_priv->mm.stolen_base = i915_stolen_to_physical(dev);
if (dev_priv->mm.stolen_base == 0)
return 0;
stolen_top = dev_priv->mm.stolen_base + dev_priv->gtt.stolen_size;
stolen_top = dev_priv->mm.stolen_base + dev_priv->ggtt.stolen_size;
switch (INTEL_INFO(dev_priv)->gen) {
case 2:
@ -458,18 +458,18 @@ int i915_gem_init_stolen(struct drm_device *dev)
return 0;
}
dev_priv->gtt.stolen_reserved_base = reserved_base;
dev_priv->gtt.stolen_reserved_size = reserved_size;
dev_priv->ggtt.stolen_reserved_base = reserved_base;
dev_priv->ggtt.stolen_reserved_size = reserved_size;
/* It is possible for the reserved area to end before the end of stolen
* memory, so just consider the start. */
reserved_total = stolen_top - reserved_base;
DRM_DEBUG_KMS("Memory reserved for graphics device: %zuK, usable: %luK\n",
dev_priv->gtt.stolen_size >> 10,
(dev_priv->gtt.stolen_size - reserved_total) >> 10);
dev_priv->ggtt.stolen_size >> 10,
(dev_priv->ggtt.stolen_size - reserved_total) >> 10);
dev_priv->gtt.stolen_usable_size = dev_priv->gtt.stolen_size -
dev_priv->ggtt.stolen_usable_size = dev_priv->ggtt.stolen_size -
reserved_total;
/*
@ -483,7 +483,7 @@ int i915_gem_init_stolen(struct drm_device *dev)
* i915_gem_stolen_insert_node_in_range(). We may want to fix the fbcon
* problem later.
*/
drm_mm_init(&dev_priv->mm.stolen, 0, dev_priv->gtt.stolen_usable_size);
drm_mm_init(&dev_priv->mm.stolen, 0, dev_priv->ggtt.stolen_usable_size);
return 0;
}
@ -497,7 +497,7 @@ i915_pages_create_for_stolen(struct drm_device *dev,
struct scatterlist *sg;
DRM_DEBUG_DRIVER("offset=0x%x, size=%d\n", offset, size);
BUG_ON(offset > dev_priv->gtt.stolen_size - size);
BUG_ON(offset > dev_priv->ggtt.stolen_size - size);
/* We hide that we have no struct page backing our stolen object
* by wrapping the contiguous physical allocation with a fake
@ -629,7 +629,7 @@ i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
u32 size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_address_space *ggtt = &dev_priv->gtt.base;
struct i915_address_space *ggtt = &dev_priv->ggtt.base;
struct drm_i915_gem_object *obj;
struct drm_mm_node *stolen;
struct i915_vma *vma;

View File

@ -758,6 +758,13 @@ i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file
int ret;
u32 handle;
if (!HAS_LLC(dev) && !HAS_SNOOP(dev)) {
/* We cannot support coherent userptr objects on hw without
* LLC and broken snooping.
*/
return -ENODEV;
}
if (args->flags & ~(I915_USERPTR_READ_ONLY |
I915_USERPTR_UNSYNCHRONIZED))
return -EINVAL;

View File

@ -198,7 +198,7 @@ static void print_error_buffers(struct drm_i915_error_state_buf *m,
err->size,
err->read_domains,
err->write_domain);
for (i = 0; i < I915_NUM_RINGS; i++)
for (i = 0; i < I915_NUM_ENGINES; i++)
err_printf(m, "%02x ", err->rseqno[i]);
err_printf(m, "] %02x", err->wseqno);
@ -230,8 +230,6 @@ static const char *hangcheck_action_to_str(enum intel_ring_hangcheck_action a)
return "wait";
case HANGCHECK_ACTIVE:
return "active";
case HANGCHECK_ACTIVE_LOOP:
return "active (loop)";
case HANGCHECK_KICK:
return "kick";
case HANGCHECK_HUNG:
@ -433,7 +431,7 @@ int i915_error_state_to_str(struct drm_i915_error_state_buf *m,
for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
obj = error->ring[i].batchbuffer;
if (obj) {
err_puts(m, dev_priv->ring[i].name);
err_puts(m, dev_priv->engine[i].name);
if (error->ring[i].pid != -1)
err_printf(m, " (submitted by %s [%d])",
error->ring[i].comm,
@ -447,14 +445,14 @@ int i915_error_state_to_str(struct drm_i915_error_state_buf *m,
obj = error->ring[i].wa_batchbuffer;
if (obj) {
err_printf(m, "%s (w/a) --- gtt_offset = 0x%08x\n",
dev_priv->ring[i].name,
dev_priv->engine[i].name,
lower_32_bits(obj->gtt_offset));
print_error_obj(m, obj);
}
if (error->ring[i].num_requests) {
err_printf(m, "%s --- %d requests\n",
dev_priv->ring[i].name,
dev_priv->engine[i].name,
error->ring[i].num_requests);
for (j = 0; j < error->ring[i].num_requests; j++) {
err_printf(m, " seqno 0x%08x, emitted %ld, tail 0x%08x\n",
@ -466,7 +464,7 @@ int i915_error_state_to_str(struct drm_i915_error_state_buf *m,
if ((obj = error->ring[i].ringbuffer)) {
err_printf(m, "%s --- ringbuffer = 0x%08x\n",
dev_priv->ring[i].name,
dev_priv->engine[i].name,
lower_32_bits(obj->gtt_offset));
print_error_obj(m, obj);
}
@ -480,7 +478,7 @@ int i915_error_state_to_str(struct drm_i915_error_state_buf *m,
hws_page = &obj->pages[LRC_PPHWSP_PN][0];
}
err_printf(m, "%s --- HW Status = 0x%08llx\n",
dev_priv->ring[i].name, hws_offset);
dev_priv->engine[i].name, hws_offset);
offset = 0;
for (elt = 0; elt < PAGE_SIZE/16; elt += 4) {
err_printf(m, "[%04x] %08x %08x %08x %08x\n",
@ -493,9 +491,31 @@ int i915_error_state_to_str(struct drm_i915_error_state_buf *m,
}
}
obj = error->ring[i].wa_ctx;
if (obj) {
u64 wa_ctx_offset = obj->gtt_offset;
u32 *wa_ctx_page = &obj->pages[0][0];
struct intel_engine_cs *engine = &dev_priv->engine[RCS];
u32 wa_ctx_size = (engine->wa_ctx.indirect_ctx.size +
engine->wa_ctx.per_ctx.size);
err_printf(m, "%s --- WA ctx batch buffer = 0x%08llx\n",
dev_priv->engine[i].name, wa_ctx_offset);
offset = 0;
for (elt = 0; elt < wa_ctx_size; elt += 4) {
err_printf(m, "[%04x] %08x %08x %08x %08x\n",
offset,
wa_ctx_page[elt + 0],
wa_ctx_page[elt + 1],
wa_ctx_page[elt + 2],
wa_ctx_page[elt + 3]);
offset += 16;
}
}
if ((obj = error->ring[i].ctx)) {
err_printf(m, "%s --- HW Context = 0x%08x\n",
dev_priv->ring[i].name,
dev_priv->engine[i].name,
lower_32_bits(obj->gtt_offset));
print_error_obj(m, obj);
}
@ -585,6 +605,7 @@ static void i915_error_state_free(struct kref *error_ref)
i915_error_object_free(error->ring[i].hws_page);
i915_error_object_free(error->ring[i].ctx);
kfree(error->ring[i].requests);
i915_error_object_free(error->ring[i].wa_ctx);
}
i915_error_object_free(error->semaphore_obj);
@ -632,7 +653,7 @@ i915_error_object_create(struct drm_i915_private *dev_priv,
vma = i915_gem_obj_to_ggtt(src);
use_ggtt = (src->cache_level == I915_CACHE_NONE &&
vma && (vma->bound & GLOBAL_BIND) &&
reloc_offset + num_pages * PAGE_SIZE <= dev_priv->gtt.mappable_end);
reloc_offset + num_pages * PAGE_SIZE <= dev_priv->ggtt.mappable_end);
/* Cannot access stolen address directly, try to use the aperture */
if (src->stolen) {
@ -642,7 +663,7 @@ i915_error_object_create(struct drm_i915_private *dev_priv,
goto unwind;
reloc_offset = i915_gem_obj_ggtt_offset(src);
if (reloc_offset + num_pages * PAGE_SIZE > dev_priv->gtt.mappable_end)
if (reloc_offset + num_pages * PAGE_SIZE > dev_priv->ggtt.mappable_end)
goto unwind;
}
@ -668,7 +689,7 @@ i915_error_object_create(struct drm_i915_private *dev_priv,
* captures what the GPU read.
*/
s = io_mapping_map_atomic_wc(dev_priv->gtt.mappable,
s = io_mapping_map_atomic_wc(dev_priv->ggtt.mappable,
reloc_offset);
memcpy_fromio(d, s, PAGE_SIZE);
io_mapping_unmap_atomic(s);
@ -701,7 +722,7 @@ unwind:
return NULL;
}
#define i915_error_ggtt_object_create(dev_priv, src) \
i915_error_object_create((dev_priv), (src), &(dev_priv)->gtt.base)
i915_error_object_create((dev_priv), (src), &(dev_priv)->ggtt.base)
static void capture_bo(struct drm_i915_error_buffer *err,
struct i915_vma *vma)
@ -711,7 +732,7 @@ static void capture_bo(struct drm_i915_error_buffer *err,
err->size = obj->base.size;
err->name = obj->base.name;
for (i = 0; i < I915_NUM_RINGS; i++)
for (i = 0; i < I915_NUM_ENGINES; i++)
err->rseqno[i] = i915_gem_request_get_seqno(obj->last_read_req[i]);
err->wseqno = i915_gem_request_get_seqno(obj->last_write_req);
err->gtt_offset = vma->node.start;
@ -726,7 +747,7 @@ static void capture_bo(struct drm_i915_error_buffer *err,
err->purgeable = obj->madv != I915_MADV_WILLNEED;
err->userptr = obj->userptr.mm != NULL;
err->ring = obj->last_write_req ?
i915_gem_request_get_ring(obj->last_write_req)->id : -1;
i915_gem_request_get_engine(obj->last_write_req)->id : -1;
err->cache_level = obj->cache_level;
}
@ -788,7 +809,7 @@ static uint32_t i915_error_generate_code(struct drm_i915_private *dev_priv,
* synchronization commands which almost always appear in the case
* strictly a client bug. Use instdone to differentiate those some.
*/
for (i = 0; i < I915_NUM_RINGS; i++) {
for (i = 0; i < I915_NUM_ENGINES; i++) {
if (error->ring[i].hangcheck_action == HANGCHECK_HUNG) {
if (ring_id)
*ring_id = i;
@ -821,11 +842,11 @@ static void i915_gem_record_fences(struct drm_device *dev,
static void gen8_record_semaphore_state(struct drm_i915_private *dev_priv,
struct drm_i915_error_state *error,
struct intel_engine_cs *ring,
struct intel_engine_cs *engine,
struct drm_i915_error_ring *ering)
{
struct intel_engine_cs *to;
int i;
enum intel_engine_id id;
if (!i915_semaphore_is_enabled(dev_priv->dev))
return;
@ -835,68 +856,69 @@ static void gen8_record_semaphore_state(struct drm_i915_private *dev_priv,
i915_error_ggtt_object_create(dev_priv,
dev_priv->semaphore_obj);
for_each_ring(to, dev_priv, i) {
for_each_engine_id(to, dev_priv, id) {
int idx;
u16 signal_offset;
u32 *tmp;
if (ring == to)
if (engine == to)
continue;
signal_offset = (GEN8_SIGNAL_OFFSET(ring, i) & (PAGE_SIZE - 1))
signal_offset = (GEN8_SIGNAL_OFFSET(engine, id) & (PAGE_SIZE - 1))
/ 4;
tmp = error->semaphore_obj->pages[0];
idx = intel_ring_sync_index(ring, to);
idx = intel_ring_sync_index(engine, to);
ering->semaphore_mboxes[idx] = tmp[signal_offset];
ering->semaphore_seqno[idx] = ring->semaphore.sync_seqno[idx];
ering->semaphore_seqno[idx] = engine->semaphore.sync_seqno[idx];
}
}
static void gen6_record_semaphore_state(struct drm_i915_private *dev_priv,
struct intel_engine_cs *ring,
struct intel_engine_cs *engine,
struct drm_i915_error_ring *ering)
{
ering->semaphore_mboxes[0] = I915_READ(RING_SYNC_0(ring->mmio_base));
ering->semaphore_mboxes[1] = I915_READ(RING_SYNC_1(ring->mmio_base));
ering->semaphore_seqno[0] = ring->semaphore.sync_seqno[0];
ering->semaphore_seqno[1] = ring->semaphore.sync_seqno[1];
ering->semaphore_mboxes[0] = I915_READ(RING_SYNC_0(engine->mmio_base));
ering->semaphore_mboxes[1] = I915_READ(RING_SYNC_1(engine->mmio_base));
ering->semaphore_seqno[0] = engine->semaphore.sync_seqno[0];
ering->semaphore_seqno[1] = engine->semaphore.sync_seqno[1];
if (HAS_VEBOX(dev_priv->dev)) {
ering->semaphore_mboxes[2] =
I915_READ(RING_SYNC_2(ring->mmio_base));
ering->semaphore_seqno[2] = ring->semaphore.sync_seqno[2];
I915_READ(RING_SYNC_2(engine->mmio_base));
ering->semaphore_seqno[2] = engine->semaphore.sync_seqno[2];
}
}
static void i915_record_ring_state(struct drm_device *dev,
struct drm_i915_error_state *error,
struct intel_engine_cs *ring,
struct intel_engine_cs *engine,
struct drm_i915_error_ring *ering)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen >= 6) {
ering->rc_psmi = I915_READ(RING_PSMI_CTL(ring->mmio_base));
ering->fault_reg = I915_READ(RING_FAULT_REG(ring));
ering->rc_psmi = I915_READ(RING_PSMI_CTL(engine->mmio_base));
ering->fault_reg = I915_READ(RING_FAULT_REG(engine));
if (INTEL_INFO(dev)->gen >= 8)
gen8_record_semaphore_state(dev_priv, error, ring, ering);
gen8_record_semaphore_state(dev_priv, error, engine,
ering);
else
gen6_record_semaphore_state(dev_priv, ring, ering);
gen6_record_semaphore_state(dev_priv, engine, ering);
}
if (INTEL_INFO(dev)->gen >= 4) {
ering->faddr = I915_READ(RING_DMA_FADD(ring->mmio_base));
ering->ipeir = I915_READ(RING_IPEIR(ring->mmio_base));
ering->ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
ering->instdone = I915_READ(RING_INSTDONE(ring->mmio_base));
ering->instps = I915_READ(RING_INSTPS(ring->mmio_base));
ering->bbaddr = I915_READ(RING_BBADDR(ring->mmio_base));
ering->faddr = I915_READ(RING_DMA_FADD(engine->mmio_base));
ering->ipeir = I915_READ(RING_IPEIR(engine->mmio_base));
ering->ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
ering->instdone = I915_READ(RING_INSTDONE(engine->mmio_base));
ering->instps = I915_READ(RING_INSTPS(engine->mmio_base));
ering->bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));
if (INTEL_INFO(dev)->gen >= 8) {
ering->faddr |= (u64) I915_READ(RING_DMA_FADD_UDW(ring->mmio_base)) << 32;
ering->bbaddr |= (u64) I915_READ(RING_BBADDR_UDW(ring->mmio_base)) << 32;
ering->faddr |= (u64) I915_READ(RING_DMA_FADD_UDW(engine->mmio_base)) << 32;
ering->bbaddr |= (u64) I915_READ(RING_BBADDR_UDW(engine->mmio_base)) << 32;
}
ering->bbstate = I915_READ(RING_BBSTATE(ring->mmio_base));
ering->bbstate = I915_READ(RING_BBSTATE(engine->mmio_base));
} else {
ering->faddr = I915_READ(DMA_FADD_I8XX);
ering->ipeir = I915_READ(IPEIR);
@ -904,20 +926,20 @@ static void i915_record_ring_state(struct drm_device *dev,
ering->instdone = I915_READ(GEN2_INSTDONE);
}
ering->waiting = waitqueue_active(&ring->irq_queue);
ering->instpm = I915_READ(RING_INSTPM(ring->mmio_base));
ering->seqno = ring->get_seqno(ring, false);
ering->acthd = intel_ring_get_active_head(ring);
ering->start = I915_READ_START(ring);
ering->head = I915_READ_HEAD(ring);
ering->tail = I915_READ_TAIL(ring);
ering->ctl = I915_READ_CTL(ring);
ering->waiting = waitqueue_active(&engine->irq_queue);
ering->instpm = I915_READ(RING_INSTPM(engine->mmio_base));
ering->seqno = engine->get_seqno(engine, false);
ering->acthd = intel_ring_get_active_head(engine);
ering->start = I915_READ_START(engine);
ering->head = I915_READ_HEAD(engine);
ering->tail = I915_READ_TAIL(engine);
ering->ctl = I915_READ_CTL(engine);
if (I915_NEED_GFX_HWS(dev)) {
i915_reg_t mmio;
if (IS_GEN7(dev)) {
switch (ring->id) {
switch (engine->id) {
default:
case RCS:
mmio = RENDER_HWS_PGA_GEN7;
@ -932,51 +954,51 @@ static void i915_record_ring_state(struct drm_device *dev,
mmio = VEBOX_HWS_PGA_GEN7;
break;
}
} else if (IS_GEN6(ring->dev)) {
mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
} else if (IS_GEN6(engine->dev)) {
mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
} else {
/* XXX: gen8 returns to sanity */
mmio = RING_HWS_PGA(ring->mmio_base);
mmio = RING_HWS_PGA(engine->mmio_base);
}
ering->hws = I915_READ(mmio);
}
ering->hangcheck_score = ring->hangcheck.score;
ering->hangcheck_action = ring->hangcheck.action;
ering->hangcheck_score = engine->hangcheck.score;
ering->hangcheck_action = engine->hangcheck.action;
if (USES_PPGTT(dev)) {
int i;
ering->vm_info.gfx_mode = I915_READ(RING_MODE_GEN7(ring));
ering->vm_info.gfx_mode = I915_READ(RING_MODE_GEN7(engine));
if (IS_GEN6(dev))
ering->vm_info.pp_dir_base =
I915_READ(RING_PP_DIR_BASE_READ(ring));
I915_READ(RING_PP_DIR_BASE_READ(engine));
else if (IS_GEN7(dev))
ering->vm_info.pp_dir_base =
I915_READ(RING_PP_DIR_BASE(ring));
I915_READ(RING_PP_DIR_BASE(engine));
else if (INTEL_INFO(dev)->gen >= 8)
for (i = 0; i < 4; i++) {
ering->vm_info.pdp[i] =
I915_READ(GEN8_RING_PDP_UDW(ring, i));
I915_READ(GEN8_RING_PDP_UDW(engine, i));
ering->vm_info.pdp[i] <<= 32;
ering->vm_info.pdp[i] |=
I915_READ(GEN8_RING_PDP_LDW(ring, i));
I915_READ(GEN8_RING_PDP_LDW(engine, i));
}
}
}
static void i915_gem_record_active_context(struct intel_engine_cs *ring,
static void i915_gem_record_active_context(struct intel_engine_cs *engine,
struct drm_i915_error_state *error,
struct drm_i915_error_ring *ering)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct drm_i915_private *dev_priv = engine->dev->dev_private;
struct drm_i915_gem_object *obj;
/* Currently render ring is the only HW context user */
if (ring->id != RCS || !error->ccid)
if (engine->id != RCS || !error->ccid)
return;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
@ -997,26 +1019,26 @@ static void i915_gem_record_rings(struct drm_device *dev,
struct drm_i915_gem_request *request;
int i, count;
for (i = 0; i < I915_NUM_RINGS; i++) {
struct intel_engine_cs *ring = &dev_priv->ring[i];
for (i = 0; i < I915_NUM_ENGINES; i++) {
struct intel_engine_cs *engine = &dev_priv->engine[i];
struct intel_ringbuffer *rbuf;
error->ring[i].pid = -1;
if (ring->dev == NULL)
if (engine->dev == NULL)
continue;
error->ring[i].valid = true;
i915_record_ring_state(dev, error, ring, &error->ring[i]);
i915_record_ring_state(dev, error, engine, &error->ring[i]);
request = i915_gem_find_active_request(ring);
request = i915_gem_find_active_request(engine);
if (request) {
struct i915_address_space *vm;
vm = request->ctx && request->ctx->ppgtt ?
&request->ctx->ppgtt->base :
&dev_priv->gtt.base;
&dev_priv->ggtt.base;
/* We need to copy these to an anonymous buffer
* as the simplest method to avoid being overwritten
@ -1030,7 +1052,7 @@ static void i915_gem_record_rings(struct drm_device *dev,
if (HAS_BROKEN_CS_TLB(dev_priv->dev))
error->ring[i].wa_batchbuffer =
i915_error_ggtt_object_create(dev_priv,
ring->scratch.obj);
engine->scratch.obj);
if (request->pid) {
struct task_struct *task;
@ -1052,11 +1074,11 @@ static void i915_gem_record_rings(struct drm_device *dev,
* executed).
*/
if (request)
rbuf = request->ctx->engine[ring->id].ringbuf;
rbuf = request->ctx->engine[engine->id].ringbuf;
else
rbuf = dev_priv->kernel_context->engine[ring->id].ringbuf;
rbuf = dev_priv->kernel_context->engine[engine->id].ringbuf;
} else
rbuf = ring->buffer;
rbuf = engine->buffer;
error->ring[i].cpu_ring_head = rbuf->head;
error->ring[i].cpu_ring_tail = rbuf->tail;
@ -1065,12 +1087,19 @@ static void i915_gem_record_rings(struct drm_device *dev,
i915_error_ggtt_object_create(dev_priv, rbuf->obj);
error->ring[i].hws_page =
i915_error_ggtt_object_create(dev_priv, ring->status_page.obj);
i915_error_ggtt_object_create(dev_priv,
engine->status_page.obj);
i915_gem_record_active_context(ring, error, &error->ring[i]);
if (engine->wa_ctx.obj) {
error->ring[i].wa_ctx =
i915_error_ggtt_object_create(dev_priv,
engine->wa_ctx.obj);
}
i915_gem_record_active_context(engine, error, &error->ring[i]);
count = 0;
list_for_each_entry(request, &ring->request_list, list)
list_for_each_entry(request, &engine->request_list, list)
count++;
error->ring[i].num_requests = count;
@ -1083,7 +1112,7 @@ static void i915_gem_record_rings(struct drm_device *dev,
}
count = 0;
list_for_each_entry(request, &ring->request_list, list) {
list_for_each_entry(request, &engine->request_list, list) {
struct drm_i915_error_request *erq;
if (count >= error->ring[i].num_requests) {
@ -1272,7 +1301,7 @@ static void i915_capture_reg_state(struct drm_i915_private *dev_priv,
static void i915_error_capture_msg(struct drm_device *dev,
struct drm_i915_error_state *error,
bool wedged,
u32 engine_mask,
const char *error_msg)
{
struct drm_i915_private *dev_priv = dev->dev_private;
@ -1295,7 +1324,7 @@ static void i915_error_capture_msg(struct drm_device *dev,
scnprintf(error->error_msg + len, sizeof(error->error_msg) - len,
", reason: %s, action: %s",
error_msg,
wedged ? "reset" : "continue");
engine_mask ? "reset" : "continue");
}
static void i915_capture_gen_state(struct drm_i915_private *dev_priv,
@ -1318,7 +1347,7 @@ static void i915_capture_gen_state(struct drm_i915_private *dev_priv,
* out a structure which becomes available in debugfs for user level tools
* to pick up.
*/
void i915_capture_error_state(struct drm_device *dev, bool wedged,
void i915_capture_error_state(struct drm_device *dev, u32 engine_mask,
const char *error_msg)
{
static bool warned;
@ -1346,7 +1375,7 @@ void i915_capture_error_state(struct drm_device *dev, bool wedged,
error->overlay = intel_overlay_capture_error_state(dev);
error->display = intel_display_capture_error_state(dev);
i915_error_capture_msg(dev, error, wedged, error_msg);
i915_error_capture_msg(dev, error, engine_mask, error_msg);
DRM_INFO("%s\n", error->error_msg);
spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);

View File

@ -377,11 +377,11 @@ static void guc_init_ctx_desc(struct intel_guc *guc,
struct i915_guc_client *client)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
struct intel_context *ctx = client->owner;
struct guc_context_desc desc;
struct sg_table *sg;
int i;
enum intel_engine_id id;
memset(&desc, 0, sizeof(desc));
@ -390,8 +390,8 @@ static void guc_init_ctx_desc(struct intel_guc *guc,
desc.priority = client->priority;
desc.db_id = client->doorbell_id;
for_each_ring(ring, dev_priv, i) {
struct guc_execlist_context *lrc = &desc.lrc[ring->guc_id];
for_each_engine_id(engine, dev_priv, id) {
struct guc_execlist_context *lrc = &desc.lrc[engine->guc_id];
struct drm_i915_gem_object *obj;
uint64_t ctx_desc;
@ -402,27 +402,27 @@ static void guc_init_ctx_desc(struct intel_guc *guc,
* for now who owns a GuC client. But for future owner of GuC
* client, need to make sure lrc is pinned prior to enter here.
*/
obj = ctx->engine[i].state;
obj = ctx->engine[id].state;
if (!obj)
break; /* XXX: continue? */
ctx_desc = intel_lr_context_descriptor(ctx, ring);
ctx_desc = intel_lr_context_descriptor(ctx, engine);
lrc->context_desc = (u32)ctx_desc;
/* The state page is after PPHWSP */
lrc->ring_lcra = i915_gem_obj_ggtt_offset(obj) +
LRC_STATE_PN * PAGE_SIZE;
lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) |
(ring->guc_id << GUC_ELC_ENGINE_OFFSET);
(engine->guc_id << GUC_ELC_ENGINE_OFFSET);
obj = ctx->engine[i].ringbuf->obj;
obj = ctx->engine[id].ringbuf->obj;
lrc->ring_begin = i915_gem_obj_ggtt_offset(obj);
lrc->ring_end = lrc->ring_begin + obj->base.size - 1;
lrc->ring_next_free_location = lrc->ring_begin;
lrc->ring_current_tail_pointer_value = 0;
desc.engines_used |= (1 << ring->guc_id);
desc.engines_used |= (1 << engine->guc_id);
}
WARN_ON(desc.engines_used == 0);
@ -542,11 +542,12 @@ static int guc_add_workqueue_item(struct i915_guc_client *gc,
wq_len = sizeof(struct guc_wq_item) / sizeof(u32) - 1;
wqi->header = WQ_TYPE_INORDER |
(wq_len << WQ_LEN_SHIFT) |
(rq->ring->guc_id << WQ_TARGET_SHIFT) |
(rq->engine->guc_id << WQ_TARGET_SHIFT) |
WQ_NO_WCFLUSH_WAIT;
/* The GuC wants only the low-order word of the context descriptor */
wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, rq->ring);
wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx,
rq->engine);
/* The GuC firmware wants the tail index in QWords, not bytes */
tail = rq->ringbuf->tail >> 3;
@ -569,7 +570,7 @@ int i915_guc_submit(struct i915_guc_client *client,
struct drm_i915_gem_request *rq)
{
struct intel_guc *guc = client->guc;
unsigned int engine_id = rq->ring->guc_id;
unsigned int engine_id = rq->engine->guc_id;
int q_ret, b_ret;
q_ret = guc_add_workqueue_item(client, rq);
@ -839,9 +840,9 @@ static void guc_create_ads(struct intel_guc *guc)
struct guc_ads *ads;
struct guc_policies *policies;
struct guc_mmio_reg_state *reg_state;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
struct page *page;
u32 size, i;
u32 size;
/* The ads obj includes the struct itself and buffers passed to GuC */
size = sizeof(struct guc_ads) + sizeof(struct guc_policies) +
@ -867,11 +868,11 @@ static void guc_create_ads(struct intel_guc *guc)
* so its address won't change after we've told the GuC where
* to find it.
*/
ring = &dev_priv->ring[RCS];
ads->golden_context_lrca = ring->status_page.gfx_addr;
engine = &dev_priv->engine[RCS];
ads->golden_context_lrca = engine->status_page.gfx_addr;
for_each_ring(ring, dev_priv, i)
ads->eng_state_size[ring->guc_id] = intel_lr_context_size(ring);
for_each_engine(engine, dev_priv)
ads->eng_state_size[engine->guc_id] = intel_lr_context_size(engine);
/* GuC scheduling policies */
policies = (void *)ads + sizeof(struct guc_ads);
@ -883,12 +884,12 @@ static void guc_create_ads(struct intel_guc *guc)
/* MMIO reg state */
reg_state = (void *)policies + sizeof(struct guc_policies);
for_each_ring(ring, dev_priv, i) {
reg_state->mmio_white_list[ring->guc_id].mmio_start =
ring->mmio_base + GUC_MMIO_WHITE_LIST_START;
for_each_engine(engine, dev_priv) {
reg_state->mmio_white_list[engine->guc_id].mmio_start =
engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
/* Nothing to be saved or restored for now. */
reg_state->mmio_white_list[ring->guc_id].count = 0;
reg_state->mmio_white_list[engine->guc_id].count = 0;
}
ads->reg_state_addr = ads->scheduler_policies +

View File

@ -994,14 +994,14 @@ static void ironlake_rps_change_irq_handler(struct drm_device *dev)
return;
}
static void notify_ring(struct intel_engine_cs *ring)
static void notify_ring(struct intel_engine_cs *engine)
{
if (!intel_ring_initialized(ring))
if (!intel_engine_initialized(engine))
return;
trace_i915_gem_request_notify(ring);
trace_i915_gem_request_notify(engine);
wake_up_all(&ring->irq_queue);
wake_up_all(&engine->irq_queue);
}
static void vlv_c0_read(struct drm_i915_private *dev_priv,
@ -1079,11 +1079,10 @@ static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
static bool any_waiters(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *ring;
int i;
struct intel_engine_cs *engine;
for_each_ring(ring, dev_priv, i)
if (ring->irq_refcount)
for_each_engine(engine, dev_priv)
if (engine->irq_refcount)
return true;
return false;
@ -1291,9 +1290,9 @@ static void ilk_gt_irq_handler(struct drm_device *dev,
{
if (gt_iir &
(GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
notify_ring(&dev_priv->ring[RCS]);
notify_ring(&dev_priv->engine[RCS]);
if (gt_iir & ILK_BSD_USER_INTERRUPT)
notify_ring(&dev_priv->ring[VCS]);
notify_ring(&dev_priv->engine[VCS]);
}
static void snb_gt_irq_handler(struct drm_device *dev,
@ -1303,11 +1302,11 @@ static void snb_gt_irq_handler(struct drm_device *dev,
if (gt_iir &
(GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
notify_ring(&dev_priv->ring[RCS]);
notify_ring(&dev_priv->engine[RCS]);
if (gt_iir & GT_BSD_USER_INTERRUPT)
notify_ring(&dev_priv->ring[VCS]);
notify_ring(&dev_priv->engine[VCS]);
if (gt_iir & GT_BLT_USER_INTERRUPT)
notify_ring(&dev_priv->ring[BCS]);
notify_ring(&dev_priv->engine[BCS]);
if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
GT_BSD_CS_ERROR_INTERRUPT |
@ -1319,12 +1318,12 @@ static void snb_gt_irq_handler(struct drm_device *dev,
}
static __always_inline void
gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
{
if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
notify_ring(ring);
notify_ring(engine);
if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
intel_lrc_irq_handler(ring);
intel_lrc_irq_handler(engine);
}
static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
@ -1338,11 +1337,11 @@ static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
I915_WRITE_FW(GEN8_GT_IIR(0), iir);
ret = IRQ_HANDLED;
gen8_cs_irq_handler(&dev_priv->ring[RCS],
iir, GEN8_RCS_IRQ_SHIFT);
gen8_cs_irq_handler(&dev_priv->engine[RCS],
iir, GEN8_RCS_IRQ_SHIFT);
gen8_cs_irq_handler(&dev_priv->ring[BCS],
iir, GEN8_BCS_IRQ_SHIFT);
gen8_cs_irq_handler(&dev_priv->engine[BCS],
iir, GEN8_BCS_IRQ_SHIFT);
} else
DRM_ERROR("The master control interrupt lied (GT0)!\n");
}
@ -1353,11 +1352,11 @@ static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
I915_WRITE_FW(GEN8_GT_IIR(1), iir);
ret = IRQ_HANDLED;
gen8_cs_irq_handler(&dev_priv->ring[VCS],
iir, GEN8_VCS1_IRQ_SHIFT);
gen8_cs_irq_handler(&dev_priv->engine[VCS],
iir, GEN8_VCS1_IRQ_SHIFT);
gen8_cs_irq_handler(&dev_priv->ring[VCS2],
iir, GEN8_VCS2_IRQ_SHIFT);
gen8_cs_irq_handler(&dev_priv->engine[VCS2],
iir, GEN8_VCS2_IRQ_SHIFT);
} else
DRM_ERROR("The master control interrupt lied (GT1)!\n");
}
@ -1368,8 +1367,8 @@ static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
I915_WRITE_FW(GEN8_GT_IIR(3), iir);
ret = IRQ_HANDLED;
gen8_cs_irq_handler(&dev_priv->ring[VECS],
iir, GEN8_VECS_IRQ_SHIFT);
gen8_cs_irq_handler(&dev_priv->engine[VECS],
iir, GEN8_VECS_IRQ_SHIFT);
} else
DRM_ERROR("The master control interrupt lied (GT3)!\n");
}
@ -1629,7 +1628,7 @@ static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
if (HAS_VEBOX(dev_priv->dev)) {
if (pm_iir & PM_VEBOX_USER_INTERRUPT)
notify_ring(&dev_priv->ring[VECS]);
notify_ring(&dev_priv->engine[VECS]);
if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
@ -2449,8 +2448,7 @@ static irqreturn_t gen8_irq_handler(int irq, void *arg)
static void i915_error_wake_up(struct drm_i915_private *dev_priv,
bool reset_completed)
{
struct intel_engine_cs *ring;
int i;
struct intel_engine_cs *engine;
/*
* Notify all waiters for GPU completion events that reset state has
@ -2460,8 +2458,8 @@ static void i915_error_wake_up(struct drm_i915_private *dev_priv,
*/
/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
for_each_ring(ring, dev_priv, i)
wake_up_all(&ring->irq_queue);
for_each_engine(engine, dev_priv)
wake_up_all(&engine->irq_queue);
/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
wake_up_all(&dev_priv->pending_flip_queue);
@ -2653,14 +2651,14 @@ static void i915_report_and_clear_eir(struct drm_device *dev)
/**
* i915_handle_error - handle a gpu error
* @dev: drm device
*
* @engine_mask: mask representing engines that are hung
* Do some basic checking of register state at error time and
* dump it to the syslog. Also call i915_capture_error_state() to make
* sure we get a record and make it available in debugfs. Fire a uevent
* so userspace knows something bad happened (should trigger collection
* of a ring dump etc.).
*/
void i915_handle_error(struct drm_device *dev, bool wedged,
void i915_handle_error(struct drm_device *dev, u32 engine_mask,
const char *fmt, ...)
{
struct drm_i915_private *dev_priv = dev->dev_private;
@ -2671,10 +2669,10 @@ void i915_handle_error(struct drm_device *dev, bool wedged,
vscnprintf(error_msg, sizeof(error_msg), fmt, args);
va_end(args);
i915_capture_error_state(dev, wedged, error_msg);
i915_capture_error_state(dev, engine_mask, error_msg);
i915_report_and_clear_eir(dev);
if (wedged) {
if (engine_mask) {
atomic_or(I915_RESET_IN_PROGRESS_FLAG,
&dev_priv->gpu_error.reset_counter);
@ -2805,10 +2803,10 @@ static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
}
static bool
ring_idle(struct intel_engine_cs *ring, u32 seqno)
ring_idle(struct intel_engine_cs *engine, u32 seqno)
{
return (list_empty(&ring->request_list) ||
i915_seqno_passed(seqno, ring->last_submitted_seqno));
return (list_empty(&engine->request_list) ||
i915_seqno_passed(seqno, engine->last_submitted_seqno));
}
static bool
@ -2824,42 +2822,42 @@ ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
}
static struct intel_engine_cs *
semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
u64 offset)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct drm_i915_private *dev_priv = engine->dev->dev_private;
struct intel_engine_cs *signaller;
int i;
if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
for_each_ring(signaller, dev_priv, i) {
if (ring == signaller)
for_each_engine(signaller, dev_priv) {
if (engine == signaller)
continue;
if (offset == signaller->semaphore.signal_ggtt[ring->id])
if (offset == signaller->semaphore.signal_ggtt[engine->id])
return signaller;
}
} else {
u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
for_each_ring(signaller, dev_priv, i) {
if(ring == signaller)
for_each_engine(signaller, dev_priv) {
if(engine == signaller)
continue;
if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
return signaller;
}
}
DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
ring->id, ipehr, offset);
engine->id, ipehr, offset);
return NULL;
}
static struct intel_engine_cs *
semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct drm_i915_private *dev_priv = engine->dev->dev_private;
u32 cmd, ipehr, head;
u64 offset = 0;
int i, backwards;
@ -2881,11 +2879,11 @@ semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
* Therefore, this function does not support execlist mode in its
* current form. Just return NULL and move on.
*/
if (ring->buffer == NULL)
if (engine->buffer == NULL)
return NULL;
ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
if (!ipehr_is_semaphore_wait(engine->dev, ipehr))
return NULL;
/*
@ -2896,8 +2894,8 @@ semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
* point at at batch, and semaphores are always emitted into the
* ringbuffer itself.
*/
head = I915_READ_HEAD(ring) & HEAD_ADDR;
backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
head = I915_READ_HEAD(engine) & HEAD_ADDR;
backwards = (INTEL_INFO(engine->dev)->gen >= 8) ? 5 : 4;
for (i = backwards; i; --i) {
/*
@ -2905,10 +2903,10 @@ semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
* our ring is smaller than what the hardware (and hence
* HEAD_ADDR) allows. Also handles wrap-around.
*/
head &= ring->buffer->size - 1;
head &= engine->buffer->size - 1;
/* This here seems to blow up */
cmd = ioread32(ring->buffer->virtual_start + head);
cmd = ioread32(engine->buffer->virtual_start + head);
if (cmd == ipehr)
break;
@ -2918,29 +2916,29 @@ semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
if (!i)
return NULL;
*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
if (INTEL_INFO(ring->dev)->gen >= 8) {
offset = ioread32(ring->buffer->virtual_start + head + 12);
*seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
if (INTEL_INFO(engine->dev)->gen >= 8) {
offset = ioread32(engine->buffer->virtual_start + head + 12);
offset <<= 32;
offset = ioread32(ring->buffer->virtual_start + head + 8);
offset = ioread32(engine->buffer->virtual_start + head + 8);
}
return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
}
static int semaphore_passed(struct intel_engine_cs *ring)
static int semaphore_passed(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct drm_i915_private *dev_priv = engine->dev->dev_private;
struct intel_engine_cs *signaller;
u32 seqno;
ring->hangcheck.deadlock++;
engine->hangcheck.deadlock++;
signaller = semaphore_waits_for(ring, &seqno);
signaller = semaphore_waits_for(engine, &seqno);
if (signaller == NULL)
return -1;
/* Prevent pathological recursion due to driver bugs */
if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
return -1;
if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
@ -2956,23 +2954,22 @@ static int semaphore_passed(struct intel_engine_cs *ring)
static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *ring;
int i;
struct intel_engine_cs *engine;
for_each_ring(ring, dev_priv, i)
ring->hangcheck.deadlock = 0;
for_each_engine(engine, dev_priv)
engine->hangcheck.deadlock = 0;
}
static bool subunits_stuck(struct intel_engine_cs *ring)
static bool subunits_stuck(struct intel_engine_cs *engine)
{
u32 instdone[I915_NUM_INSTDONE_REG];
bool stuck;
int i;
if (ring->id != RCS)
if (engine->id != RCS)
return true;
i915_get_extra_instdone(ring->dev, instdone);
i915_get_extra_instdone(engine->dev, instdone);
/* There might be unstable subunit states even when
* actual head is not moving. Filter out the unstable ones by
@ -2981,49 +2978,44 @@ static bool subunits_stuck(struct intel_engine_cs *ring)
*/
stuck = true;
for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
const u32 tmp = instdone[i] | ring->hangcheck.instdone[i];
const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
if (tmp != ring->hangcheck.instdone[i])
if (tmp != engine->hangcheck.instdone[i])
stuck = false;
ring->hangcheck.instdone[i] |= tmp;
engine->hangcheck.instdone[i] |= tmp;
}
return stuck;
}
static enum intel_ring_hangcheck_action
head_stuck(struct intel_engine_cs *ring, u64 acthd)
head_stuck(struct intel_engine_cs *engine, u64 acthd)
{
if (acthd != ring->hangcheck.acthd) {
if (acthd != engine->hangcheck.acthd) {
/* Clear subunit states on head movement */
memset(ring->hangcheck.instdone, 0,
sizeof(ring->hangcheck.instdone));
memset(engine->hangcheck.instdone, 0,
sizeof(engine->hangcheck.instdone));
if (acthd > ring->hangcheck.max_acthd) {
ring->hangcheck.max_acthd = acthd;
return HANGCHECK_ACTIVE;
}
return HANGCHECK_ACTIVE_LOOP;
return HANGCHECK_ACTIVE;
}
if (!subunits_stuck(ring))
if (!subunits_stuck(engine))
return HANGCHECK_ACTIVE;
return HANGCHECK_HUNG;
}
static enum intel_ring_hangcheck_action
ring_stuck(struct intel_engine_cs *ring, u64 acthd)
ring_stuck(struct intel_engine_cs *engine, u64 acthd)
{
struct drm_device *dev = ring->dev;
struct drm_device *dev = engine->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum intel_ring_hangcheck_action ha;
u32 tmp;
ha = head_stuck(ring, acthd);
ha = head_stuck(engine, acthd);
if (ha != HANGCHECK_HUNG)
return ha;
@ -3035,24 +3027,24 @@ ring_stuck(struct intel_engine_cs *ring, u64 acthd)
* and break the hang. This should work on
* all but the second generation chipsets.
*/
tmp = I915_READ_CTL(ring);
tmp = I915_READ_CTL(engine);
if (tmp & RING_WAIT) {
i915_handle_error(dev, false,
i915_handle_error(dev, 0,
"Kicking stuck wait on %s",
ring->name);
I915_WRITE_CTL(ring, tmp);
engine->name);
I915_WRITE_CTL(engine, tmp);
return HANGCHECK_KICK;
}
if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
switch (semaphore_passed(ring)) {
switch (semaphore_passed(engine)) {
default:
return HANGCHECK_HUNG;
case 1:
i915_handle_error(dev, false,
i915_handle_error(dev, 0,
"Kicking stuck semaphore on %s",
ring->name);
I915_WRITE_CTL(ring, tmp);
engine->name);
I915_WRITE_CTL(engine, tmp);
return HANGCHECK_KICK;
case 0:
return HANGCHECK_WAIT;
@ -3076,13 +3068,14 @@ static void i915_hangcheck_elapsed(struct work_struct *work)
container_of(work, typeof(*dev_priv),
gpu_error.hangcheck_work.work);
struct drm_device *dev = dev_priv->dev;
struct intel_engine_cs *ring;
int i;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int busy_count = 0, rings_hung = 0;
bool stuck[I915_NUM_RINGS] = { 0 };
bool stuck[I915_NUM_ENGINES] = { 0 };
#define BUSY 1
#define KICK 5
#define HUNG 20
#define ACTIVE_DECAY 15
if (!i915.enable_hangcheck)
return;
@ -3100,33 +3093,33 @@ static void i915_hangcheck_elapsed(struct work_struct *work)
*/
intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
for_each_ring(ring, dev_priv, i) {
for_each_engine_id(engine, dev_priv, id) {
u64 acthd;
u32 seqno;
bool busy = true;
semaphore_clear_deadlocks(dev_priv);
seqno = ring->get_seqno(ring, false);
acthd = intel_ring_get_active_head(ring);
seqno = engine->get_seqno(engine, false);
acthd = intel_ring_get_active_head(engine);
if (ring->hangcheck.seqno == seqno) {
if (ring_idle(ring, seqno)) {
ring->hangcheck.action = HANGCHECK_IDLE;
if (engine->hangcheck.seqno == seqno) {
if (ring_idle(engine, seqno)) {
engine->hangcheck.action = HANGCHECK_IDLE;
if (waitqueue_active(&ring->irq_queue)) {
if (waitqueue_active(&engine->irq_queue)) {
/* Issue a wake-up to catch stuck h/w. */
if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
if (!test_and_set_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings)) {
if (!(dev_priv->gpu_error.test_irq_rings & intel_engine_flag(engine)))
DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
ring->name);
engine->name);
else
DRM_INFO("Fake missed irq on %s\n",
ring->name);
wake_up_all(&ring->irq_queue);
engine->name);
wake_up_all(&engine->irq_queue);
}
/* Safeguard against driver failure */
ring->hangcheck.score += BUSY;
engine->hangcheck.score += BUSY;
} else
busy = false;
} else {
@ -3145,58 +3138,59 @@ static void i915_hangcheck_elapsed(struct work_struct *work)
* being repeatedly kicked and so responsible
* for stalling the machine.
*/
ring->hangcheck.action = ring_stuck(ring,
acthd);
engine->hangcheck.action = ring_stuck(engine,
acthd);
switch (ring->hangcheck.action) {
switch (engine->hangcheck.action) {
case HANGCHECK_IDLE:
case HANGCHECK_WAIT:
case HANGCHECK_ACTIVE:
break;
case HANGCHECK_ACTIVE_LOOP:
ring->hangcheck.score += BUSY;
case HANGCHECK_ACTIVE:
engine->hangcheck.score += BUSY;
break;
case HANGCHECK_KICK:
ring->hangcheck.score += KICK;
engine->hangcheck.score += KICK;
break;
case HANGCHECK_HUNG:
ring->hangcheck.score += HUNG;
stuck[i] = true;
engine->hangcheck.score += HUNG;
stuck[id] = true;
break;
}
}
} else {
ring->hangcheck.action = HANGCHECK_ACTIVE;
engine->hangcheck.action = HANGCHECK_ACTIVE;
/* Gradually reduce the count so that we catch DoS
* attempts across multiple batches.
*/
if (ring->hangcheck.score > 0)
ring->hangcheck.score--;
if (engine->hangcheck.score > 0)
engine->hangcheck.score -= ACTIVE_DECAY;
if (engine->hangcheck.score < 0)
engine->hangcheck.score = 0;
/* Clear head and subunit states on seqno movement */
ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
engine->hangcheck.acthd = 0;
memset(ring->hangcheck.instdone, 0,
sizeof(ring->hangcheck.instdone));
memset(engine->hangcheck.instdone, 0,
sizeof(engine->hangcheck.instdone));
}
ring->hangcheck.seqno = seqno;
ring->hangcheck.acthd = acthd;
engine->hangcheck.seqno = seqno;
engine->hangcheck.acthd = acthd;
busy_count += busy;
}
for_each_ring(ring, dev_priv, i) {
if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
for_each_engine_id(engine, dev_priv, id) {
if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
DRM_INFO("%s on %s\n",
stuck[i] ? "stuck" : "no progress",
ring->name);
rings_hung++;
stuck[id] ? "stuck" : "no progress",
engine->name);
rings_hung |= intel_engine_flag(engine);
}
}
if (rings_hung) {
i915_handle_error(dev, true, "Ring hung");
i915_handle_error(dev, rings_hung, "Engine(s) hung");
goto out;
}
@ -4044,7 +4038,7 @@ static irqreturn_t i8xx_irq_handler(int irq, void *arg)
new_iir = I915_READ16(IIR); /* Flush posted writes */
if (iir & I915_USER_INTERRUPT)
notify_ring(&dev_priv->ring[RCS]);
notify_ring(&dev_priv->engine[RCS]);
for_each_pipe(dev_priv, pipe) {
int plane = pipe;
@ -4240,7 +4234,7 @@ static irqreturn_t i915_irq_handler(int irq, void *arg)
new_iir = I915_READ(IIR); /* Flush posted writes */
if (iir & I915_USER_INTERRUPT)
notify_ring(&dev_priv->ring[RCS]);
notify_ring(&dev_priv->engine[RCS]);
for_each_pipe(dev_priv, pipe) {
int plane = pipe;
@ -4470,9 +4464,9 @@ static irqreturn_t i965_irq_handler(int irq, void *arg)
new_iir = I915_READ(IIR); /* Flush posted writes */
if (iir & I915_USER_INTERRUPT)
notify_ring(&dev_priv->ring[RCS]);
notify_ring(&dev_priv->engine[RCS]);
if (iir & I915_BSD_USER_INTERRUPT)
notify_ring(&dev_priv->ring[VCS]);
notify_ring(&dev_priv->engine[VCS]);
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
@ -4567,8 +4561,6 @@ void intel_irq_init(struct drm_i915_private *dev_priv)
INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
i915_hangcheck_elapsed);
pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
if (IS_GEN2(dev_priv)) {
dev->max_vblank_count = 0;
dev->driver->get_vblank_counter = i8xx_get_vblank_counter;

View File

@ -56,6 +56,8 @@ struct i915_params i915 __read_mostly = {
.edp_vswing = 0,
.enable_guc_submission = false,
.guc_log_level = -1,
.enable_dp_mst = true,
.inject_load_failure = 0,
};
module_param_named(modeset, i915.modeset, int, 0400);
@ -201,3 +203,10 @@ MODULE_PARM_DESC(enable_guc_submission, "Enable GuC submission (default:false)")
module_param_named(guc_log_level, i915.guc_log_level, int, 0400);
MODULE_PARM_DESC(guc_log_level,
"GuC firmware logging level (-1:disabled (default), 0-3:enabled)");
module_param_named_unsafe(enable_dp_mst, i915.enable_dp_mst, bool, 0600);
MODULE_PARM_DESC(enable_dp_mst,
"Enable multi-stream transport (MST) for new DisplayPort sinks. (default: true)");
module_param_named_unsafe(inject_load_failure, i915.inject_load_failure, uint, 0400);
MODULE_PARM_DESC(inject_load_failure,
"Force an error after a number of failure check points (0:disabled (default), N:force failure at the Nth failure check point)");

View File

@ -49,6 +49,7 @@ struct i915_params {
int use_mmio_flip;
int mmio_debug;
int edp_vswing;
unsigned int inject_load_failure;
/* leave bools at the end to not create holes */
bool enable_hangcheck;
bool fastboot;
@ -59,6 +60,7 @@ struct i915_params {
bool enable_guc_submission;
bool verbose_state_checks;
bool nuclear_pageflip;
bool enable_dp_mst;
};
extern struct i915_params i915 __read_mostly;

View File

@ -164,6 +164,8 @@ static inline bool i915_mmio_reg_valid(i915_reg_t reg)
#define GEN6_GRDOM_RENDER (1 << 1)
#define GEN6_GRDOM_MEDIA (1 << 2)
#define GEN6_GRDOM_BLT (1 << 3)
#define GEN6_GRDOM_VECS (1 << 4)
#define GEN8_GRDOM_MEDIA2 (1 << 7)
#define RING_PP_DIR_BASE(ring) _MMIO((ring)->mmio_base+0x228)
#define RING_PP_DIR_BASE_READ(ring) _MMIO((ring)->mmio_base+0x518)
@ -586,6 +588,10 @@ static inline bool i915_mmio_reg_valid(i915_reg_t reg)
#define GEN7_GPGPU_DISPATCHDIMY _MMIO(0x2504)
#define GEN7_GPGPU_DISPATCHDIMZ _MMIO(0x2508)
/* There are the 16 64-bit CS General Purpose Registers */
#define HSW_CS_GPR(n) _MMIO(0x2600 + (n) * 8)
#define HSW_CS_GPR_UDW(n) _MMIO(0x2600 + (n) * 8 + 4)
#define OACONTROL _MMIO(0x2360)
#define _GEN7_PIPEA_DE_LOAD_SL 0x70068
@ -786,6 +792,7 @@ enum skl_disp_power_wells {
#define DSI_PLL_M1_DIV_MASK (0x1ff << 0)
#define CCK_CZ_CLOCK_CONTROL 0x62
#define CCK_DISPLAY_CLOCK_CONTROL 0x6b
#define CCK_DISPLAY_REF_CLOCK_CONTROL 0x6c
#define CCK_TRUNK_FORCE_ON (1 << 17)
#define CCK_TRUNK_FORCE_OFF (1 << 16)
#define CCK_FREQUENCY_STATUS (0x1f << 8)
@ -1795,6 +1802,7 @@ enum skl_disp_power_wells {
#define VLV_DISPLAY_BASE 0x180000
#define VLV_MIPI_BASE VLV_DISPLAY_BASE
#define BXT_MIPI_BASE 0x60000
#define VLV_GU_CTL0 _MMIO(VLV_DISPLAY_BASE + 0x2030)
#define VLV_GU_CTL1 _MMIO(VLV_DISPLAY_BASE + 0x2034)
@ -7102,6 +7110,7 @@ enum skl_disp_power_wells {
#define GEN9_CCS_TLB_PREFETCH_ENABLE (1<<3)
#define GEN8_ROW_CHICKEN _MMIO(0xe4f0)
#define FLOW_CONTROL_ENABLE (1<<15)
#define PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE (1<<8)
#define STALL_DOP_GATING_DISABLE (1<<5)
@ -7362,9 +7371,11 @@ enum skl_disp_power_wells {
/* SBI offsets */
#define SBI_SSCDIVINTPHASE 0x0200
#define SBI_SSCDIVINTPHASE6 0x0600
#define SBI_SSCDIVINTPHASE_DIVSEL_MASK ((0x7f)<<1)
#define SBI_SSCDIVINTPHASE_DIVSEL_SHIFT 1
#define SBI_SSCDIVINTPHASE_DIVSEL_MASK (0x7f<<1)
#define SBI_SSCDIVINTPHASE_DIVSEL(x) ((x)<<1)
#define SBI_SSCDIVINTPHASE_INCVAL_MASK ((0x7f)<<8)
#define SBI_SSCDIVINTPHASE_INCVAL_SHIFT 8
#define SBI_SSCDIVINTPHASE_INCVAL_MASK (0x7f<<8)
#define SBI_SSCDIVINTPHASE_INCVAL(x) ((x)<<8)
#define SBI_SSCDIVINTPHASE_DIR(x) ((x)<<15)
#define SBI_SSCDIVINTPHASE_PROPAGATE (1<<0)
@ -7374,6 +7385,8 @@ enum skl_disp_power_wells {
#define SBI_SSCCTL_PATHALT (1<<3)
#define SBI_SSCCTL_DISABLE (1<<0)
#define SBI_SSCAUXDIV6 0x0610
#define SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT 4
#define SBI_SSCAUXDIV_FINALDIV2SEL_MASK (1<<4)
#define SBI_SSCAUXDIV_FINALDIV2SEL(x) ((x)<<4)
#define SBI_DBUFF0 0x2a00
#define SBI_GEN0 0x1f00
@ -7651,6 +7664,59 @@ enum skl_disp_power_wells {
#define PIPE_CSC_POSTOFF_ME(pipe) _MMIO_PIPE(pipe, _PIPE_A_CSC_POSTOFF_ME, _PIPE_B_CSC_POSTOFF_ME)
#define PIPE_CSC_POSTOFF_LO(pipe) _MMIO_PIPE(pipe, _PIPE_A_CSC_POSTOFF_LO, _PIPE_B_CSC_POSTOFF_LO)
/* pipe degamma/gamma LUTs on IVB+ */
#define _PAL_PREC_INDEX_A 0x4A400
#define _PAL_PREC_INDEX_B 0x4AC00
#define _PAL_PREC_INDEX_C 0x4B400
#define PAL_PREC_10_12_BIT (0 << 31)
#define PAL_PREC_SPLIT_MODE (1 << 31)
#define PAL_PREC_AUTO_INCREMENT (1 << 15)
#define _PAL_PREC_DATA_A 0x4A404
#define _PAL_PREC_DATA_B 0x4AC04
#define _PAL_PREC_DATA_C 0x4B404
#define _PAL_PREC_GC_MAX_A 0x4A410
#define _PAL_PREC_GC_MAX_B 0x4AC10
#define _PAL_PREC_GC_MAX_C 0x4B410
#define _PAL_PREC_EXT_GC_MAX_A 0x4A420
#define _PAL_PREC_EXT_GC_MAX_B 0x4AC20
#define _PAL_PREC_EXT_GC_MAX_C 0x4B420
#define PREC_PAL_INDEX(pipe) _MMIO_PIPE(pipe, _PAL_PREC_INDEX_A, _PAL_PREC_INDEX_B)
#define PREC_PAL_DATA(pipe) _MMIO_PIPE(pipe, _PAL_PREC_DATA_A, _PAL_PREC_DATA_B)
#define PREC_PAL_GC_MAX(pipe, i) _MMIO(_PIPE(pipe, _PAL_PREC_GC_MAX_A, _PAL_PREC_GC_MAX_B) + (i) * 4)
#define PREC_PAL_EXT_GC_MAX(pipe, i) _MMIO(_PIPE(pipe, _PAL_PREC_EXT_GC_MAX_A, _PAL_PREC_EXT_GC_MAX_B) + (i) * 4)
/* pipe CSC & degamma/gamma LUTs on CHV */
#define _CGM_PIPE_A_CSC_COEFF01 (VLV_DISPLAY_BASE + 0x67900)
#define _CGM_PIPE_A_CSC_COEFF23 (VLV_DISPLAY_BASE + 0x67904)
#define _CGM_PIPE_A_CSC_COEFF45 (VLV_DISPLAY_BASE + 0x67908)
#define _CGM_PIPE_A_CSC_COEFF67 (VLV_DISPLAY_BASE + 0x6790C)
#define _CGM_PIPE_A_CSC_COEFF8 (VLV_DISPLAY_BASE + 0x67910)
#define _CGM_PIPE_A_DEGAMMA (VLV_DISPLAY_BASE + 0x66000)
#define _CGM_PIPE_A_GAMMA (VLV_DISPLAY_BASE + 0x67000)
#define _CGM_PIPE_A_MODE (VLV_DISPLAY_BASE + 0x67A00)
#define CGM_PIPE_MODE_GAMMA (1 << 2)
#define CGM_PIPE_MODE_CSC (1 << 1)
#define CGM_PIPE_MODE_DEGAMMA (1 << 0)
#define _CGM_PIPE_B_CSC_COEFF01 (VLV_DISPLAY_BASE + 0x69900)
#define _CGM_PIPE_B_CSC_COEFF23 (VLV_DISPLAY_BASE + 0x69904)
#define _CGM_PIPE_B_CSC_COEFF45 (VLV_DISPLAY_BASE + 0x69908)
#define _CGM_PIPE_B_CSC_COEFF67 (VLV_DISPLAY_BASE + 0x6990C)
#define _CGM_PIPE_B_CSC_COEFF8 (VLV_DISPLAY_BASE + 0x69910)
#define _CGM_PIPE_B_DEGAMMA (VLV_DISPLAY_BASE + 0x68000)
#define _CGM_PIPE_B_GAMMA (VLV_DISPLAY_BASE + 0x69000)
#define _CGM_PIPE_B_MODE (VLV_DISPLAY_BASE + 0x69A00)
#define CGM_PIPE_CSC_COEFF01(pipe) _MMIO_PIPE(pipe, _CGM_PIPE_A_CSC_COEFF01, _CGM_PIPE_B_CSC_COEFF01)
#define CGM_PIPE_CSC_COEFF23(pipe) _MMIO_PIPE(pipe, _CGM_PIPE_A_CSC_COEFF23, _CGM_PIPE_B_CSC_COEFF23)
#define CGM_PIPE_CSC_COEFF45(pipe) _MMIO_PIPE(pipe, _CGM_PIPE_A_CSC_COEFF45, _CGM_PIPE_B_CSC_COEFF45)
#define CGM_PIPE_CSC_COEFF67(pipe) _MMIO_PIPE(pipe, _CGM_PIPE_A_CSC_COEFF67, _CGM_PIPE_B_CSC_COEFF67)
#define CGM_PIPE_CSC_COEFF8(pipe) _MMIO_PIPE(pipe, _CGM_PIPE_A_CSC_COEFF8, _CGM_PIPE_B_CSC_COEFF8)
#define CGM_PIPE_DEGAMMA(pipe, i, w) _MMIO(_PIPE(pipe, _CGM_PIPE_A_DEGAMMA, _CGM_PIPE_B_DEGAMMA) + (i) * 8 + (w) * 4)
#define CGM_PIPE_GAMMA(pipe, i, w) _MMIO(_PIPE(pipe, _CGM_PIPE_A_GAMMA, _CGM_PIPE_B_GAMMA) + (i) * 8 + (w) * 4)
#define CGM_PIPE_MODE(pipe) _MMIO_PIPE(pipe, _CGM_PIPE_A_MODE, _CGM_PIPE_B_MODE)
/* MIPI DSI registers */
#define _MIPI_PORT(port, a, c) _PORT3(port, a, 0, c) /* ports A and C only */
@ -7665,58 +7731,62 @@ enum skl_disp_power_wells {
#define BXT_MIPI_DIV_SHIFT(port) \
_MIPI_PORT(port, BXT_MIPI1_DIV_SHIFT, \
BXT_MIPI2_DIV_SHIFT)
/* Var clock divider to generate TX source. Result must be < 39.5 M */
#define BXT_MIPI1_ESCLK_VAR_DIV_MASK (0x3F << 26)
#define BXT_MIPI2_ESCLK_VAR_DIV_MASK (0x3F << 10)
#define BXT_MIPI_ESCLK_VAR_DIV_MASK(port) \
_MIPI_PORT(port, BXT_MIPI1_ESCLK_VAR_DIV_MASK, \
BXT_MIPI2_ESCLK_VAR_DIV_MASK)
#define BXT_MIPI_ESCLK_VAR_DIV(port, val) \
(val << BXT_MIPI_DIV_SHIFT(port))
/* TX control divider to select actual TX clock output from (8x/var) */
#define BXT_MIPI1_TX_ESCLK_SHIFT 21
#define BXT_MIPI2_TX_ESCLK_SHIFT 5
#define BXT_MIPI1_TX_ESCLK_SHIFT 26
#define BXT_MIPI2_TX_ESCLK_SHIFT 10
#define BXT_MIPI_TX_ESCLK_SHIFT(port) \
_MIPI_PORT(port, BXT_MIPI1_TX_ESCLK_SHIFT, \
BXT_MIPI2_TX_ESCLK_SHIFT)
#define BXT_MIPI1_TX_ESCLK_FIXDIV_MASK (3 << 21)
#define BXT_MIPI2_TX_ESCLK_FIXDIV_MASK (3 << 5)
#define BXT_MIPI1_TX_ESCLK_FIXDIV_MASK (0x3F << 26)
#define BXT_MIPI2_TX_ESCLK_FIXDIV_MASK (0x3F << 10)
#define BXT_MIPI_TX_ESCLK_FIXDIV_MASK(port) \
_MIPI_PORT(port, BXT_MIPI1_TX_ESCLK_FIXDIV_MASK, \
BXT_MIPI2_TX_ESCLK_FIXDIV_MASK)
#define BXT_MIPI_TX_ESCLK_8XDIV_BY2(port) \
(0x0 << BXT_MIPI_TX_ESCLK_SHIFT(port))
#define BXT_MIPI_TX_ESCLK_8XDIV_BY4(port) \
(0x1 << BXT_MIPI_TX_ESCLK_SHIFT(port))
#define BXT_MIPI_TX_ESCLK_8XDIV_BY8(port) \
(0x2 << BXT_MIPI_TX_ESCLK_SHIFT(port))
/* RX control divider to select actual RX clock output from 8x*/
#define BXT_MIPI1_RX_ESCLK_SHIFT 19
#define BXT_MIPI2_RX_ESCLK_SHIFT 3
#define BXT_MIPI_RX_ESCLK_SHIFT(port) \
_MIPI_PORT(port, BXT_MIPI1_RX_ESCLK_SHIFT, \
BXT_MIPI2_RX_ESCLK_SHIFT)
#define BXT_MIPI1_RX_ESCLK_FIXDIV_MASK (3 << 19)
#define BXT_MIPI2_RX_ESCLK_FIXDIV_MASK (3 << 3)
#define BXT_MIPI_RX_ESCLK_FIXDIV_MASK(port) \
(3 << BXT_MIPI_RX_ESCLK_SHIFT(port))
#define BXT_MIPI_RX_ESCLK_8X_BY2(port) \
(1 << BXT_MIPI_RX_ESCLK_SHIFT(port))
#define BXT_MIPI_RX_ESCLK_8X_BY3(port) \
(2 << BXT_MIPI_RX_ESCLK_SHIFT(port))
#define BXT_MIPI_RX_ESCLK_8X_BY4(port) \
(3 << BXT_MIPI_RX_ESCLK_SHIFT(port))
/* BXT-A WA: Always prog DPHY dividers to 00 */
#define BXT_MIPI1_DPHY_DIV_SHIFT 16
#define BXT_MIPI2_DPHY_DIV_SHIFT 0
#define BXT_MIPI_DPHY_DIV_SHIFT(port) \
_MIPI_PORT(port, BXT_MIPI1_DPHY_DIV_SHIFT, \
BXT_MIPI2_DPHY_DIV_SHIFT)
#define BXT_MIPI_1_DPHY_DIVIDER_MASK (3 << 16)
#define BXT_MIPI_2_DPHY_DIVIDER_MASK (3 << 0)
#define BXT_MIPI_DPHY_DIVIDER_MASK(port) \
(3 << BXT_MIPI_DPHY_DIV_SHIFT(port))
BXT_MIPI2_TX_ESCLK_FIXDIV_MASK)
#define BXT_MIPI_TX_ESCLK_DIVIDER(port, val) \
((val & 0x3F) << BXT_MIPI_TX_ESCLK_SHIFT(port))
/* RX upper control divider to select actual RX clock output from 8x */
#define BXT_MIPI1_RX_ESCLK_UPPER_SHIFT 21
#define BXT_MIPI2_RX_ESCLK_UPPER_SHIFT 5
#define BXT_MIPI_RX_ESCLK_UPPER_SHIFT(port) \
_MIPI_PORT(port, BXT_MIPI1_RX_ESCLK_UPPER_SHIFT, \
BXT_MIPI2_RX_ESCLK_UPPER_SHIFT)
#define BXT_MIPI1_RX_ESCLK_UPPER_FIXDIV_MASK (3 << 21)
#define BXT_MIPI2_RX_ESCLK_UPPER_FIXDIV_MASK (3 << 5)
#define BXT_MIPI_RX_ESCLK_UPPER_FIXDIV_MASK(port) \
_MIPI_PORT(port, BXT_MIPI1_RX_ESCLK_UPPER_FIXDIV_MASK, \
BXT_MIPI2_RX_ESCLK_UPPER_FIXDIV_MASK)
#define BXT_MIPI_RX_ESCLK_UPPER_DIVIDER(port, val) \
((val & 3) << BXT_MIPI_RX_ESCLK_UPPER_SHIFT(port))
/* 8/3X divider to select the actual 8/3X clock output from 8x */
#define BXT_MIPI1_8X_BY3_SHIFT 19
#define BXT_MIPI2_8X_BY3_SHIFT 3
#define BXT_MIPI_8X_BY3_SHIFT(port) \
_MIPI_PORT(port, BXT_MIPI1_8X_BY3_SHIFT, \
BXT_MIPI2_8X_BY3_SHIFT)
#define BXT_MIPI1_8X_BY3_DIVIDER_MASK (3 << 19)
#define BXT_MIPI2_8X_BY3_DIVIDER_MASK (3 << 3)
#define BXT_MIPI_8X_BY3_DIVIDER_MASK(port) \
_MIPI_PORT(port, BXT_MIPI1_8X_BY3_DIVIDER_MASK, \
BXT_MIPI2_8X_BY3_DIVIDER_MASK)
#define BXT_MIPI_8X_BY3_DIVIDER(port, val) \
((val & 3) << BXT_MIPI_8X_BY3_SHIFT(port))
/* RX lower control divider to select actual RX clock output from 8x */
#define BXT_MIPI1_RX_ESCLK_LOWER_SHIFT 16
#define BXT_MIPI2_RX_ESCLK_LOWER_SHIFT 0
#define BXT_MIPI_RX_ESCLK_LOWER_SHIFT(port) \
_MIPI_PORT(port, BXT_MIPI1_RX_ESCLK_LOWER_SHIFT, \
BXT_MIPI2_RX_ESCLK_LOWER_SHIFT)
#define BXT_MIPI1_RX_ESCLK_LOWER_FIXDIV_MASK (3 << 16)
#define BXT_MIPI2_RX_ESCLK_LOWER_FIXDIV_MASK (3 << 0)
#define BXT_MIPI_RX_ESCLK_LOWER_FIXDIV_MASK(port) \
_MIPI_PORT(port, BXT_MIPI1_RX_ESCLK_LOWER_FIXDIV_MASK, \
BXT_MIPI2_RX_ESCLK_LOWER_FIXDIV_MASK)
#define BXT_MIPI_RX_ESCLK_LOWER_DIVIDER(port, val) \
((val & 3) << BXT_MIPI_RX_ESCLK_LOWER_SHIFT(port))
#define RX_DIVIDER_BIT_1_2 0x3
#define RX_DIVIDER_BIT_3_4 0xC
/* BXT MIPI mode configure */
#define _BXT_MIPIA_TRANS_HACTIVE 0x6B0F8
@ -7741,9 +7811,11 @@ enum skl_disp_power_wells {
#define BXT_DSIC_16X_BY2 (1 << 10)
#define BXT_DSIC_16X_BY3 (2 << 10)
#define BXT_DSIC_16X_BY4 (3 << 10)
#define BXT_DSIC_16X_MASK (3 << 10)
#define BXT_DSIA_16X_BY2 (1 << 8)
#define BXT_DSIA_16X_BY3 (2 << 8)
#define BXT_DSIA_16X_BY4 (3 << 8)
#define BXT_DSIA_16X_MASK (3 << 8)
#define BXT_DSI_FREQ_SEL_SHIFT 8
#define BXT_DSI_FREQ_SEL_MASK (0xF << BXT_DSI_FREQ_SEL_SHIFT)
@ -7878,8 +7950,8 @@ enum skl_disp_power_wells {
#define VID_MODE_FORMAT_MASK (0xf << 7)
#define VID_MODE_NOT_SUPPORTED (0 << 7)
#define VID_MODE_FORMAT_RGB565 (1 << 7)
#define VID_MODE_FORMAT_RGB666 (2 << 7)
#define VID_MODE_FORMAT_RGB666_LOOSE (3 << 7)
#define VID_MODE_FORMAT_RGB666_PACKED (2 << 7)
#define VID_MODE_FORMAT_RGB666 (3 << 7)
#define VID_MODE_FORMAT_RGB888 (4 << 7)
#define CMD_MODE_CHANNEL_NUMBER_SHIFT 5
#define CMD_MODE_CHANNEL_NUMBER_MASK (3 << 5)
@ -8135,6 +8207,7 @@ enum skl_disp_power_wells {
#define READ_REQUEST_PRIORITY_HIGH (3 << 3)
#define RGB_FLIP_TO_BGR (1 << 2)
#define BXT_PIPE_SELECT_SHIFT 7
#define BXT_PIPE_SELECT_MASK (7 << 7)
#define BXT_PIPE_SELECT(pipe) ((pipe) << 7)

View File

@ -370,6 +370,8 @@ static ssize_t gt_max_freq_mhz_store(struct device *kdev,
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
intel_runtime_pm_get(dev_priv);
mutex_lock(&dev_priv->rps.hw_lock);
val = intel_freq_opcode(dev_priv, val);
@ -378,6 +380,7 @@ static ssize_t gt_max_freq_mhz_store(struct device *kdev,
val > dev_priv->rps.max_freq ||
val < dev_priv->rps.min_freq_softlimit) {
mutex_unlock(&dev_priv->rps.hw_lock);
intel_runtime_pm_put(dev_priv);
return -EINVAL;
}
@ -398,6 +401,8 @@ static ssize_t gt_max_freq_mhz_store(struct device *kdev,
mutex_unlock(&dev_priv->rps.hw_lock);
intel_runtime_pm_put(dev_priv);
return count;
}
@ -433,6 +438,8 @@ static ssize_t gt_min_freq_mhz_store(struct device *kdev,
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
intel_runtime_pm_get(dev_priv);
mutex_lock(&dev_priv->rps.hw_lock);
val = intel_freq_opcode(dev_priv, val);
@ -441,6 +448,7 @@ static ssize_t gt_min_freq_mhz_store(struct device *kdev,
val > dev_priv->rps.max_freq ||
val > dev_priv->rps.max_freq_softlimit) {
mutex_unlock(&dev_priv->rps.hw_lock);
intel_runtime_pm_put(dev_priv);
return -EINVAL;
}
@ -457,6 +465,8 @@ static ssize_t gt_min_freq_mhz_store(struct device *kdev,
mutex_unlock(&dev_priv->rps.hw_lock);
intel_runtime_pm_put(dev_priv);
return count;
}

View File

@ -464,7 +464,7 @@ TRACE_EVENT(i915_gem_ring_sync_to,
TP_fast_assign(
__entry->dev = from->dev->primary->index;
__entry->sync_from = from->id;
__entry->sync_to = to_req->ring->id;
__entry->sync_to = to_req->engine->id;
__entry->seqno = i915_gem_request_get_seqno(req);
),
@ -486,13 +486,13 @@ TRACE_EVENT(i915_gem_ring_dispatch,
),
TP_fast_assign(
struct intel_engine_cs *ring =
i915_gem_request_get_ring(req);
__entry->dev = ring->dev->primary->index;
__entry->ring = ring->id;
struct intel_engine_cs *engine =
i915_gem_request_get_engine(req);
__entry->dev = engine->dev->primary->index;
__entry->ring = engine->id;
__entry->seqno = i915_gem_request_get_seqno(req);
__entry->flags = flags;
i915_trace_irq_get(ring, req);
i915_trace_irq_get(engine, req);
),
TP_printk("dev=%u, ring=%u, seqno=%u, flags=%x",
@ -511,8 +511,8 @@ TRACE_EVENT(i915_gem_ring_flush,
),
TP_fast_assign(
__entry->dev = req->ring->dev->primary->index;
__entry->ring = req->ring->id;
__entry->dev = req->engine->dev->primary->index;
__entry->ring = req->engine->id;
__entry->invalidate = invalidate;
__entry->flush = flush;
),
@ -533,10 +533,10 @@ DECLARE_EVENT_CLASS(i915_gem_request,
),
TP_fast_assign(
struct intel_engine_cs *ring =
i915_gem_request_get_ring(req);
__entry->dev = ring->dev->primary->index;
__entry->ring = ring->id;
struct intel_engine_cs *engine =
i915_gem_request_get_engine(req);
__entry->dev = engine->dev->primary->index;
__entry->ring = engine->id;
__entry->seqno = i915_gem_request_get_seqno(req);
),
@ -550,8 +550,8 @@ DEFINE_EVENT(i915_gem_request, i915_gem_request_add,
);
TRACE_EVENT(i915_gem_request_notify,
TP_PROTO(struct intel_engine_cs *ring),
TP_ARGS(ring),
TP_PROTO(struct intel_engine_cs *engine),
TP_ARGS(engine),
TP_STRUCT__entry(
__field(u32, dev)
@ -560,9 +560,9 @@ TRACE_EVENT(i915_gem_request_notify,
),
TP_fast_assign(
__entry->dev = ring->dev->primary->index;
__entry->ring = ring->id;
__entry->seqno = ring->get_seqno(ring, false);
__entry->dev = engine->dev->primary->index;
__entry->ring = engine->id;
__entry->seqno = engine->get_seqno(engine, false);
),
TP_printk("dev=%u, ring=%u, seqno=%u",
@ -597,13 +597,13 @@ TRACE_EVENT(i915_gem_request_wait_begin,
* less desirable.
*/
TP_fast_assign(
struct intel_engine_cs *ring =
i915_gem_request_get_ring(req);
__entry->dev = ring->dev->primary->index;
__entry->ring = ring->id;
struct intel_engine_cs *engine =
i915_gem_request_get_engine(req);
__entry->dev = engine->dev->primary->index;
__entry->ring = engine->id;
__entry->seqno = i915_gem_request_get_seqno(req);
__entry->blocking =
mutex_is_locked(&ring->dev->struct_mutex);
mutex_is_locked(&engine->dev->struct_mutex);
),
TP_printk("dev=%u, ring=%u, seqno=%u, blocking=%s",
@ -777,9 +777,9 @@ DEFINE_EVENT(i915_context, i915_context_free,
* called only if full ppgtt is enabled.
*/
TRACE_EVENT(switch_mm,
TP_PROTO(struct intel_engine_cs *ring, struct intel_context *to),
TP_PROTO(struct intel_engine_cs *engine, struct intel_context *to),
TP_ARGS(ring, to),
TP_ARGS(engine, to),
TP_STRUCT__entry(
__field(u32, ring)
@ -789,10 +789,10 @@ TRACE_EVENT(switch_mm,
),
TP_fast_assign(
__entry->ring = ring->id;
__entry->ring = engine->id;
__entry->to = to;
__entry->vm = to->ppgtt? &to->ppgtt->base : NULL;
__entry->dev = ring->dev->primary->index;
__entry->dev = engine->dev->primary->index;
),
TP_printk("dev=%u, ring=%u, ctx=%p, ctx_vm=%p",

View File

@ -181,7 +181,7 @@ static int vgt_balloon_space(struct drm_mm *mm,
int intel_vgt_balloon(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
struct i915_address_space *ggtt_vm = &dev_priv->ggtt.base;
unsigned long ggtt_vm_end = ggtt_vm->start + ggtt_vm->total;
unsigned long mappable_base, mappable_size, mappable_end;
@ -203,18 +203,18 @@ int intel_vgt_balloon(struct drm_device *dev)
unmappable_base, unmappable_size / 1024);
if (mappable_base < ggtt_vm->start ||
mappable_end > dev_priv->gtt.mappable_end ||
unmappable_base < dev_priv->gtt.mappable_end ||
mappable_end > dev_priv->ggtt.mappable_end ||
unmappable_base < dev_priv->ggtt.mappable_end ||
unmappable_end > ggtt_vm_end) {
DRM_ERROR("Invalid ballooning configuration!\n");
return -EINVAL;
}
/* Unmappable graphic memory ballooning */
if (unmappable_base > dev_priv->gtt.mappable_end) {
if (unmappable_base > dev_priv->ggtt.mappable_end) {
ret = vgt_balloon_space(&ggtt_vm->mm,
&bl_info.space[2],
dev_priv->gtt.mappable_end,
dev_priv->ggtt.mappable_end,
unmappable_base);
if (ret)
@ -244,11 +244,11 @@ int intel_vgt_balloon(struct drm_device *dev)
goto err;
}
if (mappable_end < dev_priv->gtt.mappable_end) {
if (mappable_end < dev_priv->ggtt.mappable_end) {
ret = vgt_balloon_space(&ggtt_vm->mm,
&bl_info.space[1],
mappable_end,
dev_priv->gtt.mappable_end);
dev_priv->ggtt.mappable_end);
if (ret)
goto err;

View File

@ -96,8 +96,11 @@ intel_crtc_duplicate_state(struct drm_crtc *crtc)
crtc_state->update_pipe = false;
crtc_state->disable_lp_wm = false;
crtc_state->disable_cxsr = false;
crtc_state->wm_changed = false;
crtc_state->update_wm_pre = false;
crtc_state->update_wm_post = false;
crtc_state->fb_changed = false;
crtc_state->wm.need_postvbl_update = false;
crtc_state->fb_bits = 0;
return &crtc_state->base;
}

View File

@ -195,12 +195,10 @@ static void intel_plane_atomic_update(struct drm_plane *plane,
struct intel_plane_state *intel_state =
to_intel_plane_state(plane->state);
struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
struct drm_crtc_state *crtc_state =
drm_atomic_get_existing_crtc_state(old_state->state, crtc);
if (intel_state->visible)
intel_plane->update_plane(plane,
to_intel_crtc_state(crtc_state),
to_intel_crtc_state(crtc->state),
intel_state);
else
intel_plane->disable_plane(plane, crtc);

View File

@ -564,23 +564,21 @@ void intel_audio_codec_disable(struct intel_encoder *intel_encoder)
}
/**
* intel_init_audio - Set up chip specific audio functions
* @dev: drm device
* intel_init_audio_hooks - Set up chip specific audio hooks
* @dev_priv: device private
*/
void intel_init_audio(struct drm_device *dev)
void intel_init_audio_hooks(struct drm_i915_private *dev_priv)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (IS_G4X(dev)) {
if (IS_G4X(dev_priv)) {
dev_priv->display.audio_codec_enable = g4x_audio_codec_enable;
dev_priv->display.audio_codec_disable = g4x_audio_codec_disable;
} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
dev_priv->display.audio_codec_enable = ilk_audio_codec_enable;
dev_priv->display.audio_codec_disable = ilk_audio_codec_disable;
} else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) {
} else if (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8) {
dev_priv->display.audio_codec_enable = hsw_audio_codec_enable;
dev_priv->display.audio_codec_disable = hsw_audio_codec_disable;
} else if (HAS_PCH_SPLIT(dev)) {
} else if (HAS_PCH_SPLIT(dev_priv)) {
dev_priv->display.audio_codec_enable = ilk_audio_codec_enable;
dev_priv->display.audio_codec_disable = ilk_audio_codec_disable;
}

View File

@ -29,7 +29,9 @@
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "intel_bios.h"
#define _INTEL_BIOS_PRIVATE
#include "intel_vbt_defs.h"
/**
* DOC: Video BIOS Table (VBT)
@ -480,7 +482,7 @@ parse_sdvo_device_mapping(struct drm_i915_private *dev_priv,
child->slave_addr,
(child->dvo_port == DEVICE_PORT_DVOB) ?
"SDVOB" : "SDVOC");
p_mapping = &(dev_priv->sdvo_mappings[child->dvo_port - 1]);
p_mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1];
if (!p_mapping->initialized) {
p_mapping->dvo_port = child->dvo_port;
p_mapping->slave_addr = child->slave_addr;
@ -525,10 +527,7 @@ parse_driver_features(struct drm_i915_private *dev_priv,
return;
if (driver->lvds_config == BDB_DRIVER_FEATURE_EDP)
dev_priv->vbt.edp_support = 1;
if (driver->dual_frequency)
dev_priv->render_reclock_avail = true;
dev_priv->vbt.edp.support = 1;
DRM_DEBUG_KMS("DRRS State Enabled:%d\n", driver->drrs_enabled);
/*
@ -550,20 +549,20 @@ parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
edp = find_section(bdb, BDB_EDP);
if (!edp) {
if (dev_priv->vbt.edp_support)
if (dev_priv->vbt.edp.support)
DRM_DEBUG_KMS("No eDP BDB found but eDP panel supported.\n");
return;
}
switch ((edp->color_depth >> (panel_type * 2)) & 3) {
case EDP_18BPP:
dev_priv->vbt.edp_bpp = 18;
dev_priv->vbt.edp.bpp = 18;
break;
case EDP_24BPP:
dev_priv->vbt.edp_bpp = 24;
dev_priv->vbt.edp.bpp = 24;
break;
case EDP_30BPP:
dev_priv->vbt.edp_bpp = 30;
dev_priv->vbt.edp.bpp = 30;
break;
}
@ -571,14 +570,14 @@ parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
edp_pps = &edp->power_seqs[panel_type];
edp_link_params = &edp->link_params[panel_type];
dev_priv->vbt.edp_pps = *edp_pps;
dev_priv->vbt.edp.pps = *edp_pps;
switch (edp_link_params->rate) {
case EDP_RATE_1_62:
dev_priv->vbt.edp_rate = DP_LINK_BW_1_62;
dev_priv->vbt.edp.rate = DP_LINK_BW_1_62;
break;
case EDP_RATE_2_7:
dev_priv->vbt.edp_rate = DP_LINK_BW_2_7;
dev_priv->vbt.edp.rate = DP_LINK_BW_2_7;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP link rate value %u\n",
@ -588,13 +587,13 @@ parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
switch (edp_link_params->lanes) {
case EDP_LANE_1:
dev_priv->vbt.edp_lanes = 1;
dev_priv->vbt.edp.lanes = 1;
break;
case EDP_LANE_2:
dev_priv->vbt.edp_lanes = 2;
dev_priv->vbt.edp.lanes = 2;
break;
case EDP_LANE_4:
dev_priv->vbt.edp_lanes = 4;
dev_priv->vbt.edp.lanes = 4;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP lane count value %u\n",
@ -604,16 +603,16 @@ parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
switch (edp_link_params->preemphasis) {
case EDP_PREEMPHASIS_NONE:
dev_priv->vbt.edp_preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
break;
case EDP_PREEMPHASIS_3_5dB:
dev_priv->vbt.edp_preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
break;
case EDP_PREEMPHASIS_6dB:
dev_priv->vbt.edp_preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
break;
case EDP_PREEMPHASIS_9_5dB:
dev_priv->vbt.edp_preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP pre-emphasis value %u\n",
@ -623,16 +622,16 @@ parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
switch (edp_link_params->vswing) {
case EDP_VSWING_0_4V:
dev_priv->vbt.edp_vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
break;
case EDP_VSWING_0_6V:
dev_priv->vbt.edp_vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
break;
case EDP_VSWING_0_8V:
dev_priv->vbt.edp_vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
break;
case EDP_VSWING_1_2V:
dev_priv->vbt.edp_vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP voltage swing value %u\n",
@ -645,10 +644,10 @@ parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
/* Don't read from VBT if module parameter has valid value*/
if (i915.edp_vswing) {
dev_priv->edp_low_vswing = i915.edp_vswing == 1;
dev_priv->vbt.edp.low_vswing = i915.edp_vswing == 1;
} else {
vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
dev_priv->edp_low_vswing = vswing == 0;
dev_priv->vbt.edp.low_vswing = vswing == 0;
}
}
}
@ -706,7 +705,7 @@ parse_mipi_config(struct drm_i915_private *dev_priv,
const struct mipi_pps_data *pps;
/* parse MIPI blocks only if LFP type is MIPI */
if (!dev_priv->vbt.has_mipi)
if (!intel_bios_is_dsi_present(dev_priv, NULL))
return;
/* Initialize this to undefined indicating no generic MIPI support */
@ -1232,14 +1231,6 @@ parse_device_mapping(struct drm_i915_private *dev_priv,
continue;
}
if (p_child->common.dvo_port >= DVO_PORT_MIPIA
&& p_child->common.dvo_port <= DVO_PORT_MIPID
&&p_child->common.device_type & DEVICE_TYPE_MIPI_OUTPUT) {
DRM_DEBUG_KMS("Found MIPI as LFP\n");
dev_priv->vbt.has_mipi = 1;
dev_priv->vbt.dsi.port = p_child->common.dvo_port;
}
child_dev_ptr = dev_priv->vbt.child_dev + count;
count++;
@ -1431,3 +1422,166 @@ intel_bios_init(struct drm_i915_private *dev_priv)
return 0;
}
/**
* intel_bios_is_tv_present - is integrated TV present in VBT
* @dev_priv: i915 device instance
*
* Return true if TV is present. If no child devices were parsed from VBT,
* assume TV is present.
*/
bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv)
{
union child_device_config *p_child;
int i;
if (!dev_priv->vbt.int_tv_support)
return false;
if (!dev_priv->vbt.child_dev_num)
return true;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
p_child = dev_priv->vbt.child_dev + i;
/*
* If the device type is not TV, continue.
*/
switch (p_child->old.device_type) {
case DEVICE_TYPE_INT_TV:
case DEVICE_TYPE_TV:
case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
break;
default:
continue;
}
/* Only when the addin_offset is non-zero, it is regarded
* as present.
*/
if (p_child->old.addin_offset)
return true;
}
return false;
}
/**
* intel_bios_is_lvds_present - is LVDS present in VBT
* @dev_priv: i915 device instance
* @i2c_pin: i2c pin for LVDS if present
*
* Return true if LVDS is present. If no child devices were parsed from VBT,
* assume LVDS is present.
*/
bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin)
{
int i;
if (!dev_priv->vbt.child_dev_num)
return true;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
union child_device_config *uchild = dev_priv->vbt.child_dev + i;
struct old_child_dev_config *child = &uchild->old;
/* If the device type is not LFP, continue.
* We have to check both the new identifiers as well as the
* old for compatibility with some BIOSes.
*/
if (child->device_type != DEVICE_TYPE_INT_LFP &&
child->device_type != DEVICE_TYPE_LFP)
continue;
if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin))
*i2c_pin = child->i2c_pin;
/* However, we cannot trust the BIOS writers to populate
* the VBT correctly. Since LVDS requires additional
* information from AIM blocks, a non-zero addin offset is
* a good indicator that the LVDS is actually present.
*/
if (child->addin_offset)
return true;
/* But even then some BIOS writers perform some black magic
* and instantiate the device without reference to any
* additional data. Trust that if the VBT was written into
* the OpRegion then they have validated the LVDS's existence.
*/
if (dev_priv->opregion.vbt)
return true;
}
return false;
}
/**
* intel_bios_is_port_edp - is the device in given port eDP
* @dev_priv: i915 device instance
* @port: port to check
*
* Return true if the device in %port is eDP.
*/
bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
{
union child_device_config *p_child;
static const short port_mapping[] = {
[PORT_B] = DVO_PORT_DPB,
[PORT_C] = DVO_PORT_DPC,
[PORT_D] = DVO_PORT_DPD,
[PORT_E] = DVO_PORT_DPE,
};
int i;
if (!dev_priv->vbt.child_dev_num)
return false;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
p_child = dev_priv->vbt.child_dev + i;
if (p_child->common.dvo_port == port_mapping[port] &&
(p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
(DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
return true;
}
return false;
}
/**
* intel_bios_is_dsi_present - is DSI present in VBT
* @dev_priv: i915 device instance
* @port: port for DSI if present
*
* Return true if DSI is present, and return the port in %port.
*/
bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv,
enum port *port)
{
union child_device_config *p_child;
u8 dvo_port;
int i;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
p_child = dev_priv->vbt.child_dev + i;
if (!(p_child->common.device_type & DEVICE_TYPE_MIPI_OUTPUT))
continue;
dvo_port = p_child->common.dvo_port;
switch (dvo_port) {
case DVO_PORT_MIPIA:
case DVO_PORT_MIPIC:
if (port)
*port = dvo_port - DVO_PORT_MIPIA;
return true;
case DVO_PORT_MIPIB:
case DVO_PORT_MIPID:
DRM_DEBUG_KMS("VBT has unsupported DSI port %c\n",
port_name(dvo_port - DVO_PORT_MIPIA));
break;
}
}
return false;
}

View File

@ -1,5 +1,5 @@
/*
* Copyright © 2006 Intel Corporation
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
@ -19,544 +19,17 @@
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
/*
* Please use intel_vbt_defs.h for VBT private data, to hide and abstract away
* the VBT from the rest of the driver. Add the parsed, clean data to struct
* intel_vbt_data within struct drm_i915_private.
*/
#ifndef _INTEL_BIOS_H_
#define _INTEL_BIOS_H_
/**
* struct vbt_header - VBT Header structure
* @signature: VBT signature, always starts with "$VBT"
* @version: Version of this structure
* @header_size: Size of this structure
* @vbt_size: Size of VBT (VBT Header, BDB Header and data blocks)
* @vbt_checksum: Checksum
* @reserved0: Reserved
* @bdb_offset: Offset of &struct bdb_header from beginning of VBT
* @aim_offset: Offsets of add-in data blocks from beginning of VBT
*/
struct vbt_header {
u8 signature[20];
u16 version;
u16 header_size;
u16 vbt_size;
u8 vbt_checksum;
u8 reserved0;
u32 bdb_offset;
u32 aim_offset[4];
} __packed;
/**
* struct bdb_header - BDB Header structure
* @signature: BDB signature "BIOS_DATA_BLOCK"
* @version: Version of the data block definitions
* @header_size: Size of this structure
* @bdb_size: Size of BDB (BDB Header and data blocks)
*/
struct bdb_header {
u8 signature[16];
u16 version;
u16 header_size;
u16 bdb_size;
} __packed;
/* strictly speaking, this is a "skip" block, but it has interesting info */
struct vbios_data {
u8 type; /* 0 == desktop, 1 == mobile */
u8 relstage;
u8 chipset;
u8 lvds_present:1;
u8 tv_present:1;
u8 rsvd2:6; /* finish byte */
u8 rsvd3[4];
u8 signon[155];
u8 copyright[61];
u16 code_segment;
u8 dos_boot_mode;
u8 bandwidth_percent;
u8 rsvd4; /* popup memory size */
u8 resize_pci_bios;
u8 rsvd5; /* is crt already on ddc2 */
} __packed;
/*
* There are several types of BIOS data blocks (BDBs), each block has
* an ID and size in the first 3 bytes (ID in first, size in next 2).
* Known types are listed below.
*/
#define BDB_GENERAL_FEATURES 1
#define BDB_GENERAL_DEFINITIONS 2
#define BDB_OLD_TOGGLE_LIST 3
#define BDB_MODE_SUPPORT_LIST 4
#define BDB_GENERIC_MODE_TABLE 5
#define BDB_EXT_MMIO_REGS 6
#define BDB_SWF_IO 7
#define BDB_SWF_MMIO 8
#define BDB_PSR 9
#define BDB_MODE_REMOVAL_TABLE 10
#define BDB_CHILD_DEVICE_TABLE 11
#define BDB_DRIVER_FEATURES 12
#define BDB_DRIVER_PERSISTENCE 13
#define BDB_EXT_TABLE_PTRS 14
#define BDB_DOT_CLOCK_OVERRIDE 15
#define BDB_DISPLAY_SELECT 16
/* 17 rsvd */
#define BDB_DRIVER_ROTATION 18
#define BDB_DISPLAY_REMOVE 19
#define BDB_OEM_CUSTOM 20
#define BDB_EFP_LIST 21 /* workarounds for VGA hsync/vsync */
#define BDB_SDVO_LVDS_OPTIONS 22
#define BDB_SDVO_PANEL_DTDS 23
#define BDB_SDVO_LVDS_PNP_IDS 24
#define BDB_SDVO_LVDS_POWER_SEQ 25
#define BDB_TV_OPTIONS 26
#define BDB_EDP 27
#define BDB_LVDS_OPTIONS 40
#define BDB_LVDS_LFP_DATA_PTRS 41
#define BDB_LVDS_LFP_DATA 42
#define BDB_LVDS_BACKLIGHT 43
#define BDB_LVDS_POWER 44
#define BDB_MIPI_CONFIG 52
#define BDB_MIPI_SEQUENCE 53
#define BDB_SKIP 254 /* VBIOS private block, ignore */
struct bdb_general_features {
/* bits 1 */
u8 panel_fitting:2;
u8 flexaim:1;
u8 msg_enable:1;
u8 clear_screen:3;
u8 color_flip:1;
/* bits 2 */
u8 download_ext_vbt:1;
u8 enable_ssc:1;
u8 ssc_freq:1;
u8 enable_lfp_on_override:1;
u8 disable_ssc_ddt:1;
u8 rsvd7:1;
u8 display_clock_mode:1;
u8 rsvd8:1; /* finish byte */
/* bits 3 */
u8 disable_smooth_vision:1;
u8 single_dvi:1;
u8 rsvd9:1;
u8 fdi_rx_polarity_inverted:1;
u8 rsvd10:4; /* finish byte */
/* bits 4 */
u8 legacy_monitor_detect;
/* bits 5 */
u8 int_crt_support:1;
u8 int_tv_support:1;
u8 int_efp_support:1;
u8 dp_ssc_enb:1; /* PCH attached eDP supports SSC */
u8 dp_ssc_freq:1; /* SSC freq for PCH attached eDP */
u8 rsvd11:3; /* finish byte */
} __packed;
/* pre-915 */
#define GPIO_PIN_DVI_LVDS 0x03 /* "DVI/LVDS DDC GPIO pins" */
#define GPIO_PIN_ADD_I2C 0x05 /* "ADDCARD I2C GPIO pins" */
#define GPIO_PIN_ADD_DDC 0x04 /* "ADDCARD DDC GPIO pins" */
#define GPIO_PIN_ADD_DDC_I2C 0x06 /* "ADDCARD DDC/I2C GPIO pins" */
/* Pre 915 */
#define DEVICE_TYPE_NONE 0x00
#define DEVICE_TYPE_CRT 0x01
#define DEVICE_TYPE_TV 0x09
#define DEVICE_TYPE_EFP 0x12
#define DEVICE_TYPE_LFP 0x22
/* On 915+ */
#define DEVICE_TYPE_CRT_DPMS 0x6001
#define DEVICE_TYPE_CRT_DPMS_HOTPLUG 0x4001
#define DEVICE_TYPE_TV_COMPOSITE 0x0209
#define DEVICE_TYPE_TV_MACROVISION 0x0289
#define DEVICE_TYPE_TV_RF_COMPOSITE 0x020c
#define DEVICE_TYPE_TV_SVIDEO_COMPOSITE 0x0609
#define DEVICE_TYPE_TV_SCART 0x0209
#define DEVICE_TYPE_TV_CODEC_HOTPLUG_PWR 0x6009
#define DEVICE_TYPE_EFP_HOTPLUG_PWR 0x6012
#define DEVICE_TYPE_EFP_DVI_HOTPLUG_PWR 0x6052
#define DEVICE_TYPE_EFP_DVI_I 0x6053
#define DEVICE_TYPE_EFP_DVI_D_DUAL 0x6152
#define DEVICE_TYPE_EFP_DVI_D_HDCP 0x60d2
#define DEVICE_TYPE_OPENLDI_HOTPLUG_PWR 0x6062
#define DEVICE_TYPE_OPENLDI_DUALPIX 0x6162
#define DEVICE_TYPE_LFP_PANELLINK 0x5012
#define DEVICE_TYPE_LFP_CMOS_PWR 0x5042
#define DEVICE_TYPE_LFP_LVDS_PWR 0x5062
#define DEVICE_TYPE_LFP_LVDS_DUAL 0x5162
#define DEVICE_TYPE_LFP_LVDS_DUAL_HDCP 0x51e2
#define DEVICE_CFG_NONE 0x00
#define DEVICE_CFG_12BIT_DVOB 0x01
#define DEVICE_CFG_12BIT_DVOC 0x02
#define DEVICE_CFG_24BIT_DVOBC 0x09
#define DEVICE_CFG_24BIT_DVOCB 0x0a
#define DEVICE_CFG_DUAL_DVOB 0x11
#define DEVICE_CFG_DUAL_DVOC 0x12
#define DEVICE_CFG_DUAL_DVOBC 0x13
#define DEVICE_CFG_DUAL_LINK_DVOBC 0x19
#define DEVICE_CFG_DUAL_LINK_DVOCB 0x1a
#define DEVICE_WIRE_NONE 0x00
#define DEVICE_WIRE_DVOB 0x01
#define DEVICE_WIRE_DVOC 0x02
#define DEVICE_WIRE_DVOBC 0x03
#define DEVICE_WIRE_DVOBB 0x05
#define DEVICE_WIRE_DVOCC 0x06
#define DEVICE_WIRE_DVOB_MASTER 0x0d
#define DEVICE_WIRE_DVOC_MASTER 0x0e
#define DEVICE_PORT_DVOA 0x00 /* none on 845+ */
#define DEVICE_PORT_DVOB 0x01
#define DEVICE_PORT_DVOC 0x02
/*
* We used to keep this struct but without any version control. We should avoid
* using it in the future, but it should be safe to keep using it in the old
* code. Do not change; we rely on its size.
*/
struct old_child_dev_config {
u16 handle;
u16 device_type;
u8 device_id[10]; /* ascii string */
u16 addin_offset;
u8 dvo_port; /* See Device_PORT_* above */
u8 i2c_pin;
u8 slave_addr;
u8 ddc_pin;
u16 edid_ptr;
u8 dvo_cfg; /* See DEVICE_CFG_* above */
u8 dvo2_port;
u8 i2c2_pin;
u8 slave2_addr;
u8 ddc2_pin;
u8 capabilities;
u8 dvo_wiring;/* See DEVICE_WIRE_* above */
u8 dvo2_wiring;
u16 extended_type;
u8 dvo_function;
} __packed;
/* This one contains field offsets that are known to be common for all BDB
* versions. Notice that the meaning of the contents contents may still change,
* but at least the offsets are consistent. */
/* Definitions for flags_1 */
#define IBOOST_ENABLE (1<<3)
struct common_child_dev_config {
u16 handle;
u16 device_type;
u8 not_common1[12];
u8 dvo_port;
u8 not_common2[2];
u8 ddc_pin;
u16 edid_ptr;
u8 obsolete;
u8 flags_1;
u8 not_common3[13];
u8 iboost_level;
} __packed;
/* This field changes depending on the BDB version, so the most reliable way to
* read it is by checking the BDB version and reading the raw pointer. */
union child_device_config {
/* This one is safe to be used anywhere, but the code should still check
* the BDB version. */
u8 raw[33];
/* This one should only be kept for legacy code. */
struct old_child_dev_config old;
/* This one should also be safe to use anywhere, even without version
* checks. */
struct common_child_dev_config common;
} __packed;
struct bdb_general_definitions {
/* DDC GPIO */
u8 crt_ddc_gmbus_pin;
/* DPMS bits */
u8 dpms_acpi:1;
u8 skip_boot_crt_detect:1;
u8 dpms_aim:1;
u8 rsvd1:5; /* finish byte */
/* boot device bits */
u8 boot_display[2];
u8 child_dev_size;
/*
* Device info:
* If TV is present, it'll be at devices[0].
* LVDS will be next, either devices[0] or [1], if present.
* On some platforms the number of device is 6. But could be as few as
* 4 if both TV and LVDS are missing.
* And the device num is related with the size of general definition
* block. It is obtained by using the following formula:
* number = (block_size - sizeof(bdb_general_definitions))/
* defs->child_dev_size;
*/
uint8_t devices[0];
} __packed;
/* Mask for DRRS / Panel Channel / SSC / BLT control bits extraction */
#define MODE_MASK 0x3
struct bdb_lvds_options {
u8 panel_type;
u8 rsvd1;
/* LVDS capabilities, stored in a dword */
u8 pfit_mode:2;
u8 pfit_text_mode_enhanced:1;
u8 pfit_gfx_mode_enhanced:1;
u8 pfit_ratio_auto:1;
u8 pixel_dither:1;
u8 lvds_edid:1;
u8 rsvd2:1;
u8 rsvd4;
/* LVDS Panel channel bits stored here */
u32 lvds_panel_channel_bits;
/* LVDS SSC (Spread Spectrum Clock) bits stored here. */
u16 ssc_bits;
u16 ssc_freq;
u16 ssc_ddt;
/* Panel color depth defined here */
u16 panel_color_depth;
/* LVDS panel type bits stored here */
u32 dps_panel_type_bits;
/* LVDS backlight control type bits stored here */
u32 blt_control_type_bits;
} __packed;
/* LFP pointer table contains entries to the struct below */
struct bdb_lvds_lfp_data_ptr {
u16 fp_timing_offset; /* offsets are from start of bdb */
u8 fp_table_size;
u16 dvo_timing_offset;
u8 dvo_table_size;
u16 panel_pnp_id_offset;
u8 pnp_table_size;
} __packed;
struct bdb_lvds_lfp_data_ptrs {
u8 lvds_entries; /* followed by one or more lvds_data_ptr structs */
struct bdb_lvds_lfp_data_ptr ptr[16];
} __packed;
/* LFP data has 3 blocks per entry */
struct lvds_fp_timing {
u16 x_res;
u16 y_res;
u32 lvds_reg;
u32 lvds_reg_val;
u32 pp_on_reg;
u32 pp_on_reg_val;
u32 pp_off_reg;
u32 pp_off_reg_val;
u32 pp_cycle_reg;
u32 pp_cycle_reg_val;
u32 pfit_reg;
u32 pfit_reg_val;
u16 terminator;
} __packed;
struct lvds_dvo_timing {
u16 clock; /**< In 10khz */
u8 hactive_lo;
u8 hblank_lo;
u8 hblank_hi:4;
u8 hactive_hi:4;
u8 vactive_lo;
u8 vblank_lo;
u8 vblank_hi:4;
u8 vactive_hi:4;
u8 hsync_off_lo;
u8 hsync_pulse_width;
u8 vsync_pulse_width:4;
u8 vsync_off:4;
u8 rsvd0:6;
u8 hsync_off_hi:2;
u8 h_image;
u8 v_image;
u8 max_hv;
u8 h_border;
u8 v_border;
u8 rsvd1:3;
u8 digital:2;
u8 vsync_positive:1;
u8 hsync_positive:1;
u8 rsvd2:1;
} __packed;
struct lvds_pnp_id {
u16 mfg_name;
u16 product_code;
u32 serial;
u8 mfg_week;
u8 mfg_year;
} __packed;
struct bdb_lvds_lfp_data_entry {
struct lvds_fp_timing fp_timing;
struct lvds_dvo_timing dvo_timing;
struct lvds_pnp_id pnp_id;
} __packed;
struct bdb_lvds_lfp_data {
struct bdb_lvds_lfp_data_entry data[16];
} __packed;
#define BDB_BACKLIGHT_TYPE_NONE 0
#define BDB_BACKLIGHT_TYPE_PWM 2
struct bdb_lfp_backlight_data_entry {
u8 type:2;
u8 active_low_pwm:1;
u8 obsolete1:5;
u16 pwm_freq_hz;
u8 min_brightness;
u8 obsolete2;
u8 obsolete3;
} __packed;
struct bdb_lfp_backlight_data {
u8 entry_size;
struct bdb_lfp_backlight_data_entry data[16];
u8 level[16];
} __packed;
struct aimdb_header {
char signature[16];
char oem_device[20];
u16 aimdb_version;
u16 aimdb_header_size;
u16 aimdb_size;
} __packed;
struct aimdb_block {
u8 aimdb_id;
u16 aimdb_size;
} __packed;
struct vch_panel_data {
u16 fp_timing_offset;
u8 fp_timing_size;
u16 dvo_timing_offset;
u8 dvo_timing_size;
u16 text_fitting_offset;
u8 text_fitting_size;
u16 graphics_fitting_offset;
u8 graphics_fitting_size;
} __packed;
struct vch_bdb_22 {
struct aimdb_block aimdb_block;
struct vch_panel_data panels[16];
} __packed;
struct bdb_sdvo_lvds_options {
u8 panel_backlight;
u8 h40_set_panel_type;
u8 panel_type;
u8 ssc_clk_freq;
u16 als_low_trip;
u16 als_high_trip;
u8 sclalarcoeff_tab_row_num;
u8 sclalarcoeff_tab_row_size;
u8 coefficient[8];
u8 panel_misc_bits_1;
u8 panel_misc_bits_2;
u8 panel_misc_bits_3;
u8 panel_misc_bits_4;
} __packed;
#define BDB_DRIVER_FEATURE_NO_LVDS 0
#define BDB_DRIVER_FEATURE_INT_LVDS 1
#define BDB_DRIVER_FEATURE_SDVO_LVDS 2
#define BDB_DRIVER_FEATURE_EDP 3
struct bdb_driver_features {
u8 boot_dev_algorithm:1;
u8 block_display_switch:1;
u8 allow_display_switch:1;
u8 hotplug_dvo:1;
u8 dual_view_zoom:1;
u8 int15h_hook:1;
u8 sprite_in_clone:1;
u8 primary_lfp_id:1;
u16 boot_mode_x;
u16 boot_mode_y;
u8 boot_mode_bpp;
u8 boot_mode_refresh;
u16 enable_lfp_primary:1;
u16 selective_mode_pruning:1;
u16 dual_frequency:1;
u16 render_clock_freq:1; /* 0: high freq; 1: low freq */
u16 nt_clone_support:1;
u16 power_scheme_ui:1; /* 0: CUI; 1: 3rd party */
u16 sprite_display_assign:1; /* 0: secondary; 1: primary */
u16 cui_aspect_scaling:1;
u16 preserve_aspect_ratio:1;
u16 sdvo_device_power_down:1;
u16 crt_hotplug:1;
u16 lvds_config:2;
u16 tv_hotplug:1;
u16 hdmi_config:2;
u8 static_display:1;
u8 reserved2:7;
u16 legacy_crt_max_x;
u16 legacy_crt_max_y;
u8 legacy_crt_max_refresh;
u8 hdmi_termination;
u8 custom_vbt_version;
/* Driver features data block */
u16 rmpm_enabled:1;
u16 s2ddt_enabled:1;
u16 dpst_enabled:1;
u16 bltclt_enabled:1;
u16 adb_enabled:1;
u16 drrs_enabled:1;
u16 grs_enabled:1;
u16 gpmt_enabled:1;
u16 tbt_enabled:1;
u16 psr_enabled:1;
u16 ips_enabled:1;
u16 reserved3:4;
u16 pc_feature_valid:1;
} __packed;
#define EDP_18BPP 0
#define EDP_24BPP 1
#define EDP_30BPP 2
#define EDP_RATE_1_62 0
#define EDP_RATE_2_7 1
#define EDP_LANE_1 0
#define EDP_LANE_2 1
#define EDP_LANE_4 3
#define EDP_PREEMPHASIS_NONE 0
#define EDP_PREEMPHASIS_3_5dB 1
#define EDP_PREEMPHASIS_6dB 2
#define EDP_PREEMPHASIS_9_5dB 3
#define EDP_VSWING_0_4V 0
#define EDP_VSWING_0_6V 1
#define EDP_VSWING_0_8V 2
#define EDP_VSWING_1_2V 3
struct edp_power_seq {
u16 t1_t3;
u16 t8;
@ -565,245 +38,37 @@ struct edp_power_seq {
u16 t11_t12;
} __packed;
struct edp_link_params {
u8 rate:4;
u8 lanes:4;
u8 preemphasis:4;
u8 vswing:4;
} __packed;
/* MIPI Sequence Block definitions */
enum mipi_seq {
MIPI_SEQ_END = 0,
MIPI_SEQ_ASSERT_RESET,
MIPI_SEQ_INIT_OTP,
MIPI_SEQ_DISPLAY_ON,
MIPI_SEQ_DISPLAY_OFF,
MIPI_SEQ_DEASSERT_RESET,
MIPI_SEQ_BACKLIGHT_ON, /* sequence block v2+ */
MIPI_SEQ_BACKLIGHT_OFF, /* sequence block v2+ */
MIPI_SEQ_TEAR_ON, /* sequence block v2+ */
MIPI_SEQ_TEAR_OFF, /* sequence block v3+ */
MIPI_SEQ_POWER_ON, /* sequence block v3+ */
MIPI_SEQ_POWER_OFF, /* sequence block v3+ */
MIPI_SEQ_MAX
};
struct bdb_edp {
struct edp_power_seq power_seqs[16];
u32 color_depth;
struct edp_link_params link_params[16];
u32 sdrrs_msa_timing_delay;
/* ith bit indicates enabled/disabled for (i+1)th panel */
u16 edp_s3d_feature;
u16 edp_t3_optimization;
u64 edp_vswing_preemph; /* v173 */
} __packed;
struct psr_table {
/* Feature bits */
u8 full_link:1;
u8 require_aux_to_wakeup:1;
u8 feature_bits_rsvd:6;
/* Wait times */
u8 idle_frames:4;
u8 lines_to_wait:3;
u8 wait_times_rsvd:1;
/* TP wake up time in multiple of 100 */
u16 tp1_wakeup_time;
u16 tp2_tp3_wakeup_time;
} __packed;
struct bdb_psr {
struct psr_table psr_table[16];
} __packed;
/*
* Driver<->VBIOS interaction occurs through scratch bits in
* GR18 & SWF*.
*/
/* GR18 bits are set on display switch and hotkey events */
#define GR18_DRIVER_SWITCH_EN (1<<7) /* 0: VBIOS control, 1: driver control */
#define GR18_HOTKEY_MASK 0x78 /* See also SWF4 15:0 */
#define GR18_HK_NONE (0x0<<3)
#define GR18_HK_LFP_STRETCH (0x1<<3)
#define GR18_HK_TOGGLE_DISP (0x2<<3)
#define GR18_HK_DISP_SWITCH (0x4<<3) /* see SWF14 15:0 for what to enable */
#define GR18_HK_POPUP_DISABLED (0x6<<3)
#define GR18_HK_POPUP_ENABLED (0x7<<3)
#define GR18_HK_PFIT (0x8<<3)
#define GR18_HK_APM_CHANGE (0xa<<3)
#define GR18_HK_MULTIPLE (0xc<<3)
#define GR18_USER_INT_EN (1<<2)
#define GR18_A0000_FLUSH_EN (1<<1)
#define GR18_SMM_EN (1<<0)
/* Set by driver, cleared by VBIOS */
#define SWF00_YRES_SHIFT 16
#define SWF00_XRES_SHIFT 0
#define SWF00_RES_MASK 0xffff
/* Set by VBIOS at boot time and driver at runtime */
#define SWF01_TV2_FORMAT_SHIFT 8
#define SWF01_TV1_FORMAT_SHIFT 0
#define SWF01_TV_FORMAT_MASK 0xffff
#define SWF10_VBIOS_BLC_I2C_EN (1<<29)
#define SWF10_GTT_OVERRIDE_EN (1<<28)
#define SWF10_LFP_DPMS_OVR (1<<27) /* override DPMS on display switch */
#define SWF10_ACTIVE_TOGGLE_LIST_MASK (7<<24)
#define SWF10_OLD_TOGGLE 0x0
#define SWF10_TOGGLE_LIST_1 0x1
#define SWF10_TOGGLE_LIST_2 0x2
#define SWF10_TOGGLE_LIST_3 0x3
#define SWF10_TOGGLE_LIST_4 0x4
#define SWF10_PANNING_EN (1<<23)
#define SWF10_DRIVER_LOADED (1<<22)
#define SWF10_EXTENDED_DESKTOP (1<<21)
#define SWF10_EXCLUSIVE_MODE (1<<20)
#define SWF10_OVERLAY_EN (1<<19)
#define SWF10_PLANEB_HOLDOFF (1<<18)
#define SWF10_PLANEA_HOLDOFF (1<<17)
#define SWF10_VGA_HOLDOFF (1<<16)
#define SWF10_ACTIVE_DISP_MASK 0xffff
#define SWF10_PIPEB_LFP2 (1<<15)
#define SWF10_PIPEB_EFP2 (1<<14)
#define SWF10_PIPEB_TV2 (1<<13)
#define SWF10_PIPEB_CRT2 (1<<12)
#define SWF10_PIPEB_LFP (1<<11)
#define SWF10_PIPEB_EFP (1<<10)
#define SWF10_PIPEB_TV (1<<9)
#define SWF10_PIPEB_CRT (1<<8)
#define SWF10_PIPEA_LFP2 (1<<7)
#define SWF10_PIPEA_EFP2 (1<<6)
#define SWF10_PIPEA_TV2 (1<<5)
#define SWF10_PIPEA_CRT2 (1<<4)
#define SWF10_PIPEA_LFP (1<<3)
#define SWF10_PIPEA_EFP (1<<2)
#define SWF10_PIPEA_TV (1<<1)
#define SWF10_PIPEA_CRT (1<<0)
#define SWF11_MEMORY_SIZE_SHIFT 16
#define SWF11_SV_TEST_EN (1<<15)
#define SWF11_IS_AGP (1<<14)
#define SWF11_DISPLAY_HOLDOFF (1<<13)
#define SWF11_DPMS_REDUCED (1<<12)
#define SWF11_IS_VBE_MODE (1<<11)
#define SWF11_PIPEB_ACCESS (1<<10) /* 0 here means pipe a */
#define SWF11_DPMS_MASK 0x07
#define SWF11_DPMS_OFF (1<<2)
#define SWF11_DPMS_SUSPEND (1<<1)
#define SWF11_DPMS_STANDBY (1<<0)
#define SWF11_DPMS_ON 0
#define SWF14_GFX_PFIT_EN (1<<31)
#define SWF14_TEXT_PFIT_EN (1<<30)
#define SWF14_LID_STATUS_CLOSED (1<<29) /* 0 here means open */
#define SWF14_POPUP_EN (1<<28)
#define SWF14_DISPLAY_HOLDOFF (1<<27)
#define SWF14_DISP_DETECT_EN (1<<26)
#define SWF14_DOCKING_STATUS_DOCKED (1<<25) /* 0 here means undocked */
#define SWF14_DRIVER_STATUS (1<<24)
#define SWF14_OS_TYPE_WIN9X (1<<23)
#define SWF14_OS_TYPE_WINNT (1<<22)
/* 21:19 rsvd */
#define SWF14_PM_TYPE_MASK 0x00070000
#define SWF14_PM_ACPI_VIDEO (0x4 << 16)
#define SWF14_PM_ACPI (0x3 << 16)
#define SWF14_PM_APM_12 (0x2 << 16)
#define SWF14_PM_APM_11 (0x1 << 16)
#define SWF14_HK_REQUEST_MASK 0x0000ffff /* see GR18 6:3 for event type */
/* if GR18 indicates a display switch */
#define SWF14_DS_PIPEB_LFP2_EN (1<<15)
#define SWF14_DS_PIPEB_EFP2_EN (1<<14)
#define SWF14_DS_PIPEB_TV2_EN (1<<13)
#define SWF14_DS_PIPEB_CRT2_EN (1<<12)
#define SWF14_DS_PIPEB_LFP_EN (1<<11)
#define SWF14_DS_PIPEB_EFP_EN (1<<10)
#define SWF14_DS_PIPEB_TV_EN (1<<9)
#define SWF14_DS_PIPEB_CRT_EN (1<<8)
#define SWF14_DS_PIPEA_LFP2_EN (1<<7)
#define SWF14_DS_PIPEA_EFP2_EN (1<<6)
#define SWF14_DS_PIPEA_TV2_EN (1<<5)
#define SWF14_DS_PIPEA_CRT2_EN (1<<4)
#define SWF14_DS_PIPEA_LFP_EN (1<<3)
#define SWF14_DS_PIPEA_EFP_EN (1<<2)
#define SWF14_DS_PIPEA_TV_EN (1<<1)
#define SWF14_DS_PIPEA_CRT_EN (1<<0)
/* if GR18 indicates a panel fitting request */
#define SWF14_PFIT_EN (1<<0) /* 0 means disable */
/* if GR18 indicates an APM change request */
#define SWF14_APM_HIBERNATE 0x4
#define SWF14_APM_SUSPEND 0x3
#define SWF14_APM_STANDBY 0x1
#define SWF14_APM_RESTORE 0x0
/* Add the device class for LFP, TV, HDMI */
#define DEVICE_TYPE_INT_LFP 0x1022
#define DEVICE_TYPE_INT_TV 0x1009
#define DEVICE_TYPE_HDMI 0x60D2
#define DEVICE_TYPE_DP 0x68C6
#define DEVICE_TYPE_eDP 0x78C6
#define DEVICE_TYPE_CLASS_EXTENSION (1 << 15)
#define DEVICE_TYPE_POWER_MANAGEMENT (1 << 14)
#define DEVICE_TYPE_HOTPLUG_SIGNALING (1 << 13)
#define DEVICE_TYPE_INTERNAL_CONNECTOR (1 << 12)
#define DEVICE_TYPE_NOT_HDMI_OUTPUT (1 << 11)
#define DEVICE_TYPE_MIPI_OUTPUT (1 << 10)
#define DEVICE_TYPE_COMPOSITE_OUTPUT (1 << 9)
#define DEVICE_TYPE_DUAL_CHANNEL (1 << 8)
#define DEVICE_TYPE_HIGH_SPEED_LINK (1 << 6)
#define DEVICE_TYPE_LVDS_SINGALING (1 << 5)
#define DEVICE_TYPE_TMDS_DVI_SIGNALING (1 << 4)
#define DEVICE_TYPE_VIDEO_SIGNALING (1 << 3)
#define DEVICE_TYPE_DISPLAYPORT_OUTPUT (1 << 2)
#define DEVICE_TYPE_DIGITAL_OUTPUT (1 << 1)
#define DEVICE_TYPE_ANALOG_OUTPUT (1 << 0)
/*
* Bits we care about when checking for DEVICE_TYPE_eDP
* Depending on the system, the other bits may or may not
* be set for eDP outputs.
*/
#define DEVICE_TYPE_eDP_BITS \
(DEVICE_TYPE_INTERNAL_CONNECTOR | \
DEVICE_TYPE_MIPI_OUTPUT | \
DEVICE_TYPE_COMPOSITE_OUTPUT | \
DEVICE_TYPE_DUAL_CHANNEL | \
DEVICE_TYPE_LVDS_SINGALING | \
DEVICE_TYPE_TMDS_DVI_SIGNALING | \
DEVICE_TYPE_VIDEO_SIGNALING | \
DEVICE_TYPE_DISPLAYPORT_OUTPUT | \
DEVICE_TYPE_ANALOG_OUTPUT)
/* define the DVO port for HDMI output type */
#define DVO_B 1
#define DVO_C 2
#define DVO_D 3
/* Possible values for the "DVO Port" field for versions >= 155: */
#define DVO_PORT_HDMIA 0
#define DVO_PORT_HDMIB 1
#define DVO_PORT_HDMIC 2
#define DVO_PORT_HDMID 3
#define DVO_PORT_LVDS 4
#define DVO_PORT_TV 5
#define DVO_PORT_CRT 6
#define DVO_PORT_DPB 7
#define DVO_PORT_DPC 8
#define DVO_PORT_DPD 9
#define DVO_PORT_DPA 10
#define DVO_PORT_DPE 11
#define DVO_PORT_HDMIE 12
#define DVO_PORT_MIPIA 21
#define DVO_PORT_MIPIB 22
#define DVO_PORT_MIPIC 23
#define DVO_PORT_MIPID 24
/* Block 52 contains MIPI Panel info
* 6 such enteries will there. Index into correct
* entery is based on the panel_index in #40 LFP
*/
#define MAX_MIPI_CONFIGURATIONS 6
enum mipi_seq_element {
MIPI_SEQ_ELEM_END = 0,
MIPI_SEQ_ELEM_SEND_PKT,
MIPI_SEQ_ELEM_DELAY,
MIPI_SEQ_ELEM_GPIO,
MIPI_SEQ_ELEM_I2C, /* sequence block v2+ */
MIPI_SEQ_ELEM_SPI, /* sequence block v3+ */
MIPI_SEQ_ELEM_PMIC, /* sequence block v3+ */
MIPI_SEQ_ELEM_MAX
};
#define MIPI_DSI_UNDEFINED_PANEL_ID 0
#define MIPI_DSI_GENERIC_PANEL_ID 1
/*
* PMIC vs SoC Backlight support specified in pwm_blc
* field in mipi_config block below.
*/
#define PPS_BLC_PMIC 0
#define PPS_BLC_SOC 1
struct mipi_config {
u16 panel_id;
@ -821,6 +86,8 @@ struct mipi_config {
u32 video_transfer_mode:2;
u32 cabc_supported:1;
#define PPS_BLC_PMIC 0
#define PPS_BLC_SOC 1
u32 pwm_blc:1;
/* Bit 13:10 */
@ -924,12 +191,7 @@ struct mipi_config {
} __packed;
/* Block 52 contains MIPI configuration block
* 6 * bdb_mipi_config, followed by 6 pps data
* block below
*
* all delays has a unit of 100us
*/
/* all delays have a unit of 100us */
struct mipi_pps_data {
u16 panel_on_delay;
u16 bl_enable_delay;
@ -938,57 +200,4 @@ struct mipi_pps_data {
u16 panel_power_cycle_delay;
} __packed;
struct bdb_mipi_config {
struct mipi_config config[MAX_MIPI_CONFIGURATIONS];
struct mipi_pps_data pps[MAX_MIPI_CONFIGURATIONS];
} __packed;
/* Block 53 contains MIPI sequences as needed by the panel
* for enabling it. This block can be variable in size and
* can be maximum of 6 blocks
*/
struct bdb_mipi_sequence {
u8 version;
u8 data[0];
} __packed;
/* MIPI Sequnece Block definitions */
enum mipi_seq {
MIPI_SEQ_END = 0,
MIPI_SEQ_ASSERT_RESET,
MIPI_SEQ_INIT_OTP,
MIPI_SEQ_DISPLAY_ON,
MIPI_SEQ_DISPLAY_OFF,
MIPI_SEQ_DEASSERT_RESET,
MIPI_SEQ_BACKLIGHT_ON, /* sequence block v2+ */
MIPI_SEQ_BACKLIGHT_OFF, /* sequence block v2+ */
MIPI_SEQ_TEAR_ON, /* sequence block v2+ */
MIPI_SEQ_TEAR_OFF, /* sequence block v3+ */
MIPI_SEQ_POWER_ON, /* sequence block v3+ */
MIPI_SEQ_POWER_OFF, /* sequence block v3+ */
MIPI_SEQ_MAX
};
enum mipi_seq_element {
MIPI_SEQ_ELEM_END = 0,
MIPI_SEQ_ELEM_SEND_PKT,
MIPI_SEQ_ELEM_DELAY,
MIPI_SEQ_ELEM_GPIO,
MIPI_SEQ_ELEM_I2C, /* sequence block v2+ */
MIPI_SEQ_ELEM_SPI, /* sequence block v3+ */
MIPI_SEQ_ELEM_PMIC, /* sequence block v3+ */
MIPI_SEQ_ELEM_MAX
};
enum mipi_gpio_pin_index {
MIPI_GPIO_UNDEFINED = 0,
MIPI_GPIO_PANEL_ENABLE,
MIPI_GPIO_BL_ENABLE,
MIPI_GPIO_PWM_ENABLE,
MIPI_GPIO_RESET_N,
MIPI_GPIO_PWR_DOWN_R,
MIPI_GPIO_STDBY_RST_N,
MIPI_GPIO_MAX
};
#endif /* _INTEL_BIOS_H_ */

View File

@ -0,0 +1,556 @@
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*/
#include "intel_drv.h"
#define CTM_COEFF_SIGN (1ULL << 63)
#define CTM_COEFF_1_0 (1ULL << 32)
#define CTM_COEFF_2_0 (CTM_COEFF_1_0 << 1)
#define CTM_COEFF_4_0 (CTM_COEFF_2_0 << 1)
#define CTM_COEFF_8_0 (CTM_COEFF_4_0 << 1)
#define CTM_COEFF_0_5 (CTM_COEFF_1_0 >> 1)
#define CTM_COEFF_0_25 (CTM_COEFF_0_5 >> 1)
#define CTM_COEFF_0_125 (CTM_COEFF_0_25 >> 1)
#define CTM_COEFF_LIMITED_RANGE ((235ULL - 16ULL) * CTM_COEFF_1_0 / 255)
#define CTM_COEFF_NEGATIVE(coeff) (((coeff) & CTM_COEFF_SIGN) != 0)
#define CTM_COEFF_ABS(coeff) ((coeff) & (CTM_COEFF_SIGN - 1))
#define LEGACY_LUT_LENGTH (sizeof(struct drm_color_lut) * 256)
/*
* Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point
* format). This macro takes the coefficient we want transformed and the
* number of fractional bits.
*
* We only have a 9 bits precision window which slides depending on the value
* of the CTM coefficient and we write the value from bit 3. We also round the
* value.
*/
#define I9XX_CSC_COEFF_FP(coeff, fbits) \
(clamp_val(((coeff) >> (32 - (fbits) - 3)) + 4, 0, 0xfff) & 0xff8)
#define I9XX_CSC_COEFF_LIMITED_RANGE \
I9XX_CSC_COEFF_FP(CTM_COEFF_LIMITED_RANGE, 9)
#define I9XX_CSC_COEFF_1_0 \
((7 << 12) | I9XX_CSC_COEFF_FP(CTM_COEFF_1_0, 8))
static bool crtc_state_is_legacy(struct drm_crtc_state *state)
{
return !state->degamma_lut &&
!state->ctm &&
state->gamma_lut &&
state->gamma_lut->length == LEGACY_LUT_LENGTH;
}
/*
* When using limited range, multiply the matrix given by userspace by
* the matrix that we would use for the limited range. We do the
* multiplication in U2.30 format.
*/
static void ctm_mult_by_limited(uint64_t *result, int64_t *input)
{
int i;
for (i = 0; i < 9; i++)
result[i] = 0;
for (i = 0; i < 3; i++) {
int64_t user_coeff = input[i * 3 + i];
uint64_t limited_coeff = CTM_COEFF_LIMITED_RANGE >> 2;
uint64_t abs_coeff = clamp_val(CTM_COEFF_ABS(user_coeff),
0,
CTM_COEFF_4_0 - 1) >> 2;
result[i * 3 + i] = (limited_coeff * abs_coeff) >> 27;
if (CTM_COEFF_NEGATIVE(user_coeff))
result[i * 3 + i] |= CTM_COEFF_SIGN;
}
}
/* Set up the pipe CSC unit. */
static void i9xx_load_csc_matrix(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_crtc_state *crtc_state = crtc->state;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int i, pipe = intel_crtc->pipe;
uint16_t coeffs[9] = { 0, };
if (crtc_state->ctm) {
struct drm_color_ctm *ctm =
(struct drm_color_ctm *)crtc_state->ctm->data;
uint64_t input[9] = { 0, };
if (intel_crtc->config->limited_color_range) {
ctm_mult_by_limited(input, ctm->matrix);
} else {
for (i = 0; i < ARRAY_SIZE(input); i++)
input[i] = ctm->matrix[i];
}
/*
* Convert fixed point S31.32 input to format supported by the
* hardware.
*/
for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
uint64_t abs_coeff = ((1ULL << 63) - 1) & input[i];
/*
* Clamp input value to min/max supported by
* hardware.
*/
abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_4_0 - 1);
/* sign bit */
if (CTM_COEFF_NEGATIVE(input[i]))
coeffs[i] |= 1 << 15;
if (abs_coeff < CTM_COEFF_0_125)
coeffs[i] |= (3 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 12);
else if (abs_coeff < CTM_COEFF_0_25)
coeffs[i] |= (2 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 11);
else if (abs_coeff < CTM_COEFF_0_5)
coeffs[i] |= (1 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 10);
else if (abs_coeff < CTM_COEFF_1_0)
coeffs[i] |= I9XX_CSC_COEFF_FP(abs_coeff, 9);
else if (abs_coeff < CTM_COEFF_2_0)
coeffs[i] |= (7 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 8);
else
coeffs[i] |= (6 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 7);
}
} else {
/*
* Load an identity matrix if no coefficients are provided.
*
* TODO: Check what kind of values actually come out of the
* pipe with these coeff/postoff values and adjust to get the
* best accuracy. Perhaps we even need to take the bpc value
* into consideration.
*/
for (i = 0; i < 3; i++) {
if (intel_crtc->config->limited_color_range)
coeffs[i * 3 + i] =
I9XX_CSC_COEFF_LIMITED_RANGE;
else
coeffs[i * 3 + i] = I9XX_CSC_COEFF_1_0;
}
}
I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeffs[0] << 16 | coeffs[1]);
I915_WRITE(PIPE_CSC_COEFF_BY(pipe), coeffs[2] << 16);
I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeffs[3] << 16 | coeffs[4]);
I915_WRITE(PIPE_CSC_COEFF_BU(pipe), coeffs[5] << 16);
I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), coeffs[6] << 16 | coeffs[7]);
I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeffs[8] << 16);
I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
if (INTEL_INFO(dev)->gen > 6) {
uint16_t postoff = 0;
if (intel_crtc->config->limited_color_range)
postoff = (16 * (1 << 12) / 255) & 0x1fff;
I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
I915_WRITE(PIPE_CSC_MODE(pipe), 0);
} else {
uint32_t mode = CSC_MODE_YUV_TO_RGB;
if (intel_crtc->config->limited_color_range)
mode |= CSC_BLACK_SCREEN_OFFSET;
I915_WRITE(PIPE_CSC_MODE(pipe), mode);
}
}
/*
* Set up the pipe CSC unit on CherryView.
*/
static void cherryview_load_csc_matrix(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_crtc_state *state = crtc->state;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = to_intel_crtc(crtc)->pipe;
uint32_t mode;
if (state->ctm) {
struct drm_color_ctm *ctm =
(struct drm_color_ctm *) state->ctm->data;
uint16_t coeffs[9] = { 0, };
int i;
for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
uint64_t abs_coeff =
((1ULL << 63) - 1) & ctm->matrix[i];
/* Round coefficient. */
abs_coeff += 1 << (32 - 13);
/* Clamp to hardware limits. */
abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_8_0 - 1);
/* Write coefficients in S3.12 format. */
if (ctm->matrix[i] & (1ULL << 63))
coeffs[i] = 1 << 15;
coeffs[i] |= ((abs_coeff >> 32) & 7) << 12;
coeffs[i] |= (abs_coeff >> 20) & 0xfff;
}
I915_WRITE(CGM_PIPE_CSC_COEFF01(pipe),
coeffs[1] << 16 | coeffs[0]);
I915_WRITE(CGM_PIPE_CSC_COEFF23(pipe),
coeffs[3] << 16 | coeffs[2]);
I915_WRITE(CGM_PIPE_CSC_COEFF45(pipe),
coeffs[5] << 16 | coeffs[4]);
I915_WRITE(CGM_PIPE_CSC_COEFF67(pipe),
coeffs[7] << 16 | coeffs[6]);
I915_WRITE(CGM_PIPE_CSC_COEFF8(pipe), coeffs[8]);
}
mode = (state->ctm ? CGM_PIPE_MODE_CSC : 0);
if (!crtc_state_is_legacy(state)) {
mode |= (state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
(state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0);
}
I915_WRITE(CGM_PIPE_MODE(pipe), mode);
}
void intel_color_set_csc(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->display.load_csc_matrix)
dev_priv->display.load_csc_matrix(crtc);
}
/* Loads the legacy palette/gamma unit for the CRTC. */
static void i9xx_load_luts_internal(struct drm_crtc *crtc,
struct drm_property_blob *blob)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
int i;
if (HAS_GMCH_DISPLAY(dev)) {
if (intel_crtc->config->has_dsi_encoder)
assert_dsi_pll_enabled(dev_priv);
else
assert_pll_enabled(dev_priv, pipe);
}
if (blob) {
struct drm_color_lut *lut = (struct drm_color_lut *) blob->data;
for (i = 0; i < 256; i++) {
uint32_t word =
(drm_color_lut_extract(lut[i].red, 8) << 16) |
(drm_color_lut_extract(lut[i].green, 8) << 8) |
drm_color_lut_extract(lut[i].blue, 8);
if (HAS_GMCH_DISPLAY(dev))
I915_WRITE(PALETTE(pipe, i), word);
else
I915_WRITE(LGC_PALETTE(pipe, i), word);
}
} else {
for (i = 0; i < 256; i++) {
uint32_t word = (i << 16) | (i << 8) | i;
if (HAS_GMCH_DISPLAY(dev))
I915_WRITE(PALETTE(pipe, i), word);
else
I915_WRITE(LGC_PALETTE(pipe, i), word);
}
}
}
static void i9xx_load_luts(struct drm_crtc *crtc)
{
i9xx_load_luts_internal(crtc, crtc->state->gamma_lut);
}
/* Loads the legacy palette/gamma unit for the CRTC on Haswell. */
static void haswell_load_luts(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *intel_crtc_state =
to_intel_crtc_state(crtc->state);
bool reenable_ips = false;
/*
* Workaround : Do not read or write the pipe palette/gamma data while
* GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
*/
if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
(intel_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)) {
hsw_disable_ips(intel_crtc);
reenable_ips = true;
}
intel_crtc_state->gamma_mode = GAMMA_MODE_MODE_8BIT;
I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
i9xx_load_luts(crtc);
if (reenable_ips)
hsw_enable_ips(intel_crtc);
}
/* Loads the palette/gamma unit for the CRTC on Broadwell+. */
static void broadwell_load_luts(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_crtc_state *state = crtc->state;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc_state *intel_state = to_intel_crtc_state(state);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
uint32_t i, lut_size = INTEL_INFO(dev)->color.degamma_lut_size;
if (crtc_state_is_legacy(state)) {
haswell_load_luts(crtc);
return;
}
I915_WRITE(PREC_PAL_INDEX(pipe),
PAL_PREC_SPLIT_MODE | PAL_PREC_AUTO_INCREMENT);
if (state->degamma_lut) {
struct drm_color_lut *lut =
(struct drm_color_lut *) state->degamma_lut->data;
for (i = 0; i < lut_size; i++) {
uint32_t word =
drm_color_lut_extract(lut[i].red, 10) << 20 |
drm_color_lut_extract(lut[i].green, 10) << 10 |
drm_color_lut_extract(lut[i].blue, 10);
I915_WRITE(PREC_PAL_DATA(pipe), word);
}
} else {
for (i = 0; i < lut_size; i++) {
uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);
I915_WRITE(PREC_PAL_DATA(pipe),
(v << 20) | (v << 10) | v);
}
}
if (state->gamma_lut) {
struct drm_color_lut *lut =
(struct drm_color_lut *) state->gamma_lut->data;
for (i = 0; i < lut_size; i++) {
uint32_t word =
(drm_color_lut_extract(lut[i].red, 10) << 20) |
(drm_color_lut_extract(lut[i].green, 10) << 10) |
drm_color_lut_extract(lut[i].blue, 10);
I915_WRITE(PREC_PAL_DATA(pipe), word);
}
/* Program the max register to clamp values > 1.0. */
I915_WRITE(PREC_PAL_GC_MAX(pipe, 0),
drm_color_lut_extract(lut[i].red, 16));
I915_WRITE(PREC_PAL_GC_MAX(pipe, 1),
drm_color_lut_extract(lut[i].green, 16));
I915_WRITE(PREC_PAL_GC_MAX(pipe, 2),
drm_color_lut_extract(lut[i].blue, 16));
} else {
for (i = 0; i < lut_size; i++) {
uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);
I915_WRITE(PREC_PAL_DATA(pipe),
(v << 20) | (v << 10) | v);
}
I915_WRITE(PREC_PAL_GC_MAX(pipe, 0), (1 << 16) - 1);
I915_WRITE(PREC_PAL_GC_MAX(pipe, 1), (1 << 16) - 1);
I915_WRITE(PREC_PAL_GC_MAX(pipe, 2), (1 << 16) - 1);
}
intel_state->gamma_mode = GAMMA_MODE_MODE_SPLIT;
I915_WRITE(GAMMA_MODE(pipe), GAMMA_MODE_MODE_SPLIT);
POSTING_READ(GAMMA_MODE(pipe));
/*
* Reset the index, otherwise it prevents the legacy palette to be
* written properly.
*/
I915_WRITE(PREC_PAL_INDEX(pipe), 0);
}
/* Loads the palette/gamma unit for the CRTC on CherryView. */
static void cherryview_load_luts(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc_state *state = crtc->state;
enum pipe pipe = to_intel_crtc(crtc)->pipe;
struct drm_color_lut *lut;
uint32_t i, lut_size;
uint32_t word0, word1;
if (crtc_state_is_legacy(state)) {
/* Turn off degamma/gamma on CGM block. */
I915_WRITE(CGM_PIPE_MODE(pipe),
(state->ctm ? CGM_PIPE_MODE_CSC : 0));
i9xx_load_luts_internal(crtc, state->gamma_lut);
return;
}
if (state->degamma_lut) {
lut = (struct drm_color_lut *) state->degamma_lut->data;
lut_size = INTEL_INFO(dev)->color.degamma_lut_size;
for (i = 0; i < lut_size; i++) {
/* Write LUT in U0.14 format. */
word0 =
(drm_color_lut_extract(lut[i].green, 14) << 16) |
drm_color_lut_extract(lut[i].blue, 14);
word1 = drm_color_lut_extract(lut[i].red, 14);
I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 0), word0);
I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 1), word1);
}
}
if (state->gamma_lut) {
lut = (struct drm_color_lut *) state->gamma_lut->data;
lut_size = INTEL_INFO(dev)->color.gamma_lut_size;
for (i = 0; i < lut_size; i++) {
/* Write LUT in U0.10 format. */
word0 =
(drm_color_lut_extract(lut[i].green, 10) << 16) |
drm_color_lut_extract(lut[i].blue, 10);
word1 = drm_color_lut_extract(lut[i].red, 10);
I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 0), word0);
I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 1), word1);
}
}
I915_WRITE(CGM_PIPE_MODE(pipe),
(state->ctm ? CGM_PIPE_MODE_CSC : 0) |
(state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
(state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0));
/*
* Also program a linear LUT in the legacy block (behind the
* CGM block).
*/
i9xx_load_luts_internal(crtc, NULL);
}
void intel_color_load_luts(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
/* The clocks have to be on to load the palette. */
if (!crtc->state->active)
return;
dev_priv->display.load_luts(crtc);
}
int intel_color_check(struct drm_crtc *crtc,
struct drm_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->dev;
size_t gamma_length, degamma_length;
degamma_length = INTEL_INFO(dev)->color.degamma_lut_size *
sizeof(struct drm_color_lut);
gamma_length = INTEL_INFO(dev)->color.gamma_lut_size *
sizeof(struct drm_color_lut);
/*
* We allow both degamma & gamma luts at the right size or
* NULL.
*/
if ((!crtc_state->degamma_lut ||
crtc_state->degamma_lut->length == degamma_length) &&
(!crtc_state->gamma_lut ||
crtc_state->gamma_lut->length == gamma_length))
return 0;
/*
* We also allow no degamma lut and a gamma lut at the legacy
* size (256 entries).
*/
if (!crtc_state->degamma_lut &&
crtc_state->gamma_lut &&
crtc_state->gamma_lut->length == LEGACY_LUT_LENGTH)
return 0;
return -EINVAL;
}
void intel_color_init(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
drm_mode_crtc_set_gamma_size(crtc, 256);
if (IS_CHERRYVIEW(dev)) {
dev_priv->display.load_csc_matrix = cherryview_load_csc_matrix;
dev_priv->display.load_luts = cherryview_load_luts;
} else if (IS_HASWELL(dev)) {
dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
dev_priv->display.load_luts = haswell_load_luts;
} else if (IS_BROADWELL(dev) || IS_SKYLAKE(dev) ||
IS_BROXTON(dev) || IS_KABYLAKE(dev)) {
dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
dev_priv->display.load_luts = broadwell_load_luts;
} else {
dev_priv->display.load_luts = i9xx_load_luts;
}
/* Enable color management support when we have degamma & gamma LUTs. */
if (INTEL_INFO(dev)->color.degamma_lut_size != 0 &&
INTEL_INFO(dev)->color.gamma_lut_size != 0)
drm_helper_crtc_enable_color_mgmt(crtc,
INTEL_INFO(dev)->color.degamma_lut_size,
INTEL_INFO(dev)->color.gamma_lut_size);
}

View File

@ -120,22 +120,16 @@ static unsigned int intel_crt_get_flags(struct intel_encoder *encoder)
static void intel_crt_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = encoder->base.dev;
int dotclock;
pipe_config->base.adjusted_mode.flags |= intel_crt_get_flags(encoder);
dotclock = pipe_config->port_clock;
if (HAS_PCH_SPLIT(dev))
ironlake_check_encoder_dotclock(pipe_config, dotclock);
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
}
static void hsw_crt_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
intel_ddi_get_config(encoder, pipe_config);
pipe_config->base.adjusted_mode.flags &= ~(DRM_MODE_FLAG_PHSYNC |
@ -143,6 +137,8 @@ static void hsw_crt_get_config(struct intel_encoder *encoder,
DRM_MODE_FLAG_PVSYNC |
DRM_MODE_FLAG_NVSYNC);
pipe_config->base.adjusted_mode.flags |= intel_crt_get_flags(encoder);
pipe_config->base.adjusted_mode.crtc_clock = lpt_get_iclkip(dev_priv);
}
/* Note: The caller is required to filter out dpms modes not supported by the
@ -222,18 +218,26 @@ intel_crt_mode_valid(struct drm_connector *connector,
{
struct drm_device *dev = connector->dev;
int max_dotclk = to_i915(dev)->max_dotclk_freq;
int max_clock;
int max_clock = 0;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
return MODE_NO_DBLESCAN;
if (mode->clock < 25000)
return MODE_CLOCK_LOW;
if (IS_GEN2(dev))
max_clock = 350000;
else
if (HAS_PCH_LPT(dev))
max_clock = 180000;
else if (IS_VALLEYVIEW(dev))
/*
* 270 MHz due to current DPLL limits,
* DAC limit supposedly 355 MHz.
*/
max_clock = 270000;
else if (IS_GEN3(dev) || IS_GEN4(dev))
max_clock = 400000;
else
max_clock = 350000;
if (mode->clock > max_clock)
return MODE_CLOCK_HIGH;
@ -261,15 +265,9 @@ static bool intel_crt_compute_config(struct intel_encoder *encoder,
pipe_config->pipe_bpp = 24;
/* FDI must always be 2.7 GHz */
if (HAS_DDI(dev)) {
pipe_config->ddi_pll_sel = PORT_CLK_SEL_SPLL;
if (HAS_DDI(dev))
pipe_config->port_clock = 135000 * 2;
pipe_config->dpll_hw_state.wrpll = 0;
pipe_config->dpll_hw_state.spll =
SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
}
return true;
}
@ -652,6 +650,8 @@ intel_crt_detect(struct drm_connector *connector, bool force)
else if (INTEL_INFO(dev)->gen < 4)
status = intel_crt_load_detect(crt,
to_intel_crtc(connector->state->crtc)->pipe);
else if (i915.load_detect_test)
status = connector_status_disconnected;
else
status = connector_status_unknown;
intel_release_load_detect_pipe(connector, &tmp, &ctx);

View File

@ -188,28 +188,49 @@ static const struct stepping_info bxt_stepping_info[] = {
{'B', '0'}, {'B', '1'}, {'B', '2'}
};
static const struct stepping_info *intel_get_stepping_info(struct drm_device *dev)
static const struct stepping_info no_stepping_info = { '*', '*' };
static const struct stepping_info *
intel_get_stepping_info(struct drm_i915_private *dev_priv)
{
const struct stepping_info *si;
unsigned int size;
if (IS_KABYLAKE(dev)) {
if (IS_KABYLAKE(dev_priv)) {
size = ARRAY_SIZE(kbl_stepping_info);
si = kbl_stepping_info;
} else if (IS_SKYLAKE(dev)) {
} else if (IS_SKYLAKE(dev_priv)) {
size = ARRAY_SIZE(skl_stepping_info);
si = skl_stepping_info;
} else if (IS_BROXTON(dev)) {
} else if (IS_BROXTON(dev_priv)) {
size = ARRAY_SIZE(bxt_stepping_info);
si = bxt_stepping_info;
} else {
return NULL;
size = 0;
}
if (INTEL_REVID(dev) < size)
return si + INTEL_REVID(dev);
if (INTEL_REVID(dev_priv) < size)
return si + INTEL_REVID(dev_priv);
return NULL;
return &no_stepping_info;
}
static void gen9_set_dc_state_debugmask(struct drm_i915_private *dev_priv)
{
uint32_t val, mask;
mask = DC_STATE_DEBUG_MASK_MEMORY_UP;
if (IS_BROXTON(dev_priv))
mask |= DC_STATE_DEBUG_MASK_CORES;
/* The below bit doesn't need to be cleared ever afterwards */
val = I915_READ(DC_STATE_DEBUG);
if ((val & mask) != mask) {
val |= mask;
I915_WRITE(DC_STATE_DEBUG, val);
POSTING_READ(DC_STATE_DEBUG);
}
}
/**
@ -220,19 +241,19 @@ static const struct stepping_info *intel_get_stepping_info(struct drm_device *de
* Everytime display comes back from low power state this function is called to
* copy the firmware from internal memory to registers.
*/
bool intel_csr_load_program(struct drm_i915_private *dev_priv)
void intel_csr_load_program(struct drm_i915_private *dev_priv)
{
u32 *payload = dev_priv->csr.dmc_payload;
uint32_t i, fw_size;
if (!IS_GEN9(dev_priv)) {
DRM_ERROR("No CSR support available for this platform\n");
return false;
return;
}
if (!dev_priv->csr.dmc_payload) {
DRM_ERROR("Tried to program CSR with empty payload\n");
return false;
return;
}
fw_size = dev_priv->csr.dmc_fw_size;
@ -246,19 +267,17 @@ bool intel_csr_load_program(struct drm_i915_private *dev_priv)
dev_priv->csr.dc_state = 0;
return true;
gen9_set_dc_state_debugmask(dev_priv);
}
static uint32_t *parse_csr_fw(struct drm_i915_private *dev_priv,
const struct firmware *fw)
{
struct drm_device *dev = dev_priv->dev;
struct intel_css_header *css_header;
struct intel_package_header *package_header;
struct intel_dmc_header *dmc_header;
struct intel_csr *csr = &dev_priv->csr;
const struct stepping_info *stepping_info = intel_get_stepping_info(dev);
char stepping, substepping;
const struct stepping_info *si = intel_get_stepping_info(dev_priv);
uint32_t dmc_offset = CSR_DEFAULT_FW_OFFSET, readcount = 0, nbytes;
uint32_t i;
uint32_t *dmc_payload;
@ -266,14 +285,6 @@ static uint32_t *parse_csr_fw(struct drm_i915_private *dev_priv,
if (!fw)
return NULL;
if (!stepping_info) {
DRM_ERROR("Unknown stepping info, firmware loading failed\n");
return NULL;
}
stepping = stepping_info->stepping;
substepping = stepping_info->substepping;
/* Extract CSS Header information*/
css_header = (struct intel_css_header *)fw->data;
if (sizeof(struct intel_css_header) !=
@ -285,7 +296,7 @@ static uint32_t *parse_csr_fw(struct drm_i915_private *dev_priv,
csr->version = css_header->version;
if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
csr->version < SKL_CSR_VERSION_REQUIRED) {
DRM_INFO("Refusing to load old Skylake DMC firmware v%u.%u,"
" please upgrade to v%u.%u or later"
@ -313,11 +324,11 @@ static uint32_t *parse_csr_fw(struct drm_i915_private *dev_priv,
/* Search for dmc_offset to find firware binary. */
for (i = 0; i < package_header->num_entries; i++) {
if (package_header->fw_info[i].substepping == '*' &&
stepping == package_header->fw_info[i].stepping) {
si->stepping == package_header->fw_info[i].stepping) {
dmc_offset = package_header->fw_info[i].offset;
break;
} else if (stepping == package_header->fw_info[i].stepping &&
substepping == package_header->fw_info[i].substepping) {
} else if (si->stepping == package_header->fw_info[i].stepping &&
si->substepping == package_header->fw_info[i].substepping) {
dmc_offset = package_header->fw_info[i].offset;
break;
} else if (package_header->fw_info[i].stepping == '*' &&
@ -325,7 +336,8 @@ static uint32_t *parse_csr_fw(struct drm_i915_private *dev_priv,
dmc_offset = package_header->fw_info[i].offset;
}
if (dmc_offset == CSR_DEFAULT_FW_OFFSET) {
DRM_ERROR("Firmware not supported for %c stepping\n", stepping);
DRM_ERROR("Firmware not supported for %c stepping\n",
si->stepping);
return NULL;
}
readcount += dmc_offset;
@ -371,9 +383,7 @@ static uint32_t *parse_csr_fw(struct drm_i915_private *dev_priv,
return NULL;
}
memcpy(dmc_payload, &fw->data[readcount], nbytes);
return dmc_payload;
return memcpy(dmc_payload, &fw->data[readcount], nbytes);
}
static void csr_load_work_fn(struct work_struct *work)
@ -388,18 +398,12 @@ static void csr_load_work_fn(struct work_struct *work)
ret = request_firmware(&fw, dev_priv->csr.fw_path,
&dev_priv->dev->pdev->dev);
if (!fw)
goto out;
if (fw)
dev_priv->csr.dmc_payload = parse_csr_fw(dev_priv, fw);
dev_priv->csr.dmc_payload = parse_csr_fw(dev_priv, fw);
if (!dev_priv->csr.dmc_payload)
goto out;
/* load csr program during system boot, as needed for DC states */
intel_csr_load_program(dev_priv);
out:
if (dev_priv->csr.dmc_payload) {
intel_csr_load_program(dev_priv);
intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
DRM_INFO("Finished loading %s (v%u.%u)\n",

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -671,60 +671,55 @@ intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
return status;
}
static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
if (index)
return 0;
/*
* The clock divider is based off the hrawclk, and would like to run at
* 2MHz. So, take the hrawclk value and divide by 2 and use that
* 2MHz. So, take the hrawclk value and divide by 2000 and use that
*/
return index ? 0 : DIV_ROUND_CLOSEST(intel_hrawclk(dev), 2);
return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
}
static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
if (index)
return 0;
if (intel_dig_port->port == PORT_A) {
/*
* The clock divider is based off the cdclk or PCH rawclk, and would
* like to run at 2MHz. So, take the cdclk or PCH rawclk value and
* divide by 2000 and use that
*/
if (intel_dig_port->port == PORT_A)
return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
} else {
return DIV_ROUND_CLOSEST(intel_pch_rawclk(dev), 2);
}
else
return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
}
static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
if (intel_dig_port->port == PORT_A) {
if (index)
return 0;
return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
} else if (HAS_PCH_LPT_H(dev_priv)) {
if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
/* Workaround for non-ULT HSW */
switch (index) {
case 0: return 63;
case 1: return 72;
default: return 0;
}
} else {
return index ? 0 : DIV_ROUND_CLOSEST(intel_pch_rawclk(dev), 2);
}
}
static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
return index ? 0 : 100;
return ilk_get_aux_clock_divider(intel_dp, index);
}
static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
@ -737,10 +732,10 @@ static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
return index ? 0 : 1;
}
static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
bool has_aux_irq,
int send_bytes,
uint32_t aux_clock_divider)
static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
bool has_aux_irq,
int send_bytes,
uint32_t aux_clock_divider)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
@ -1229,71 +1224,6 @@ intel_dp_connector_unregister(struct intel_connector *intel_connector)
intel_connector_unregister(intel_connector);
}
static void
skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
{
u32 ctrl1;
memset(&pipe_config->dpll_hw_state, 0,
sizeof(pipe_config->dpll_hw_state));
pipe_config->ddi_pll_sel = SKL_DPLL0;
pipe_config->dpll_hw_state.cfgcr1 = 0;
pipe_config->dpll_hw_state.cfgcr2 = 0;
ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
switch (pipe_config->port_clock / 2) {
case 81000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
SKL_DPLL0);
break;
case 135000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
SKL_DPLL0);
break;
case 270000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
SKL_DPLL0);
break;
case 162000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
SKL_DPLL0);
break;
/* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
results in CDCLK change. Need to handle the change of CDCLK by
disabling pipes and re-enabling them */
case 108000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
SKL_DPLL0);
break;
case 216000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
SKL_DPLL0);
break;
}
pipe_config->dpll_hw_state.ctrl1 = ctrl1;
}
void
hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
{
memset(&pipe_config->dpll_hw_state, 0,
sizeof(pipe_config->dpll_hw_state));
switch (pipe_config->port_clock / 2) {
case 81000:
pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
break;
case 135000:
pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
break;
case 270000:
pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
break;
}
}
static int
intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
{
@ -1570,10 +1500,10 @@ intel_dp_compute_config(struct intel_encoder *encoder,
/* Get bpp from vbt only for panels that dont have bpp in edid */
if (intel_connector->base.display_info.bpc == 0 &&
(dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
(dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
dev_priv->vbt.edp_bpp);
bpp = dev_priv->vbt.edp_bpp;
dev_priv->vbt.edp.bpp);
bpp = dev_priv->vbt.edp.bpp;
}
/*
@ -1651,13 +1581,7 @@ found:
&pipe_config->dp_m2_n2);
}
if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) && is_edp(intel_dp))
skl_edp_set_pll_config(pipe_config);
else if (IS_BROXTON(dev))
/* handled in ddi */;
else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
hsw_dp_set_ddi_pll_sel(pipe_config);
else
if (!HAS_DDI(dev))
intel_dp_set_clock(encoder, pipe_config);
return true;
@ -1779,11 +1703,11 @@ static void wait_panel_status(struct intel_dp *intel_dp,
I915_READ(pp_stat_reg),
I915_READ(pp_ctrl_reg));
if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
if (_wait_for((I915_READ(pp_stat_reg) & mask) == value,
5 * USEC_PER_SEC, 10 * USEC_PER_MSEC))
DRM_ERROR("Panel status timeout: status %08x control %08x\n",
I915_READ(pp_stat_reg),
I915_READ(pp_ctrl_reg));
}
DRM_DEBUG_KMS("Wait complete\n");
}
@ -2409,7 +2333,6 @@ static void intel_dp_get_config(struct intel_encoder *encoder,
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = dp_to_dig_port(intel_dp)->port;
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
int dotclock;
tmp = I915_READ(intel_dp->output_reg);
@ -2459,16 +2382,12 @@ static void intel_dp_get_config(struct intel_encoder *encoder,
pipe_config->port_clock = 270000;
}
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
ironlake_check_encoder_dotclock(pipe_config, dotclock);
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
/*
* This is a big fat ugly hack.
*
@ -2483,8 +2402,8 @@ static void intel_dp_get_config(struct intel_encoder *encoder,
* load.
*/
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
}
}
@ -3238,7 +3157,7 @@ intel_dp_voltage_max(struct intel_dp *intel_dp)
if (IS_BROXTON(dev))
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
else if (INTEL_INFO(dev)->gen >= 9) {
if (dev_priv->edp_low_vswing && port == PORT_A)
if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
@ -3963,6 +3882,9 @@ intel_dp_probe_mst(struct intel_dp *intel_dp)
{
u8 buf[1];
if (!i915.enable_dp_mst)
return false;
if (!intel_dp->can_mst)
return false;
@ -5071,14 +4993,6 @@ put_power:
bool intel_dp_is_edp(struct drm_device *dev, enum port port)
{
struct drm_i915_private *dev_priv = dev->dev_private;
union child_device_config *p_child;
int i;
static const short port_mapping[] = {
[PORT_B] = DVO_PORT_DPB,
[PORT_C] = DVO_PORT_DPC,
[PORT_D] = DVO_PORT_DPD,
[PORT_E] = DVO_PORT_DPE,
};
/*
* eDP not supported on g4x. so bail out early just
@ -5090,18 +5004,7 @@ bool intel_dp_is_edp(struct drm_device *dev, enum port port)
if (port == PORT_A)
return true;
if (!dev_priv->vbt.child_dev_num)
return false;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
p_child = dev_priv->vbt.child_dev + i;
if (p_child->common.dvo_port == port_mapping[port] &&
(p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
(DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
return true;
}
return false;
return intel_bios_is_port_edp(dev_priv, port);
}
void
@ -5208,7 +5111,7 @@ intel_dp_init_panel_power_sequencer(struct drm_device *dev,
DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
vbt = dev_priv->vbt.edp_pps;
vbt = dev_priv->vbt.edp.pps;
/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
* our hw here, which are all in 100usec. */
@ -5259,7 +5162,7 @@ intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp_on, pp_off, pp_div, port_sel = 0;
int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
int div = dev_priv->rawclk_freq / 1000;
i915_reg_t pp_on_reg, pp_off_reg, pp_div_reg, pp_ctrl_reg;
enum port port = dp_to_dig_port(intel_dp)->port;
const struct edp_power_seq *seq = &intel_dp->pps_delays;
@ -5852,19 +5755,17 @@ intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
/* intel_dp vfuncs */
if (INTEL_INFO(dev)->gen >= 9)
intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
else if (HAS_PCH_SPLIT(dev))
intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
else
intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
if (INTEL_INFO(dev)->gen >= 9)
intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
else
intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
if (HAS_DDI(dev))
intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

View File

@ -33,7 +33,6 @@
static bool intel_dp_mst_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = encoder->base.dev;
struct intel_dp_mst_encoder *intel_mst = enc_to_mst(&encoder->base);
struct intel_digital_port *intel_dig_port = intel_mst->primary;
struct intel_dp *intel_dp = &intel_dig_port->dp;
@ -92,9 +91,6 @@ static bool intel_dp_mst_compute_config(struct intel_encoder *encoder,
pipe_config->dp_m_n.tu = slots;
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
hsw_dp_set_ddi_pll_sel(pipe_config);
return true;
}
@ -506,6 +502,8 @@ static void intel_dp_destroy_mst_connector(struct drm_dp_mst_topology_mgr *mgr,
struct intel_connector *intel_connector = to_intel_connector(connector);
struct drm_device *dev = connector->dev;
intel_connector->unregister(intel_connector);
/* need to nuke the connector */
drm_modeset_lock_all(dev);
if (connector->state->crtc) {
@ -519,11 +517,7 @@ static void intel_dp_destroy_mst_connector(struct drm_dp_mst_topology_mgr *mgr,
WARN(ret, "Disabling mst crtc failed with %i\n", ret);
}
drm_modeset_unlock_all(dev);
intel_connector->unregister(intel_connector);
drm_modeset_lock_all(dev);
intel_connector_remove_from_fbdev(intel_connector);
drm_connector_cleanup(connector);
drm_modeset_unlock_all(dev);

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,164 @@
/*
* Copyright © 2012-2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#ifndef _INTEL_DPLL_MGR_H_
#define _INTEL_DPLL_MGR_H_
/*FIXME: Move this to a more appropriate place. */
#define abs_diff(a, b) ({ \
typeof(a) __a = (a); \
typeof(b) __b = (b); \
(void) (&__a == &__b); \
__a > __b ? (__a - __b) : (__b - __a); })
struct drm_i915_private;
struct intel_crtc;
struct intel_crtc_state;
struct intel_encoder;
struct intel_shared_dpll;
struct intel_dpll_mgr;
enum intel_dpll_id {
DPLL_ID_PRIVATE = -1, /* non-shared dpll in use */
/* real shared dpll ids must be >= 0 */
DPLL_ID_PCH_PLL_A = 0,
DPLL_ID_PCH_PLL_B = 1,
/* hsw/bdw */
DPLL_ID_WRPLL1 = 0,
DPLL_ID_WRPLL2 = 1,
DPLL_ID_SPLL = 2,
DPLL_ID_LCPLL_810 = 3,
DPLL_ID_LCPLL_1350 = 4,
DPLL_ID_LCPLL_2700 = 5,
/* skl */
DPLL_ID_SKL_DPLL0 = 0,
DPLL_ID_SKL_DPLL1 = 1,
DPLL_ID_SKL_DPLL2 = 2,
DPLL_ID_SKL_DPLL3 = 3,
};
#define I915_NUM_PLLS 6
/** Inform the state checker that the DPLL is kept enabled even if not
* in use by any crtc.
*/
#define INTEL_DPLL_ALWAYS_ON (1 << 0)
struct intel_dpll_hw_state {
/* i9xx, pch plls */
uint32_t dpll;
uint32_t dpll_md;
uint32_t fp0;
uint32_t fp1;
/* hsw, bdw */
uint32_t wrpll;
uint32_t spll;
/* skl */
/*
* DPLL_CTRL1 has 6 bits for each each this DPLL. We store those in
* lower part of ctrl1 and they get shifted into position when writing
* the register. This allows us to easily compare the state to share
* the DPLL.
*/
uint32_t ctrl1;
/* HDMI only, 0 when used for DP */
uint32_t cfgcr1, cfgcr2;
/* bxt */
uint32_t ebb0, ebb4, pll0, pll1, pll2, pll3, pll6, pll8, pll9, pll10,
pcsdw12;
};
struct intel_shared_dpll_config {
unsigned crtc_mask; /* mask of CRTCs sharing this PLL */
struct intel_dpll_hw_state hw_state;
};
struct intel_shared_dpll_funcs {
/* The mode_set hook is optional and should be used together with the
* intel_prepare_shared_dpll function. */
void (*mode_set)(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll);
void (*enable)(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll);
void (*disable)(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll);
bool (*get_hw_state)(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state);
};
struct intel_shared_dpll {
struct intel_shared_dpll_config config;
unsigned active_mask; /* mask of active CRTCs (i.e. DPMS on) */
bool on; /* is the PLL actually active? Disabled during modeset */
const char *name;
/* should match the index in the dev_priv->shared_dplls array */
enum intel_dpll_id id;
struct intel_shared_dpll_funcs funcs;
uint32_t flags;
};
#define SKL_DPLL0 0
#define SKL_DPLL1 1
#define SKL_DPLL2 2
#define SKL_DPLL3 3
/* shared dpll functions */
struct intel_shared_dpll *
intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
enum intel_dpll_id id);
enum intel_dpll_id
intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll);
void
intel_shared_dpll_config_get(struct intel_shared_dpll_config *config,
struct intel_shared_dpll *pll,
struct intel_crtc *crtc);
void
intel_shared_dpll_config_put(struct intel_shared_dpll_config *config,
struct intel_shared_dpll *pll,
struct intel_crtc *crtc);
void assert_shared_dpll(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
bool state);
#define assert_shared_dpll_enabled(d, p) assert_shared_dpll(d, p, true)
#define assert_shared_dpll_disabled(d, p) assert_shared_dpll(d, p, false)
struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *state,
struct intel_encoder *encoder);
void intel_prepare_shared_dpll(struct intel_crtc *crtc);
void intel_enable_shared_dpll(struct intel_crtc *crtc);
void intel_disable_shared_dpll(struct intel_crtc *crtc);
void intel_shared_dpll_commit(struct drm_atomic_state *state);
void intel_shared_dpll_init(struct drm_device *dev);
#endif /* _INTEL_DPLL_MGR_H_ */

View File

@ -44,9 +44,13 @@
* contexts. Note that it's important that we check the condition again after
* having timed out, since the timeout could be due to preemption or similar and
* we've never had a chance to check the condition before the timeout.
*
* TODO: When modesetting has fully transitioned to atomic, the below
* drm_can_sleep() can be removed and in_atomic()/!in_atomic() asserts
* added.
*/
#define _wait_for(COND, MS, W) ({ \
unsigned long timeout__ = jiffies + msecs_to_jiffies(MS) + 1; \
#define _wait_for(COND, US, W) ({ \
unsigned long timeout__ = jiffies + usecs_to_jiffies(US) + 1; \
int ret__ = 0; \
while (!(COND)) { \
if (time_after(jiffies, timeout__)) { \
@ -55,7 +59,7 @@
break; \
} \
if ((W) && drm_can_sleep()) { \
usleep_range((W)*1000, (W)*2000); \
usleep_range((W), (W)*2); \
} else { \
cpu_relax(); \
} \
@ -63,10 +67,40 @@
ret__; \
})
#define wait_for(COND, MS) _wait_for(COND, MS, 1)
#define wait_for_atomic(COND, MS) _wait_for(COND, MS, 0)
#define wait_for_atomic_us(COND, US) _wait_for((COND), \
DIV_ROUND_UP((US), 1000), 0)
#define wait_for(COND, MS) _wait_for((COND), (MS) * 1000, 1000)
#define wait_for_us(COND, US) _wait_for((COND), (US), 1)
/* If CONFIG_PREEMPT_COUNT is disabled, in_atomic() always reports false. */
#if defined(CONFIG_DRM_I915_DEBUG) && defined(CONFIG_PREEMPT_COUNT)
# define _WAIT_FOR_ATOMIC_CHECK WARN_ON_ONCE(!in_atomic())
#else
# define _WAIT_FOR_ATOMIC_CHECK do { } while (0)
#endif
#define _wait_for_atomic(COND, US) ({ \
unsigned long end__; \
int ret__ = 0; \
_WAIT_FOR_ATOMIC_CHECK; \
BUILD_BUG_ON((US) > 50000); \
end__ = (local_clock() >> 10) + (US) + 1; \
while (!(COND)) { \
if (time_after((unsigned long)(local_clock() >> 10), end__)) { \
/* Unlike the regular wait_for(), this atomic variant \
* cannot be preempted (and we'll just ignore the issue\
* of irq interruptions) and so we know that no time \
* has passed since the last check of COND and can \
* immediately report the timeout. \
*/ \
ret__ = -ETIMEDOUT; \
break; \
} \
cpu_relax(); \
} \
ret__; \
})
#define wait_for_atomic(COND, MS) _wait_for_atomic((COND), (MS) * 1000)
#define wait_for_atomic_us(COND, US) _wait_for_atomic((COND), (US))
#define KHz(x) (1000 * (x))
#define MHz(x) KHz(1000 * (x))
@ -118,6 +152,7 @@ enum intel_output_type {
struct intel_framebuffer {
struct drm_framebuffer base;
struct drm_i915_gem_object *obj;
struct intel_rotation_info rot_info;
};
struct intel_fbdev {
@ -260,6 +295,12 @@ struct intel_atomic_state {
struct intel_shared_dpll_config shared_dpll[I915_NUM_PLLS];
struct intel_wm_config wm_config;
/*
* Current watermarks can't be trusted during hardware readout, so
* don't bother calculating intermediate watermarks.
*/
bool skip_intermediate_wm;
};
struct intel_plane_state {
@ -349,6 +390,7 @@ struct intel_crtc_scaler_state {
struct intel_pipe_wm {
struct intel_wm_level wm[5];
struct intel_wm_level raw_wm[5];
uint32_t linetime;
bool fbc_wm_enabled;
bool pipe_enabled;
@ -376,9 +418,10 @@ struct intel_crtc_state {
#define PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS (1<<0) /* unreliable sync mode.flags */
unsigned long quirks;
unsigned fb_bits; /* framebuffers to flip */
bool update_pipe; /* can a fast modeset be performed? */
bool disable_cxsr;
bool wm_changed; /* watermarks are updated */
bool update_wm_pre, update_wm_post; /* watermarks are updated */
bool fb_changed; /* fb on any of the planes is changed */
/* Pipe source size (ie. panel fitter input size)
@ -394,7 +437,8 @@ struct intel_crtc_state {
bool has_infoframe;
/* CPU Transcoder for the pipe. Currently this can only differ from the
* pipe on Haswell (where we have a special eDP transcoder). */
* pipe on Haswell and later (where we have a special eDP transcoder)
* and Broxton (where we have special DSI transcoders). */
enum transcoder cpu_transcoder;
/*
@ -441,8 +485,8 @@ struct intel_crtc_state {
* haswell. */
struct dpll dpll;
/* Selected dpll when shared or DPLL_ID_PRIVATE. */
enum intel_dpll_id shared_dpll;
/* Selected dpll when shared or NULL. */
struct intel_shared_dpll *shared_dpll;
/*
* - PORT_CLK_SEL for DDI ports on HSW/BDW.
@ -510,14 +554,33 @@ struct intel_crtc_state {
struct {
/*
* optimal watermarks, programmed post-vblank when this state
* is committed
* Optimal watermarks, programmed post-vblank when this state
* is committed.
*/
union {
struct intel_pipe_wm ilk;
struct skl_pipe_wm skl;
} optimal;
/*
* Intermediate watermarks; these can be programmed immediately
* since they satisfy both the current configuration we're
* switching away from and the new configuration we're switching
* to.
*/
struct intel_pipe_wm intermediate;
/*
* Platforms with two-step watermark programming will need to
* update watermark programming post-vblank to switch from the
* safe intermediate watermarks to the optimal final
* watermarks.
*/
bool need_postvbl_update;
} wm;
/* Gamma mode programmed on the pipe */
uint32_t gamma_mode;
};
struct vlv_wm_state {
@ -537,23 +600,6 @@ struct intel_mmio_flip {
unsigned int rotation;
};
/*
* Tracking of operations that need to be performed at the beginning/end of an
* atomic commit, outside the atomic section where interrupts are disabled.
* These are generally operations that grab mutexes or might otherwise sleep
* and thus can't be run with interrupts disabled.
*/
struct intel_crtc_atomic_commit {
/* Sleepable operations to perform before commit */
/* Sleepable operations to perform after commit */
unsigned fb_bits;
bool post_enable_primary;
/* Sleepable operations to perform before and after commit */
bool update_fbc;
};
struct intel_crtc {
struct drm_crtc base;
enum pipe pipe;
@ -600,6 +646,7 @@ struct intel_crtc {
struct intel_pipe_wm ilk;
struct skl_pipe_wm skl;
} active;
/* allow CxSR on this pipe */
bool cxsr_allowed;
} wm;
@ -613,8 +660,6 @@ struct intel_crtc {
int scanline_start;
} debug;
struct intel_crtc_atomic_commit atomic;
/* scalers available on this crtc */
int num_scalers;
@ -1007,7 +1052,6 @@ void hsw_fdi_link_train(struct drm_crtc *crtc);
void intel_ddi_init(struct drm_device *dev, enum port port);
enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder);
bool intel_ddi_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe);
void intel_ddi_pll_init(struct drm_device *dev);
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc);
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder);
@ -1051,7 +1095,7 @@ u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
uint64_t fb_modifier, uint32_t pixel_format);
/* intel_audio.c */
void intel_init_audio(struct drm_device *dev);
void intel_init_audio_hooks(struct drm_i915_private *dev_priv);
void intel_audio_codec_enable(struct intel_encoder *encoder);
void intel_audio_codec_disable(struct intel_encoder *encoder);
void i915_audio_component_init(struct drm_i915_private *dev_priv);
@ -1059,9 +1103,9 @@ void i915_audio_component_cleanup(struct drm_i915_private *dev_priv);
/* intel_display.c */
extern const struct drm_plane_funcs intel_plane_funcs;
void intel_init_display_hooks(struct drm_i915_private *dev_priv);
unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info);
bool intel_has_pending_fb_unpin(struct drm_device *dev);
int intel_pch_rawclk(struct drm_device *dev);
int intel_hrawclk(struct drm_device *dev);
void intel_mark_busy(struct drm_device *dev);
void intel_mark_idle(struct drm_device *dev);
void intel_crtc_restore_mode(struct drm_crtc *crtc);
@ -1106,9 +1150,8 @@ bool intel_get_load_detect_pipe(struct drm_connector *connector,
void intel_release_load_detect_pipe(struct drm_connector *connector,
struct intel_load_detect_pipe *old,
struct drm_modeset_acquire_ctx *ctx);
int intel_pin_and_fence_fb_obj(struct drm_plane *plane,
struct drm_framebuffer *fb,
const struct drm_plane_state *plane_state);
int intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
unsigned int rotation);
struct drm_framebuffer *
__intel_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd2 *mode_cmd,
@ -1144,19 +1187,13 @@ intel_rotation_90_or_270(unsigned int rotation)
void intel_create_rotation_property(struct drm_device *dev,
struct intel_plane *plane);
/* shared dpll functions */
struct intel_shared_dpll *intel_crtc_to_shared_dpll(struct intel_crtc *crtc);
void assert_shared_dpll(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
bool state);
#define assert_shared_dpll_enabled(d, p) assert_shared_dpll(d, p, true)
#define assert_shared_dpll_disabled(d, p) assert_shared_dpll(d, p, false)
struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *state);
void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe);
int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
const struct dpll *dpll);
void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe);
int lpt_get_iclkip(struct drm_i915_private *dev_priv);
/* modesetting asserts */
void assert_panel_unlocked(struct drm_i915_private *dev_priv,
@ -1165,6 +1202,9 @@ void assert_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state);
#define assert_pll_enabled(d, p) assert_pll(d, p, true)
#define assert_pll_disabled(d, p) assert_pll(d, p, false)
void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state);
#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state);
#define assert_fdi_rx_pll_enabled(d, p) assert_fdi_rx_pll(d, p, true)
@ -1172,11 +1212,10 @@ void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
void assert_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, bool state);
#define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
#define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
u32 intel_compute_tile_offset(struct drm_i915_private *dev_priv,
int *x, int *y,
uint64_t fb_modifier,
unsigned int cpp,
unsigned int pitch);
u32 intel_compute_tile_offset(int *x, int *y,
const struct drm_framebuffer *fb, int plane,
unsigned int pitch,
unsigned int rotation);
void intel_prepare_reset(struct drm_device *dev);
void intel_finish_reset(struct drm_device *dev);
void hsw_enable_pc8(struct drm_i915_private *dev_priv);
@ -1196,9 +1235,6 @@ void intel_dp_get_m_n(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config);
void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n);
int intel_dotclock_calculate(int link_freq, const struct intel_link_m_n *m_n);
void
ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
int dotclock);
bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
intel_clock_t *best_clock);
int chv_calc_dpll_params(int refclk, intel_clock_t *pll_clock);
@ -1226,7 +1262,7 @@ u32 skl_plane_ctl_rotation(unsigned int rotation);
/* intel_csr.c */
void intel_csr_ucode_init(struct drm_i915_private *);
bool intel_csr_load_program(struct drm_i915_private *);
void intel_csr_load_program(struct drm_i915_private *);
void intel_csr_ucode_fini(struct drm_i915_private *);
/* intel_dp.c */
@ -1266,7 +1302,6 @@ void intel_edp_drrs_invalidate(struct drm_device *dev,
void intel_edp_drrs_flush(struct drm_device *dev, unsigned frontbuffer_bits);
bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
struct intel_digital_port *port);
void hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config);
void
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
@ -1541,6 +1576,7 @@ void intel_suspend_hw(struct drm_device *dev);
int ilk_wm_max_level(const struct drm_device *dev);
void intel_update_watermarks(struct drm_crtc *crtc);
void intel_init_pm(struct drm_device *dev);
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv);
void intel_pm_setup(struct drm_device *dev);
void intel_gpu_ips_init(struct drm_i915_private *dev_priv);
void intel_gpu_ips_teardown(void);
@ -1565,6 +1601,7 @@ void skl_wm_get_hw_state(struct drm_device *dev);
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
struct skl_ddb_allocation *ddb /* out */);
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config);
bool ilk_disable_lp_wm(struct drm_device *dev);
int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6);
/* intel_sdvo.c */
@ -1606,6 +1643,18 @@ intel_atomic_get_crtc_state(struct drm_atomic_state *state,
return to_intel_crtc_state(crtc_state);
}
static inline struct intel_plane_state *
intel_atomic_get_existing_plane_state(struct drm_atomic_state *state,
struct intel_plane *plane)
{
struct drm_plane_state *plane_state;
plane_state = drm_atomic_get_existing_plane_state(state, &plane->base);
return to_intel_plane_state(plane_state);
}
int intel_atomic_setup_scalers(struct drm_device *dev,
struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state);
@ -1617,4 +1666,10 @@ void intel_plane_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state);
extern const struct drm_plane_helper_funcs intel_plane_helper_funcs;
/* intel_color.c */
void intel_color_init(struct drm_crtc *crtc);
int intel_color_check(struct drm_crtc *crtc, struct drm_crtc_state *state);
void intel_color_set_csc(struct drm_crtc *crtc);
void intel_color_load_luts(struct drm_crtc *crtc);
#endif /* __INTEL_DRV_H__ */

View File

@ -268,6 +268,7 @@ static inline bool is_cmd_mode(struct intel_dsi *intel_dsi)
static bool intel_dsi_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
struct intel_dsi *intel_dsi = container_of(encoder, struct intel_dsi,
base);
struct intel_connector *intel_connector = intel_dsi->attached_connector;
@ -284,6 +285,14 @@ static bool intel_dsi_compute_config(struct intel_encoder *encoder,
/* DSI uses short packets for sync events, so clear mode flags for DSI */
adjusted_mode->flags = 0;
if (IS_BROXTON(dev_priv)) {
/* Dual link goes to DSI transcoder A. */
if (intel_dsi->ports == BIT(PORT_C))
pipe_config->cpu_transcoder = TRANSCODER_DSI_C;
else
pipe_config->cpu_transcoder = TRANSCODER_DSI_A;
}
return true;
}
@ -403,7 +412,7 @@ static void intel_dsi_port_enable(struct intel_encoder *encoder)
temp &= ~LANE_CONFIGURATION_MASK;
temp &= ~DUAL_LINK_MODE_MASK;
if (intel_dsi->ports == ((1 << PORT_A) | (1 << PORT_C))) {
if (intel_dsi->ports == (BIT(PORT_A) | BIT(PORT_C))) {
temp |= (intel_dsi->dual_link - 1)
<< DUAL_LINK_MODE_SHIFT;
temp |= intel_crtc->pipe ?
@ -667,7 +676,7 @@ static bool intel_dsi_get_hw_state(struct intel_encoder *encoder,
struct drm_device *dev = encoder->base.dev;
enum intel_display_power_domain power_domain;
enum port port;
bool ret;
bool active = false;
DRM_DEBUG_KMS("\n");
@ -675,38 +684,60 @@ static bool intel_dsi_get_hw_state(struct intel_encoder *encoder,
if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
return false;
ret = false;
/*
* On Broxton the PLL needs to be enabled with a valid divider
* configuration, otherwise accessing DSI registers will hang the
* machine. See BSpec North Display Engine registers/MIPI[BXT].
*/
if (IS_BROXTON(dev_priv) && !intel_dsi_pll_is_enabled(dev_priv))
goto out_put_power;
/* XXX: this only works for one DSI output */
for_each_dsi_port(port, intel_dsi->ports) {
i915_reg_t ctrl_reg = IS_BROXTON(dev) ?
BXT_MIPI_PORT_CTRL(port) : MIPI_PORT_CTRL(port);
u32 dpi_enabled, func;
func = I915_READ(MIPI_DSI_FUNC_PRG(port));
dpi_enabled = I915_READ(ctrl_reg) & DPI_ENABLE;
bool enabled = I915_READ(ctrl_reg) & DPI_ENABLE;
/* Due to some hardware limitations on BYT, MIPI Port C DPI
* Enable bit does not get set. To check whether DSI Port C
* was enabled in BIOS, check the Pipe B enable bit
*/
if (IS_VALLEYVIEW(dev) && port == PORT_C)
dpi_enabled = I915_READ(PIPECONF(PIPE_B)) &
PIPECONF_ENABLE;
enabled = I915_READ(PIPECONF(PIPE_B)) & PIPECONF_ENABLE;
if (dpi_enabled || (func & CMD_MODE_DATA_WIDTH_MASK)) {
if (I915_READ(MIPI_DEVICE_READY(port)) & DEVICE_READY) {
*pipe = port == PORT_A ? PIPE_A : PIPE_B;
ret = true;
goto out;
}
/* Try command mode if video mode not enabled */
if (!enabled) {
u32 tmp = I915_READ(MIPI_DSI_FUNC_PRG(port));
enabled = tmp & CMD_MODE_DATA_WIDTH_MASK;
}
if (!enabled)
continue;
if (!(I915_READ(MIPI_DEVICE_READY(port)) & DEVICE_READY))
continue;
if (IS_BROXTON(dev_priv)) {
u32 tmp = I915_READ(MIPI_CTRL(port));
tmp &= BXT_PIPE_SELECT_MASK;
tmp >>= BXT_PIPE_SELECT_SHIFT;
if (WARN_ON(tmp > PIPE_C))
continue;
*pipe = tmp;
} else {
*pipe = port == PORT_A ? PIPE_A : PIPE_B;
}
active = true;
break;
}
out:
out_put_power:
intel_display_power_put(dev_priv, power_domain);
return ret;
return active;
}
static void intel_dsi_get_config(struct intel_encoder *encoder,
@ -787,7 +818,7 @@ static void set_dsi_timings(struct drm_encoder *encoder,
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
unsigned int bpp = dsi_pixel_format_bpp(intel_dsi->pixel_format);
unsigned int bpp = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format);
unsigned int lane_count = intel_dsi->lane_count;
u16 hactive, hfp, hsync, hbp, vfp, vsync, vbp;
@ -849,6 +880,23 @@ static void set_dsi_timings(struct drm_encoder *encoder,
}
}
static u32 pixel_format_to_reg(enum mipi_dsi_pixel_format fmt)
{
switch (fmt) {
case MIPI_DSI_FMT_RGB888:
return VID_MODE_FORMAT_RGB888;
case MIPI_DSI_FMT_RGB666:
return VID_MODE_FORMAT_RGB666;
case MIPI_DSI_FMT_RGB666_PACKED:
return VID_MODE_FORMAT_RGB666_PACKED;
case MIPI_DSI_FMT_RGB565:
return VID_MODE_FORMAT_RGB565;
default:
MISSING_CASE(fmt);
return VID_MODE_FORMAT_RGB666;
}
}
static void intel_dsi_prepare(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
@ -858,7 +906,7 @@ static void intel_dsi_prepare(struct intel_encoder *intel_encoder)
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
enum port port;
unsigned int bpp = dsi_pixel_format_bpp(intel_dsi->pixel_format);
unsigned int bpp = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format);
u32 val, tmp;
u16 mode_hdisplay;
@ -917,9 +965,7 @@ static void intel_dsi_prepare(struct intel_encoder *intel_encoder)
val |= CMD_MODE_DATA_WIDTH_8_BIT; /* XXX */
} else {
val |= intel_dsi->channel << VID_MODE_CHANNEL_NUMBER_SHIFT;
/* XXX: cross-check bpp vs. pixel format? */
val |= intel_dsi->pixel_format;
val |= pixel_format_to_reg(intel_dsi->pixel_format);
}
tmp = 0;
@ -1121,11 +1167,13 @@ void intel_dsi_init(struct drm_device *dev)
DRM_DEBUG_KMS("\n");
/* There is no detection method for MIPI so rely on VBT */
if (!dev_priv->vbt.has_mipi)
if (!intel_bios_is_dsi_present(dev_priv, &port))
return;
if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
dev_priv->mipi_mmio_base = VLV_MIPI_BASE;
} else if (IS_BROXTON(dev)) {
dev_priv->mipi_mmio_base = BXT_MIPI_BASE;
} else {
DRM_ERROR("Unsupported Mipi device to reg base");
return;
@ -1161,17 +1209,21 @@ void intel_dsi_init(struct drm_device *dev)
intel_connector->get_hw_state = intel_connector_get_hw_state;
intel_connector->unregister = intel_connector_unregister;
/* Pipe A maps to MIPI DSI port A, pipe B maps to MIPI DSI port C */
if (dev_priv->vbt.dsi.port == DVO_PORT_MIPIA) {
intel_encoder->crtc_mask = (1 << PIPE_A);
intel_dsi->ports = (1 << PORT_A);
} else if (dev_priv->vbt.dsi.port == DVO_PORT_MIPIC) {
intel_encoder->crtc_mask = (1 << PIPE_B);
intel_dsi->ports = (1 << PORT_C);
}
/*
* On BYT/CHV, pipe A maps to MIPI DSI port A, pipe B maps to MIPI DSI
* port C. BXT isn't limited like this.
*/
if (IS_BROXTON(dev_priv))
intel_encoder->crtc_mask = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C);
else if (port == PORT_A)
intel_encoder->crtc_mask = BIT(PIPE_A);
else
intel_encoder->crtc_mask = BIT(PIPE_B);
if (dev_priv->vbt.dsi.config->dual_link)
intel_dsi->ports = ((1 << PORT_A) | (1 << PORT_C));
intel_dsi->ports = BIT(PORT_A) | BIT(PORT_C);
else
intel_dsi->ports = BIT(port);
/* Create a DSI host (and a device) for each port. */
for_each_dsi_port(port, intel_dsi->ports) {

View File

@ -34,8 +34,6 @@
#define DSI_DUAL_LINK_FRONT_BACK 1
#define DSI_DUAL_LINK_PIXEL_ALT 2
int dsi_pixel_format_bpp(int pixel_format);
struct intel_dsi_host;
struct intel_dsi {
@ -64,8 +62,12 @@ struct intel_dsi {
/* number of DSI lanes */
unsigned int lane_count;
/* video mode pixel format for MIPI_DSI_FUNC_PRG register */
u32 pixel_format;
/*
* video mode pixel format
*
* XXX: consolidate on .format in struct mipi_dsi_device.
*/
enum mipi_dsi_pixel_format pixel_format;
/* video mode format for MIPI_VIDEO_MODE_FORMAT register */
u32 video_mode_format;
@ -117,15 +119,14 @@ static inline struct intel_dsi_host *to_intel_dsi_host(struct mipi_dsi_host *h)
return container_of(h, struct intel_dsi_host, base);
}
#define for_each_dsi_port(__port, __ports_mask) \
for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
for_each_if ((__ports_mask) & (1 << (__port)))
#define for_each_dsi_port(__port, __ports_mask) for_each_port_masked(__port, __ports_mask)
static inline struct intel_dsi *enc_to_intel_dsi(struct drm_encoder *encoder)
{
return container_of(encoder, struct intel_dsi, base.base);
}
bool intel_dsi_pll_is_enabled(struct drm_i915_private *dev_priv);
extern void intel_enable_dsi_pll(struct intel_encoder *encoder);
extern void intel_disable_dsi_pll(struct intel_encoder *encoder);
extern u32 intel_dsi_get_pclk(struct intel_encoder *encoder, int pipe_bpp);

View File

@ -412,6 +412,25 @@ static const struct drm_panel_funcs vbt_panel_funcs = {
.get_modes = vbt_panel_get_modes,
};
/* XXX: This should be done when parsing the VBT in intel_bios.c */
static enum mipi_dsi_pixel_format pixel_format_from_vbt(u32 fmt)
{
/* It just so happens the VBT matches register contents. */
switch (fmt) {
case VID_MODE_FORMAT_RGB888:
return MIPI_DSI_FMT_RGB888;
case VID_MODE_FORMAT_RGB666:
return MIPI_DSI_FMT_RGB666;
case VID_MODE_FORMAT_RGB666_PACKED:
return MIPI_DSI_FMT_RGB666_PACKED;
case VID_MODE_FORMAT_RGB565:
return MIPI_DSI_FMT_RGB565;
default:
MISSING_CASE(fmt);
return MIPI_DSI_FMT_RGB666;
}
}
struct drm_panel *vbt_panel_init(struct intel_dsi *intel_dsi, u16 panel_id)
{
struct drm_device *dev = intel_dsi->base.base.dev;
@ -420,7 +439,7 @@ struct drm_panel *vbt_panel_init(struct intel_dsi *intel_dsi, u16 panel_id)
struct mipi_pps_data *pps = dev_priv->vbt.dsi.pps;
struct drm_display_mode *mode = dev_priv->vbt.lfp_lvds_vbt_mode;
struct vbt_panel *vbt_panel;
u32 bits_per_pixel = 24;
u32 bpp;
u32 tlpx_ns, extra_byte_count, bitrate, tlpx_ui;
u32 ui_num, ui_den;
u32 prepare_cnt, exit_zero_cnt, clk_zero_cnt, trail_cnt;
@ -436,12 +455,11 @@ struct drm_panel *vbt_panel_init(struct intel_dsi *intel_dsi, u16 panel_id)
intel_dsi->eotp_pkt = mipi_config->eot_pkt_disabled ? 0 : 1;
intel_dsi->clock_stop = mipi_config->enable_clk_stop ? 1 : 0;
intel_dsi->lane_count = mipi_config->lane_cnt + 1;
intel_dsi->pixel_format = mipi_config->videomode_color_format << 7;
intel_dsi->pixel_format = pixel_format_from_vbt(mipi_config->videomode_color_format << 7);
bpp = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format);
intel_dsi->dual_link = mipi_config->dual_link;
intel_dsi->pixel_overlap = mipi_config->pixel_overlap;
bits_per_pixel = dsi_pixel_format_bpp(intel_dsi->pixel_format);
intel_dsi->operation_mode = mipi_config->is_cmd_mode;
intel_dsi->video_mode_format = mipi_config->video_transfer_mode;
intel_dsi->escape_clk_div = mipi_config->byte_clk_sel;
@ -475,8 +493,7 @@ struct drm_panel *vbt_panel_init(struct intel_dsi *intel_dsi, u16 panel_id)
*/
if (intel_dsi->video_mode_format == VIDEO_MODE_BURST) {
if (mipi_config->target_burst_mode_freq) {
computed_ddr =
(pclk * bits_per_pixel) / intel_dsi->lane_count;
computed_ddr = (pclk * bpp) / intel_dsi->lane_count;
if (mipi_config->target_burst_mode_freq <
computed_ddr) {
@ -499,7 +516,7 @@ struct drm_panel *vbt_panel_init(struct intel_dsi *intel_dsi, u16 panel_id)
intel_dsi->burst_mode_ratio = burst_mode_ratio;
intel_dsi->pclk = pclk;
bitrate = (pclk * bits_per_pixel) / intel_dsi->lane_count;
bitrate = (pclk * bpp) / intel_dsi->lane_count;
switch (intel_dsi->escape_clk_div) {
case 0:

View File

@ -30,27 +30,6 @@
#include "i915_drv.h"
#include "intel_dsi.h"
int dsi_pixel_format_bpp(int pixel_format)
{
int bpp;
switch (pixel_format) {
default:
case VID_MODE_FORMAT_RGB888:
case VID_MODE_FORMAT_RGB666_LOOSE:
bpp = 24;
break;
case VID_MODE_FORMAT_RGB666:
bpp = 18;
break;
case VID_MODE_FORMAT_RGB565:
bpp = 16;
break;
}
return bpp;
}
struct dsi_mnp {
u32 dsi_pll_ctrl;
u32 dsi_pll_div;
@ -64,10 +43,11 @@ static const u32 lfsr_converts[] = {
};
/* Get DSI clock from pixel clock */
static u32 dsi_clk_from_pclk(u32 pclk, int pixel_format, int lane_count)
static u32 dsi_clk_from_pclk(u32 pclk, enum mipi_dsi_pixel_format fmt,
int lane_count)
{
u32 dsi_clk_khz;
u32 bpp = dsi_pixel_format_bpp(pixel_format);
u32 bpp = mipi_dsi_pixel_format_to_bpp(fmt);
/* DSI data rate = pixel clock * bits per pixel / lane count
pixel clock is converted from KHz to Hz */
@ -212,6 +192,36 @@ static void vlv_disable_dsi_pll(struct intel_encoder *encoder)
mutex_unlock(&dev_priv->sb_lock);
}
static bool bxt_dsi_pll_is_enabled(struct drm_i915_private *dev_priv)
{
bool enabled;
u32 val;
u32 mask;
mask = BXT_DSI_PLL_DO_ENABLE | BXT_DSI_PLL_LOCKED;
val = I915_READ(BXT_DSI_PLL_ENABLE);
enabled = (val & mask) == mask;
if (!enabled)
return false;
/*
* Both dividers must be programmed with valid values even if only one
* of the PLL is used, see BSpec/Broxton Clocks. Check this here for
* paranoia, since BIOS is known to misconfigure PLLs in this way at
* times, and since accessing DSI registers with invalid dividers
* causes a system hang.
*/
val = I915_READ(BXT_DSI_PLL_CTL);
if (!(val & BXT_DSIA_16X_MASK) || !(val & BXT_DSIC_16X_MASK)) {
DRM_DEBUG_DRIVER("PLL is enabled with invalid divider settings (%08x)\n",
val);
enabled = false;
}
return enabled;
}
static void bxt_disable_dsi_pll(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
@ -232,9 +242,9 @@ static void bxt_disable_dsi_pll(struct intel_encoder *encoder)
DRM_ERROR("Timeout waiting for PLL lock deassertion\n");
}
static void assert_bpp_mismatch(int pixel_format, int pipe_bpp)
static void assert_bpp_mismatch(enum mipi_dsi_pixel_format fmt, int pipe_bpp)
{
int bpp = dsi_pixel_format_bpp(pixel_format);
int bpp = mipi_dsi_pixel_format_to_bpp(fmt);
WARN(bpp != pipe_bpp,
"bpp match assertion failure (expected %d, current %d)\n",
@ -362,35 +372,57 @@ static void vlv_dsi_reset_clocks(struct intel_encoder *encoder, enum port port)
/* Program BXT Mipi clocks and dividers */
static void bxt_dsi_program_clocks(struct drm_device *dev, enum port port)
{
u32 tmp;
u32 divider;
u32 dsi_rate;
u32 pll_ratio;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 tmp;
u32 dsi_rate = 0;
u32 pll_ratio = 0;
u32 rx_div;
u32 tx_div;
u32 rx_div_upper;
u32 rx_div_lower;
u32 mipi_8by3_divider;
/* Clear old configurations */
tmp = I915_READ(BXT_MIPI_CLOCK_CTL);
tmp &= ~(BXT_MIPI_TX_ESCLK_FIXDIV_MASK(port));
tmp &= ~(BXT_MIPI_RX_ESCLK_FIXDIV_MASK(port));
tmp &= ~(BXT_MIPI_ESCLK_VAR_DIV_MASK(port));
tmp &= ~(BXT_MIPI_DPHY_DIVIDER_MASK(port));
tmp &= ~(BXT_MIPI_RX_ESCLK_UPPER_FIXDIV_MASK(port));
tmp &= ~(BXT_MIPI_8X_BY3_DIVIDER_MASK(port));
tmp &= ~(BXT_MIPI_RX_ESCLK_LOWER_FIXDIV_MASK(port));
/* Get the current DSI rate(actual) */
pll_ratio = I915_READ(BXT_DSI_PLL_CTL) &
BXT_DSI_PLL_RATIO_MASK;
dsi_rate = (BXT_REF_CLOCK_KHZ * pll_ratio) / 2;
/* Max possible output of clock is 39.5 MHz, program value -1 */
divider = (dsi_rate / BXT_MAX_VAR_OUTPUT_KHZ) - 1;
tmp |= BXT_MIPI_ESCLK_VAR_DIV(port, divider);
/*
* tx clock should be <= 20MHz and the div value must be
* subtracted by 1 as per bspec
*/
tx_div = DIV_ROUND_UP(dsi_rate, 20000) - 1;
/*
* rx clock should be <= 150MHz and the div value must be
* subtracted by 1 as per bspec
*/
rx_div = DIV_ROUND_UP(dsi_rate, 150000) - 1;
/*
* Tx escape clock must be as close to 20MHz possible, but should
* not exceed it. Hence select divide by 2
* rx divider value needs to be updated in the
* two differnt bit fields in the register hence splitting the
* rx divider value accordingly
*/
tmp |= BXT_MIPI_TX_ESCLK_8XDIV_BY2(port);
rx_div_lower = rx_div & RX_DIVIDER_BIT_1_2;
rx_div_upper = (rx_div & RX_DIVIDER_BIT_3_4) >> 2;
tmp |= BXT_MIPI_RX_ESCLK_8X_BY3(port);
/* As per bpsec program the 8/3X clock divider to the below value */
if (dev_priv->vbt.dsi.config->is_cmd_mode)
mipi_8by3_divider = 0x2;
else
mipi_8by3_divider = 0x3;
tmp |= BXT_MIPI_8X_BY3_DIVIDER(port, mipi_8by3_divider);
tmp |= BXT_MIPI_TX_ESCLK_DIVIDER(port, tx_div);
tmp |= BXT_MIPI_RX_ESCLK_LOWER_DIVIDER(port, rx_div_lower);
tmp |= BXT_MIPI_RX_ESCLK_UPPER_DIVIDER(port, rx_div_upper);
I915_WRITE(BXT_MIPI_CLOCK_CTL, tmp);
}
@ -484,6 +516,16 @@ static void bxt_enable_dsi_pll(struct intel_encoder *encoder)
DRM_DEBUG_KMS("DSI PLL locked\n");
}
bool intel_dsi_pll_is_enabled(struct drm_i915_private *dev_priv)
{
if (IS_BROXTON(dev_priv))
return bxt_dsi_pll_is_enabled(dev_priv);
MISSING_CASE(INTEL_DEVID(dev_priv));
return false;
}
void intel_enable_dsi_pll(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
@ -513,9 +555,9 @@ static void bxt_dsi_reset_clocks(struct intel_encoder *encoder, enum port port)
/* Clear old configurations */
tmp = I915_READ(BXT_MIPI_CLOCK_CTL);
tmp &= ~(BXT_MIPI_TX_ESCLK_FIXDIV_MASK(port));
tmp &= ~(BXT_MIPI_RX_ESCLK_FIXDIV_MASK(port));
tmp &= ~(BXT_MIPI_ESCLK_VAR_DIV_MASK(port));
tmp &= ~(BXT_MIPI_DPHY_DIVIDER_MASK(port));
tmp &= ~(BXT_MIPI_RX_ESCLK_UPPER_FIXDIV_MASK(port));
tmp &= ~(BXT_MIPI_8X_BY3_DIVIDER_MASK(port));
tmp &= ~(BXT_MIPI_RX_ESCLK_LOWER_FIXDIV_MASK(port));
I915_WRITE(BXT_MIPI_CLOCK_CTL, tmp);
I915_WRITE(MIPI_EOT_DISABLE(port), CLOCKSTOP);
}

View File

@ -516,9 +516,9 @@ static int find_compression_threshold(struct drm_i915_private *dev_priv,
* underruns, even if that range is not reserved by the BIOS. */
if (IS_BROADWELL(dev_priv) ||
IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
end = dev_priv->gtt.stolen_size - 8 * 1024 * 1024;
end = dev_priv->ggtt.stolen_size - 8 * 1024 * 1024;
else
end = dev_priv->gtt.stolen_usable_size;
end = dev_priv->ggtt.stolen_usable_size;
/* HACK: This code depends on what we will do in *_enable_fbc. If that
* code changes, this code needs to change as well.

View File

@ -146,7 +146,7 @@ static int intelfb_alloc(struct drm_fb_helper *helper,
/* If the FB is too big, just don't use it since fbdev is not very
* important and we should probably use that space with FBC or other
* features. */
if (size * 2 < dev_priv->gtt.stolen_usable_size)
if (size * 2 < dev_priv->ggtt.stolen_usable_size)
obj = i915_gem_object_create_stolen(dev, size);
if (obj == NULL)
obj = i915_gem_alloc_object(dev, size);
@ -220,7 +220,7 @@ static int intelfb_create(struct drm_fb_helper *helper,
* This also validates that any existing fb inherited from the
* BIOS is suitable for own access.
*/
ret = intel_pin_and_fence_fb_obj(NULL, &ifbdev->fb->base, NULL);
ret = intel_pin_and_fence_fb_obj(&ifbdev->fb->base, BIT(DRM_ROTATE_0));
if (ret)
goto out_unlock;
@ -244,13 +244,13 @@ static int intelfb_create(struct drm_fb_helper *helper,
/* setup aperture base/size for vesafb takeover */
info->apertures->ranges[0].base = dev->mode_config.fb_base;
info->apertures->ranges[0].size = dev_priv->gtt.mappable_end;
info->apertures->ranges[0].size = dev_priv->ggtt.mappable_end;
info->fix.smem_start = dev->mode_config.fb_base + i915_gem_obj_ggtt_offset(obj);
info->fix.smem_len = size;
info->screen_base =
ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
ioremap_wc(dev_priv->ggtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
size);
if (!info->screen_base) {
DRM_ERROR("Failed to remap framebuffer into virtual memory\n");
@ -379,6 +379,7 @@ retry:
struct drm_connector *connector;
struct drm_encoder *encoder;
struct drm_fb_helper_crtc *new_crtc;
struct intel_crtc *intel_crtc;
fb_conn = fb_helper->connector_info[i];
connector = fb_conn->connector;
@ -420,6 +421,13 @@ retry:
num_connectors_enabled++;
intel_crtc = to_intel_crtc(connector->state->crtc);
for (j = 0; j < 256; j++) {
intel_crtc->lut_r[j] = j;
intel_crtc->lut_g[j] = j;
intel_crtc->lut_b[j] = j;
}
new_crtc = intel_fb_helper_crtc(fb_helper, connector->state->crtc);
/*
@ -800,6 +808,8 @@ void intel_fbdev_set_suspend(struct drm_device *dev, int state, bool synchronous
void intel_fbdev_output_poll_changed(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
async_synchronize_full();
if (dev_priv->fbdev)
drm_fb_helper_hotplug_event(&dev_priv->fbdev->helper);
}
@ -811,6 +821,7 @@ void intel_fbdev_restore_mode(struct drm_device *dev)
struct intel_fbdev *ifbdev = dev_priv->fbdev;
struct drm_fb_helper *fb_helper;
async_synchronize_full();
if (!ifbdev)
return;

View File

@ -212,7 +212,7 @@ static void cpt_check_pch_fifo_underruns(struct intel_crtc *crtc)
I915_WRITE(SERR_INT, SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
POSTING_READ(SERR_INT);
DRM_ERROR("pch fifo underrun on pch transcoder %c\n",
DRM_ERROR("pch fifo underrun on pch transcoder %s\n",
transcoder_name(pch_transcoder));
}
@ -235,7 +235,7 @@ static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
if (old && I915_READ(SERR_INT) &
SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
DRM_ERROR("uncleared pch fifo underrun on pch transcoder %s\n",
transcoder_name(pch_transcoder));
}
}
@ -386,7 +386,7 @@ void intel_pch_fifo_underrun_irq_handler(struct drm_i915_private *dev_priv,
{
if (intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder,
false))
DRM_ERROR("PCH transcoder %c FIFO underrun\n",
DRM_ERROR("PCH transcoder %s FIFO underrun\n",
transcoder_name(pch_transcoder));
}

View File

@ -59,7 +59,7 @@
*
*/
#define I915_SKL_GUC_UCODE "i915/skl_guc_ver4.bin"
#define I915_SKL_GUC_UCODE "i915/skl_guc_ver6.bin"
MODULE_FIRMWARE(I915_SKL_GUC_UCODE);
/* User-friendly representation of an enum */
@ -81,14 +81,14 @@ const char *intel_guc_fw_status_repr(enum intel_guc_fw_status status)
static void direct_interrupts_to_host(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *ring;
int i, irqs;
struct intel_engine_cs *engine;
int irqs;
/* tell all command streamers NOT to forward interrupts and vblank to GuC */
irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
for_each_ring(ring, dev_priv, i)
I915_WRITE(RING_MODE_GEN7(ring), irqs);
for_each_engine(engine, dev_priv)
I915_WRITE(RING_MODE_GEN7(engine), irqs);
/* route all GT interrupts to the host */
I915_WRITE(GUC_BCS_RCS_IER, 0);
@ -98,14 +98,14 @@ static void direct_interrupts_to_host(struct drm_i915_private *dev_priv)
static void direct_interrupts_to_guc(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *ring;
int i, irqs;
struct intel_engine_cs *engine;
int irqs;
/* tell all command streamers to forward interrupts and vblank to GuC */
irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_ALWAYS);
irqs |= _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
for_each_ring(ring, dev_priv, i)
I915_WRITE(RING_MODE_GEN7(ring), irqs);
for_each_engine(engine, dev_priv)
I915_WRITE(RING_MODE_GEN7(engine), irqs);
/* route USER_INTERRUPT to Host, all others are sent to GuC. */
irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
@ -595,8 +595,8 @@ void intel_guc_ucode_init(struct drm_device *dev)
fw_path = NULL;
} else if (IS_SKYLAKE(dev)) {
fw_path = I915_SKL_GUC_UCODE;
guc_fw->guc_fw_major_wanted = 4;
guc_fw->guc_fw_minor_wanted = 3;
guc_fw->guc_fw_major_wanted = 6;
guc_fw->guc_fw_minor_wanted = 1;
} else {
i915.enable_guc_submission = false;
fw_path = ""; /* unknown device */

View File

@ -952,9 +952,6 @@ static void intel_hdmi_get_config(struct intel_encoder *encoder,
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
if (HAS_PCH_SPLIT(dev_priv->dev))
ironlake_check_encoder_dotclock(pipe_config, dotclock);
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
}

File diff suppressed because it is too large Load Diff

View File

@ -57,8 +57,8 @@
/* Logical Rings */
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request);
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request);
void intel_logical_ring_stop(struct intel_engine_cs *ring);
void intel_logical_ring_cleanup(struct intel_engine_cs *ring);
void intel_logical_ring_stop(struct intel_engine_cs *engine);
void intel_logical_ring_cleanup(struct intel_engine_cs *engine);
int intel_logical_rings_init(struct drm_device *dev);
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords);
@ -98,18 +98,18 @@ static inline void intel_logical_ring_emit_reg(struct intel_ringbuffer *ringbuf,
#define LRC_STATE_PN (LRC_PPHWSP_PN + 1)
void intel_lr_context_free(struct intel_context *ctx);
uint32_t intel_lr_context_size(struct intel_engine_cs *ring);
uint32_t intel_lr_context_size(struct intel_engine_cs *engine);
int intel_lr_context_deferred_alloc(struct intel_context *ctx,
struct intel_engine_cs *ring);
struct intel_engine_cs *engine);
void intel_lr_context_unpin(struct intel_context *ctx,
struct intel_engine_cs *engine);
void intel_lr_context_reset(struct drm_device *dev,
struct intel_context *ctx);
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
struct intel_engine_cs *ring);
struct intel_engine_cs *engine);
u32 intel_execlists_ctx_id(struct intel_context *ctx,
struct intel_engine_cs *ring);
struct intel_engine_cs *engine);
/* Execlists */
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists);
@ -118,7 +118,7 @@ int intel_execlists_submission(struct i915_execbuffer_params *params,
struct drm_i915_gem_execbuffer2 *args,
struct list_head *vmas);
void intel_lrc_irq_handler(struct intel_engine_cs *ring);
void intel_execlists_retire_requests(struct intel_engine_cs *ring);
void intel_lrc_irq_handler(struct intel_engine_cs *engine);
void intel_execlists_retire_requests(struct intel_engine_cs *engine);
#endif /* _INTEL_LRC_H_ */

View File

@ -109,7 +109,6 @@ static void intel_lvds_get_config(struct intel_encoder *encoder,
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_lvds_encoder *lvds_encoder = to_lvds_encoder(&encoder->base);
u32 tmp, flags = 0;
int dotclock;
tmp = I915_READ(lvds_encoder->reg);
if (tmp & LVDS_HSYNC_POLARITY)
@ -130,12 +129,7 @@ static void intel_lvds_get_config(struct intel_encoder *encoder,
pipe_config->gmch_pfit.control |= tmp & PANEL_8TO6_DITHER_ENABLE;
}
dotclock = pipe_config->port_clock;
if (HAS_PCH_SPLIT(dev_priv->dev))
ironlake_check_encoder_dotclock(pipe_config, dotclock);
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
}
static void intel_pre_enable_lvds(struct intel_encoder *encoder)
@ -151,7 +145,7 @@ static void intel_pre_enable_lvds(struct intel_encoder *encoder)
if (HAS_PCH_SPLIT(dev)) {
assert_fdi_rx_pll_disabled(dev_priv, pipe);
assert_shared_dpll_disabled(dev_priv,
intel_crtc_to_shared_dpll(crtc));
crtc->config->shared_dpll);
} else {
assert_pll_disabled(dev_priv, pipe);
}
@ -781,57 +775,6 @@ static const struct dmi_system_id intel_no_lvds[] = {
{ } /* terminating entry */
};
/*
* Enumerate the child dev array parsed from VBT to check whether
* the LVDS is present.
* If it is present, return 1.
* If it is not present, return false.
* If no child dev is parsed from VBT, it assumes that the LVDS is present.
*/
static bool lvds_is_present_in_vbt(struct drm_device *dev,
u8 *i2c_pin)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
if (!dev_priv->vbt.child_dev_num)
return true;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
union child_device_config *uchild = dev_priv->vbt.child_dev + i;
struct old_child_dev_config *child = &uchild->old;
/* If the device type is not LFP, continue.
* We have to check both the new identifiers as well as the
* old for compatibility with some BIOSes.
*/
if (child->device_type != DEVICE_TYPE_INT_LFP &&
child->device_type != DEVICE_TYPE_LFP)
continue;
if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin))
*i2c_pin = child->i2c_pin;
/* However, we cannot trust the BIOS writers to populate
* the VBT correctly. Since LVDS requires additional
* information from AIM blocks, a non-zero addin offset is
* a good indicator that the LVDS is actually present.
*/
if (child->addin_offset)
return true;
/* But even then some BIOS writers perform some black magic
* and instantiate the device without reference to any
* additional data. Trust that if the VBT was written into
* the OpRegion then they have validated the LVDS's existence.
*/
if (dev_priv->opregion.vbt)
return true;
}
return false;
}
static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
{
DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
@ -981,14 +924,14 @@ void intel_lvds_init(struct drm_device *dev)
if (HAS_PCH_SPLIT(dev)) {
if ((lvds & LVDS_DETECTED) == 0)
return;
if (dev_priv->vbt.edp_support) {
if (dev_priv->vbt.edp.support) {
DRM_DEBUG_KMS("disable LVDS for eDP support\n");
return;
}
}
pin = GMBUS_PIN_PANEL;
if (!lvds_is_present_in_vbt(dev, &pin)) {
if (!intel_bios_is_lvds_present(dev_priv, &pin)) {
if ((lvds & LVDS_PORT_EN) == 0) {
DRM_DEBUG_KMS("LVDS is not present in VBT\n");
return;

View File

@ -159,7 +159,7 @@ static bool get_mocs_settings(struct drm_device *dev,
return result;
}
static i915_reg_t mocs_register(enum intel_ring_id ring, int index)
static i915_reg_t mocs_register(enum intel_engine_id ring, int index)
{
switch (ring) {
case RCS:
@ -191,7 +191,7 @@ static i915_reg_t mocs_register(enum intel_ring_id ring, int index)
*/
static int emit_mocs_control_table(struct drm_i915_gem_request *req,
const struct drm_i915_mocs_table *table,
enum intel_ring_id ring)
enum intel_engine_id ring)
{
struct intel_ringbuffer *ringbuf = req->ringbuf;
unsigned int index;
@ -322,14 +322,14 @@ int intel_rcs_context_init_mocs(struct drm_i915_gem_request *req)
struct drm_i915_mocs_table t;
int ret;
if (get_mocs_settings(req->ring->dev, &t)) {
if (get_mocs_settings(req->engine->dev, &t)) {
struct drm_i915_private *dev_priv = req->i915;
struct intel_engine_cs *ring;
enum intel_ring_id ring_id;
struct intel_engine_cs *engine;
enum intel_engine_id id;
/* Program the control registers */
for_each_ring(ring, dev_priv, ring_id) {
ret = emit_mocs_control_table(req, &t, ring_id);
for_each_engine_id(engine, dev_priv, id) {
ret = emit_mocs_control_table(req, &t, id);
if (ret)
return ret;
}

View File

@ -196,7 +196,7 @@ intel_overlay_map_regs(struct intel_overlay *overlay)
if (OVERLAY_NEEDS_PHYSICAL(overlay->dev))
regs = (struct overlay_registers __iomem *)overlay->reg_bo->phys_handle->vaddr;
else
regs = io_mapping_map_wc(dev_priv->gtt.mappable,
regs = io_mapping_map_wc(dev_priv->ggtt.mappable,
i915_gem_obj_ggtt_offset(overlay->reg_bo));
return regs;
@ -233,14 +233,14 @@ static int intel_overlay_on(struct intel_overlay *overlay)
{
struct drm_device *dev = overlay->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[RCS];
struct intel_engine_cs *engine = &dev_priv->engine[RCS];
struct drm_i915_gem_request *req;
int ret;
WARN_ON(overlay->active);
WARN_ON(IS_I830(dev) && !(dev_priv->quirks & QUIRK_PIPEA_FORCE));
req = i915_gem_request_alloc(ring, NULL);
req = i915_gem_request_alloc(engine, NULL);
if (IS_ERR(req))
return PTR_ERR(req);
@ -252,11 +252,11 @@ static int intel_overlay_on(struct intel_overlay *overlay)
overlay->active = true;
intel_ring_emit(ring, MI_OVERLAY_FLIP | MI_OVERLAY_ON);
intel_ring_emit(ring, overlay->flip_addr | OFC_UPDATE);
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
intel_ring_emit(engine, MI_OVERLAY_FLIP | MI_OVERLAY_ON);
intel_ring_emit(engine, overlay->flip_addr | OFC_UPDATE);
intel_ring_emit(engine, MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP);
intel_ring_emit(engine, MI_NOOP);
intel_ring_advance(engine);
return intel_overlay_do_wait_request(overlay, req, NULL);
}
@ -267,7 +267,7 @@ static int intel_overlay_continue(struct intel_overlay *overlay,
{
struct drm_device *dev = overlay->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[RCS];
struct intel_engine_cs *engine = &dev_priv->engine[RCS];
struct drm_i915_gem_request *req;
u32 flip_addr = overlay->flip_addr;
u32 tmp;
@ -283,7 +283,7 @@ static int intel_overlay_continue(struct intel_overlay *overlay,
if (tmp & (1 << 17))
DRM_DEBUG("overlay underrun, DOVSTA: %x\n", tmp);
req = i915_gem_request_alloc(ring, NULL);
req = i915_gem_request_alloc(engine, NULL);
if (IS_ERR(req))
return PTR_ERR(req);
@ -293,9 +293,9 @@ static int intel_overlay_continue(struct intel_overlay *overlay,
return ret;
}
intel_ring_emit(ring, MI_OVERLAY_FLIP | MI_OVERLAY_CONTINUE);
intel_ring_emit(ring, flip_addr);
intel_ring_advance(ring);
intel_ring_emit(engine, MI_OVERLAY_FLIP | MI_OVERLAY_CONTINUE);
intel_ring_emit(engine, flip_addr);
intel_ring_advance(engine);
WARN_ON(overlay->last_flip_req);
i915_gem_request_assign(&overlay->last_flip_req, req);
@ -336,7 +336,7 @@ static int intel_overlay_off(struct intel_overlay *overlay)
{
struct drm_device *dev = overlay->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[RCS];
struct intel_engine_cs *engine = &dev_priv->engine[RCS];
struct drm_i915_gem_request *req;
u32 flip_addr = overlay->flip_addr;
int ret;
@ -349,7 +349,7 @@ static int intel_overlay_off(struct intel_overlay *overlay)
* of the hw. Do it in both cases */
flip_addr |= OFC_UPDATE;
req = i915_gem_request_alloc(ring, NULL);
req = i915_gem_request_alloc(engine, NULL);
if (IS_ERR(req))
return PTR_ERR(req);
@ -360,22 +360,23 @@ static int intel_overlay_off(struct intel_overlay *overlay)
}
/* wait for overlay to go idle */
intel_ring_emit(ring, MI_OVERLAY_FLIP | MI_OVERLAY_CONTINUE);
intel_ring_emit(ring, flip_addr);
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP);
intel_ring_emit(engine, MI_OVERLAY_FLIP | MI_OVERLAY_CONTINUE);
intel_ring_emit(engine, flip_addr);
intel_ring_emit(engine, MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP);
/* turn overlay off */
if (IS_I830(dev)) {
/* Workaround: Don't disable the overlay fully, since otherwise
* it dies on the next OVERLAY_ON cmd. */
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(engine, MI_NOOP);
intel_ring_emit(engine, MI_NOOP);
intel_ring_emit(engine, MI_NOOP);
} else {
intel_ring_emit(ring, MI_OVERLAY_FLIP | MI_OVERLAY_OFF);
intel_ring_emit(ring, flip_addr);
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP);
intel_ring_emit(engine, MI_OVERLAY_FLIP | MI_OVERLAY_OFF);
intel_ring_emit(engine, flip_addr);
intel_ring_emit(engine,
MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP);
}
intel_ring_advance(ring);
intel_ring_advance(engine);
return intel_overlay_do_wait_request(overlay, req, intel_overlay_off_tail);
}
@ -408,7 +409,7 @@ static int intel_overlay_release_old_vid(struct intel_overlay *overlay)
{
struct drm_device *dev = overlay->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[RCS];
struct intel_engine_cs *engine = &dev_priv->engine[RCS];
int ret;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
@ -423,7 +424,7 @@ static int intel_overlay_release_old_vid(struct intel_overlay *overlay)
/* synchronous slowpath */
struct drm_i915_gem_request *req;
req = i915_gem_request_alloc(ring, NULL);
req = i915_gem_request_alloc(engine, NULL);
if (IS_ERR(req))
return PTR_ERR(req);
@ -433,9 +434,10 @@ static int intel_overlay_release_old_vid(struct intel_overlay *overlay)
return ret;
}
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
intel_ring_emit(engine,
MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP);
intel_ring_emit(engine, MI_NOOP);
intel_ring_advance(engine);
ret = intel_overlay_do_wait_request(overlay, req,
intel_overlay_release_old_vid_tail);
@ -1488,7 +1490,7 @@ intel_overlay_map_regs_atomic(struct intel_overlay *overlay)
regs = (struct overlay_registers __iomem *)
overlay->reg_bo->phys_handle->vaddr;
else
regs = io_mapping_map_atomic_wc(dev_priv->gtt.mappable,
regs = io_mapping_map_atomic_wc(dev_priv->ggtt.mappable,
i915_gem_obj_ggtt_offset(overlay->reg_bo));
return regs;

View File

@ -1240,7 +1240,7 @@ static void intel_backlight_device_unregister(struct intel_connector *connector)
*/
static u32 bxt_hz_to_pwm(struct intel_connector *connector, u32 pwm_freq_hz)
{
return KHz(19200) / pwm_freq_hz;
return DIV_ROUND_CLOSEST(KHz(19200), pwm_freq_hz);
}
/*
@ -1251,16 +1251,14 @@ static u32 bxt_hz_to_pwm(struct intel_connector *connector, u32 pwm_freq_hz)
static u32 spt_hz_to_pwm(struct intel_connector *connector, u32 pwm_freq_hz)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
u32 mul, clock;
u32 mul;
if (I915_READ(SOUTH_CHICKEN1) & SPT_PWM_GRANULARITY)
mul = 128;
else
mul = 16;
clock = MHz(24);
return clock / (pwm_freq_hz * mul);
return DIV_ROUND_CLOSEST(MHz(24), pwm_freq_hz * mul);
}
/*
@ -1283,7 +1281,7 @@ static u32 lpt_hz_to_pwm(struct intel_connector *connector, u32 pwm_freq_hz)
else
clock = MHz(24); /* LPT:LP */
return clock / (pwm_freq_hz * mul);
return DIV_ROUND_CLOSEST(clock, pwm_freq_hz * mul);
}
/*
@ -1292,10 +1290,9 @@ static u32 lpt_hz_to_pwm(struct intel_connector *connector, u32 pwm_freq_hz)
*/
static u32 pch_hz_to_pwm(struct intel_connector *connector, u32 pwm_freq_hz)
{
struct drm_device *dev = connector->base.dev;
int clock = MHz(intel_pch_rawclk(dev));
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
return clock / (pwm_freq_hz * 128);
return DIV_ROUND_CLOSEST(KHz(dev_priv->rawclk_freq), pwm_freq_hz * 128);
}
/*
@ -1308,16 +1305,15 @@ static u32 pch_hz_to_pwm(struct intel_connector *connector, u32 pwm_freq_hz)
*/
static u32 i9xx_hz_to_pwm(struct intel_connector *connector, u32 pwm_freq_hz)
{
struct drm_device *dev = connector->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
int clock;
if (IS_PINEVIEW(dev))
clock = MHz(intel_hrawclk(dev));
if (IS_PINEVIEW(dev_priv))
clock = KHz(dev_priv->rawclk_freq);
else
clock = 1000 * dev_priv->cdclk_freq;
clock = KHz(dev_priv->cdclk_freq);
return clock / (pwm_freq_hz * 32);
return DIV_ROUND_CLOSEST(clock, pwm_freq_hz * 32);
}
/*
@ -1332,11 +1328,11 @@ static u32 i965_hz_to_pwm(struct intel_connector *connector, u32 pwm_freq_hz)
int clock;
if (IS_G4X(dev_priv))
clock = MHz(intel_hrawclk(dev));
clock = KHz(dev_priv->rawclk_freq);
else
clock = 1000 * dev_priv->cdclk_freq;
clock = KHz(dev_priv->cdclk_freq);
return clock / (pwm_freq_hz * 128);
return DIV_ROUND_CLOSEST(clock, pwm_freq_hz * 128);
}
/*
@ -1346,19 +1342,21 @@ static u32 i965_hz_to_pwm(struct intel_connector *connector, u32 pwm_freq_hz)
*/
static u32 vlv_hz_to_pwm(struct intel_connector *connector, u32 pwm_freq_hz)
{
struct drm_device *dev = connector->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int clock;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
int mul, clock;
if ((I915_READ(CBR1_VLV) & CBR_PWM_CLOCK_MUX_SELECT) == 0) {
if (IS_CHERRYVIEW(dev))
return KHz(19200) / (pwm_freq_hz * 16);
if (IS_CHERRYVIEW(dev_priv))
clock = KHz(19200);
else
return MHz(25) / (pwm_freq_hz * 16);
clock = MHz(25);
mul = 16;
} else {
clock = intel_hrawclk(dev);
return MHz(clock) / (pwm_freq_hz * 128);
clock = KHz(dev_priv->rawclk_freq);
mul = 128;
}
return DIV_ROUND_CLOSEST(clock, pwm_freq_hz * mul);
}
static u32 get_backlight_max_vbt(struct intel_connector *connector)
@ -1745,7 +1743,7 @@ intel_panel_init_backlight_funcs(struct intel_panel *panel)
panel->backlight.get = pch_get_backlight;
panel->backlight.hz_to_pwm = pch_hz_to_pwm;
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
if (dev_priv->vbt.has_mipi) {
if (connector->base.connector_type == DRM_MODE_CONNECTOR_DSI) {
panel->backlight.setup = pwm_setup_backlight;
panel->backlight.enable = pwm_enable_backlight;
panel->backlight.disable = pwm_disable_backlight;

View File

@ -487,20 +487,6 @@ static const struct intel_watermark_params g4x_cursor_wm_info = {
.guard_size = 2,
.cacheline_size = G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_wm_info = {
.fifo_size = VALLEYVIEW_FIFO_SIZE,
.max_wm = VALLEYVIEW_MAX_WM,
.default_wm = VALLEYVIEW_MAX_WM,
.guard_size = 2,
.cacheline_size = G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
.fifo_size = I965_CURSOR_FIFO,
.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
.default_wm = I965_CURSOR_DFT_WM,
.guard_size = 2,
.cacheline_size = G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
.fifo_size = I965_CURSOR_FIFO,
.max_wm = I965_CURSOR_MAX_WM,
@ -2010,11 +1996,18 @@ static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
cur_latency *= 5;
}
result->pri_val = ilk_compute_pri_wm(cstate, pristate,
pri_latency, level);
result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
if (pristate) {
result->pri_val = ilk_compute_pri_wm(cstate, pristate,
pri_latency, level);
result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
}
if (sprstate)
result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
if (curstate)
result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
result->enable = true;
}
@ -2278,99 +2271,170 @@ static void skl_setup_wm_latency(struct drm_device *dev)
intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}
/* Compute new watermarks for the pipe */
static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
struct drm_atomic_state *state)
static bool ilk_validate_pipe_wm(struct drm_device *dev,
struct intel_pipe_wm *pipe_wm)
{
struct intel_pipe_wm *pipe_wm;
struct drm_device *dev = intel_crtc->base.dev;
const struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc_state *cstate = NULL;
struct intel_plane *intel_plane;
struct drm_plane_state *ps;
struct intel_plane_state *pristate = NULL;
struct intel_plane_state *sprstate = NULL;
struct intel_plane_state *curstate = NULL;
int level, max_level = ilk_wm_max_level(dev);
/* LP0 watermark maximums depend on this pipe alone */
struct intel_wm_config config = {
const struct intel_wm_config config = {
.num_pipes_active = 1,
.sprites_enabled = pipe_wm->sprites_enabled,
.sprites_scaled = pipe_wm->sprites_scaled,
};
struct ilk_wm_maximums max;
cstate = intel_atomic_get_crtc_state(state, intel_crtc);
if (IS_ERR(cstate))
return PTR_ERR(cstate);
pipe_wm = &cstate->wm.optimal.ilk;
memset(pipe_wm, 0, sizeof(*pipe_wm));
for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
ps = drm_atomic_get_plane_state(state,
&intel_plane->base);
if (IS_ERR(ps))
return PTR_ERR(ps);
if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
pristate = to_intel_plane_state(ps);
else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
sprstate = to_intel_plane_state(ps);
else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
curstate = to_intel_plane_state(ps);
}
config.sprites_enabled = sprstate->visible;
config.sprites_scaled = sprstate->visible &&
(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
pipe_wm->pipe_enabled = cstate->base.active;
pipe_wm->sprites_enabled = config.sprites_enabled;
pipe_wm->sprites_scaled = config.sprites_scaled;
/* ILK/SNB: LP2+ watermarks only w/o sprites */
if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
max_level = 1;
/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
if (config.sprites_scaled)
max_level = 0;
ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
pristate, sprstate, curstate, &pipe_wm->wm[0]);
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
/* LP0 watermarks always use 1/2 DDB partitioning */
ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
/* At least LP0 must be valid */
if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
DRM_DEBUG_KMS("LP0 watermark invalid\n");
return false;
}
return true;
}
/* Compute new watermarks for the pipe */
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
{
struct drm_atomic_state *state = cstate->base.state;
struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
struct intel_pipe_wm *pipe_wm;
struct drm_device *dev = state->dev;
const struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_plane *intel_plane;
struct intel_plane_state *pristate = NULL;
struct intel_plane_state *sprstate = NULL;
struct intel_plane_state *curstate = NULL;
int level, max_level = ilk_wm_max_level(dev), usable_level;
struct ilk_wm_maximums max;
pipe_wm = &cstate->wm.optimal.ilk;
for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
struct intel_plane_state *ps;
ps = intel_atomic_get_existing_plane_state(state,
intel_plane);
if (!ps)
continue;
if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
pristate = ps;
else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
sprstate = ps;
else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
curstate = ps;
}
pipe_wm->pipe_enabled = cstate->base.active;
if (sprstate) {
pipe_wm->sprites_enabled = sprstate->visible;
pipe_wm->sprites_scaled = sprstate->visible &&
(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
}
usable_level = max_level;
/* ILK/SNB: LP2+ watermarks only w/o sprites */
if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
usable_level = 1;
/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
if (pipe_wm->sprites_scaled)
usable_level = 0;
ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
pipe_wm->wm[0] = pipe_wm->raw_wm[0];
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
if (!ilk_validate_pipe_wm(dev, pipe_wm))
return -EINVAL;
ilk_compute_wm_reg_maximums(dev, 1, &max);
for (level = 1; level <= max_level; level++) {
struct intel_wm_level wm = {};
struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
pristate, sprstate, curstate, &wm);
pristate, sprstate, curstate, wm);
/*
* Disable any watermark level that exceeds the
* register maximums since such watermarks are
* always invalid.
*/
if (!ilk_validate_wm_level(level, &max, &wm))
break;
if (level > usable_level)
continue;
pipe_wm->wm[level] = wm;
if (ilk_validate_wm_level(level, &max, wm))
pipe_wm->wm[level] = *wm;
else
usable_level = level;
}
return 0;
}
/*
* Build a set of 'intermediate' watermark values that satisfy both the old
* state and the new state. These can be programmed to the hardware
* immediately.
*/
static int ilk_compute_intermediate_wm(struct drm_device *dev,
struct intel_crtc *intel_crtc,
struct intel_crtc_state *newstate)
{
struct intel_pipe_wm *a = &newstate->wm.intermediate;
struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
int level, max_level = ilk_wm_max_level(dev);
/*
* Start with the final, target watermarks, then combine with the
* currently active watermarks to get values that are safe both before
* and after the vblank.
*/
*a = newstate->wm.optimal.ilk;
a->pipe_enabled |= b->pipe_enabled;
a->sprites_enabled |= b->sprites_enabled;
a->sprites_scaled |= b->sprites_scaled;
for (level = 0; level <= max_level; level++) {
struct intel_wm_level *a_wm = &a->wm[level];
const struct intel_wm_level *b_wm = &b->wm[level];
a_wm->enable &= b_wm->enable;
a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
}
/*
* We need to make sure that these merged watermark values are
* actually a valid configuration themselves. If they're not,
* there's no safe way to transition from the old state to
* the new state, so we need to fail the atomic transaction.
*/
if (!ilk_validate_pipe_wm(dev, a))
return -EINVAL;
/*
* If our intermediate WM are identical to the final WM, then we can
* omit the post-vblank programming; only update if it's different.
*/
if (memcmp(a, &newstate->wm.optimal.ilk, sizeof(*a)) == 0)
newstate->wm.need_postvbl_update = false;
return 0;
}
/*
* Merge the watermarks from all active pipes for a specific level.
*/
@ -2383,9 +2447,7 @@ static void ilk_merge_wm_level(struct drm_device *dev,
ret_wm->enable = true;
for_each_intel_crtc(dev, intel_crtc) {
const struct intel_crtc_state *cstate =
to_intel_crtc_state(intel_crtc->base.state);
const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
const struct intel_wm_level *wm = &active->wm[level];
if (!active->pipe_enabled)
@ -2533,15 +2595,14 @@ static void ilk_compute_wm_results(struct drm_device *dev,
/* LP0 register values */
for_each_intel_crtc(dev, intel_crtc) {
const struct intel_crtc_state *cstate =
to_intel_crtc_state(intel_crtc->base.state);
enum pipe pipe = intel_crtc->pipe;
const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
const struct intel_wm_level *r =
&intel_crtc->wm.active.ilk.wm[0];
if (WARN_ON(!r->enable))
continue;
results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
results->wm_pipe[pipe] =
(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
@ -2748,7 +2809,7 @@ static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
dev_priv->wm.hw = *results;
}
static bool ilk_disable_lp_wm(struct drm_device *dev)
bool ilk_disable_lp_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
@ -3643,11 +3704,9 @@ static void ilk_compute_wm_config(struct drm_device *dev,
}
}
static void ilk_program_watermarks(struct intel_crtc_state *cstate)
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
{
struct drm_crtc *crtc = cstate->base.crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_device *dev = dev_priv->dev;
struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
struct ilk_wm_maximums max;
struct intel_wm_config config = {};
@ -3678,28 +3737,28 @@ static void ilk_program_watermarks(struct intel_crtc_state *cstate)
ilk_write_wm_values(dev_priv, &results);
}
static void ilk_update_wm(struct drm_crtc *crtc)
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
WARN_ON(cstate->base.active != intel_crtc->active);
mutex_lock(&dev_priv->wm.wm_mutex);
intel_crtc->wm.active.ilk = cstate->wm.intermediate;
ilk_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
/*
* IVB workaround: must disable low power watermarks for at least
* one frame before enabling scaling. LP watermarks can be re-enabled
* when scaling is disabled.
*
* WaCxSRDisabledForSpriteScaling:ivb
*/
if (cstate->disable_lp_wm) {
ilk_disable_lp_wm(crtc->dev);
intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
mutex_lock(&dev_priv->wm.wm_mutex);
if (cstate->wm.need_postvbl_update) {
intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
ilk_program_watermarks(dev_priv);
}
intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
ilk_program_watermarks(cstate);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void skl_pipe_wm_active_state(uint32_t val,
@ -4585,9 +4644,9 @@ static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
* for this check.
*/
rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
(rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
dev_priv->gtt.stolen_reserved_size))) {
if (!((rc6_ctx_base >= dev_priv->ggtt.stolen_reserved_base) &&
(rc6_ctx_base + PAGE_SIZE <= dev_priv->ggtt.stolen_reserved_base +
dev_priv->ggtt.stolen_reserved_size))) {
DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
enable_rc6 = false;
}
@ -4756,9 +4815,8 @@ static void gen9_enable_rps(struct drm_device *dev)
static void gen9_enable_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
uint32_t rc6_mask = 0;
int unused;
/* 1a: Software RC state - RC0 */
I915_WRITE(GEN6_RC_STATE, 0);
@ -4779,8 +4837,8 @@ static void gen9_enable_rc6(struct drm_device *dev)
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
for_each_ring(ring, dev_priv, unused)
I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
for_each_engine(engine, dev_priv)
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
if (HAS_GUC_UCODE(dev))
I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
@ -4826,9 +4884,8 @@ static void gen9_enable_rc6(struct drm_device *dev)
static void gen8_enable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
uint32_t rc6_mask = 0;
int unused;
/* 1a: Software RC state - RC0 */
I915_WRITE(GEN6_RC_STATE, 0);
@ -4847,8 +4904,8 @@ static void gen8_enable_rps(struct drm_device *dev)
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
for_each_ring(ring, dev_priv, unused)
I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
for_each_engine(engine, dev_priv)
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
I915_WRITE(GEN6_RC_SLEEP, 0);
if (IS_BROADWELL(dev))
I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
@ -4908,11 +4965,11 @@ static void gen8_enable_rps(struct drm_device *dev)
static void gen6_enable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
u32 gtfifodbg;
int rc6_mode;
int i, ret;
int ret;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
@ -4944,8 +5001,8 @@ static void gen6_enable_rps(struct drm_device *dev)
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
for_each_ring(ring, dev_priv, i)
I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
for_each_engine(engine, dev_priv)
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
I915_WRITE(GEN6_RC_SLEEP, 0);
I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
@ -5232,7 +5289,7 @@ static void cherryview_setup_pctx(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long pctx_paddr, paddr;
struct i915_gtt *gtt = &dev_priv->gtt;
struct i915_ggtt *ggtt = &dev_priv->ggtt;
u32 pcbr;
int pctx_size = 32*1024;
@ -5240,7 +5297,7 @@ static void cherryview_setup_pctx(struct drm_device *dev)
if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
paddr = (dev_priv->mm.stolen_base +
(gtt->stolen_size - pctx_size));
(ggtt->stolen_size - pctx_size));
pctx_paddr = (paddr & (~4095));
I915_WRITE(VLV_PCBR, pctx_paddr);
@ -5436,9 +5493,8 @@ static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
static void cherryview_enable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
u32 gtfifodbg, val, rc6_mode = 0, pcbr;
int i;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
@ -5463,8 +5519,8 @@ static void cherryview_enable_rps(struct drm_device *dev)
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
for_each_ring(ring, dev_priv, i)
I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
for_each_engine(engine, dev_priv)
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
I915_WRITE(GEN6_RC_SLEEP, 0);
/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
@ -5534,9 +5590,8 @@ static void cherryview_enable_rps(struct drm_device *dev)
static void valleyview_enable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
u32 gtfifodbg, val, rc6_mode = 0;
int i;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
@ -5574,8 +5629,8 @@ static void valleyview_enable_rps(struct drm_device *dev)
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
for_each_ring(ring, dev_priv, i)
I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
for_each_engine(engine, dev_priv)
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
@ -5951,17 +6006,16 @@ EXPORT_SYMBOL_GPL(i915_gpu_lower);
bool i915_gpu_busy(void)
{
struct drm_i915_private *dev_priv;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
bool ret = false;
int i;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev)
goto out_unlock;
dev_priv = i915_mch_dev;
for_each_ring(ring, dev_priv, i)
ret |= !list_empty(&ring->request_list);
for_each_engine(engine, dev_priv)
ret |= !list_empty(&engine->request_list);
out_unlock:
spin_unlock_irq(&mchdev_lock);
@ -7038,8 +7092,7 @@ void intel_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->display.init_clock_gating)
dev_priv->display.init_clock_gating(dev);
dev_priv->display.init_clock_gating(dev);
}
void intel_suspend_hw(struct drm_device *dev)
@ -7048,6 +7101,60 @@ void intel_suspend_hw(struct drm_device *dev)
lpt_suspend_hw(dev);
}
static void nop_init_clock_gating(struct drm_device *dev)
{
DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}
/**
* intel_init_clock_gating_hooks - setup the clock gating hooks
* @dev_priv: device private
*
* Setup the hooks that configure which clocks of a given platform can be
* gated and also apply various GT and display specific workarounds for these
* platforms. Note that some GT specific workarounds are applied separately
* when GPU contexts or batchbuffers start their execution.
*/
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
if (IS_SKYLAKE(dev_priv))
dev_priv->display.init_clock_gating = nop_init_clock_gating;
else if (IS_KABYLAKE(dev_priv))
dev_priv->display.init_clock_gating = nop_init_clock_gating;
else if (IS_BROXTON(dev_priv))
dev_priv->display.init_clock_gating = bxt_init_clock_gating;
else if (IS_BROADWELL(dev_priv))
dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
else if (IS_CHERRYVIEW(dev_priv))
dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
else if (IS_HASWELL(dev_priv))
dev_priv->display.init_clock_gating = haswell_init_clock_gating;
else if (IS_IVYBRIDGE(dev_priv))
dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
else if (IS_VALLEYVIEW(dev_priv))
dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
else if (IS_GEN6(dev_priv))
dev_priv->display.init_clock_gating = gen6_init_clock_gating;
else if (IS_GEN5(dev_priv))
dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
else if (IS_G4X(dev_priv))
dev_priv->display.init_clock_gating = g4x_init_clock_gating;
else if (IS_CRESTLINE(dev_priv))
dev_priv->display.init_clock_gating = crestline_init_clock_gating;
else if (IS_BROADWATER(dev_priv))
dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
else if (IS_GEN3(dev_priv))
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
else if (IS_GEN2(dev_priv))
dev_priv->display.init_clock_gating = i830_init_clock_gating;
else {
MISSING_CASE(INTEL_DEVID(dev_priv));
dev_priv->display.init_clock_gating = nop_init_clock_gating;
}
}
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
@ -7064,10 +7171,6 @@ void intel_init_pm(struct drm_device *dev)
/* For FIFO watermark updates */
if (INTEL_INFO(dev)->gen >= 9) {
skl_setup_wm_latency(dev);
if (IS_BROXTON(dev))
dev_priv->display.init_clock_gating =
bxt_init_clock_gating;
dev_priv->display.update_wm = skl_update_wm;
} else if (HAS_PCH_SPLIT(dev)) {
ilk_setup_wm_latency(dev);
@ -7076,36 +7179,23 @@ void intel_init_pm(struct drm_device *dev)
dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
(!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
dev_priv->display.update_wm = ilk_update_wm;
dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
dev_priv->display.program_watermarks = ilk_program_watermarks;
dev_priv->display.compute_intermediate_wm =
ilk_compute_intermediate_wm;
dev_priv->display.initial_watermarks =
ilk_initial_watermarks;
dev_priv->display.optimize_watermarks =
ilk_optimize_watermarks;
} else {
DRM_DEBUG_KMS("Failed to read display plane latency. "
"Disable CxSR\n");
}
if (IS_GEN5(dev))
dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
else if (IS_GEN6(dev))
dev_priv->display.init_clock_gating = gen6_init_clock_gating;
else if (IS_IVYBRIDGE(dev))
dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
else if (IS_HASWELL(dev))
dev_priv->display.init_clock_gating = haswell_init_clock_gating;
else if (INTEL_INFO(dev)->gen == 8)
dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
} else if (IS_CHERRYVIEW(dev)) {
vlv_setup_wm_latency(dev);
dev_priv->display.update_wm = vlv_update_wm;
dev_priv->display.init_clock_gating =
cherryview_init_clock_gating;
} else if (IS_VALLEYVIEW(dev)) {
vlv_setup_wm_latency(dev);
dev_priv->display.update_wm = vlv_update_wm;
dev_priv->display.init_clock_gating =
valleyview_init_clock_gating;
} else if (IS_PINEVIEW(dev)) {
if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
dev_priv->is_ddr3,
@ -7121,20 +7211,13 @@ void intel_init_pm(struct drm_device *dev)
dev_priv->display.update_wm = NULL;
} else
dev_priv->display.update_wm = pineview_update_wm;
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
} else if (IS_G4X(dev)) {
dev_priv->display.update_wm = g4x_update_wm;
dev_priv->display.init_clock_gating = g4x_init_clock_gating;
} else if (IS_GEN4(dev)) {
dev_priv->display.update_wm = i965_update_wm;
if (IS_CRESTLINE(dev))
dev_priv->display.init_clock_gating = crestline_init_clock_gating;
else if (IS_BROADWATER(dev))
dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
} else if (IS_GEN3(dev)) {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
} else if (IS_GEN2(dev)) {
if (INTEL_INFO(dev)->num_pipes == 1) {
dev_priv->display.update_wm = i845_update_wm;
@ -7143,11 +7226,6 @@ void intel_init_pm(struct drm_device *dev)
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i830_get_fifo_size;
}
if (IS_I85X(dev) || IS_I865G(dev))
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
else
dev_priv->display.init_clock_gating = i830_init_clock_gating;
} else {
DRM_ERROR("unexpected fall-through in intel_init_pm\n");
}
@ -7302,7 +7380,7 @@ static void __intel_rps_boost_work(struct work_struct *work)
struct drm_i915_gem_request *req = boost->req;
if (!i915_gem_request_completed(req, true))
gen6_rps_boost(to_i915(req->ring->dev), NULL,
gen6_rps_boost(to_i915(req->engine->dev), NULL,
req->emitted_jiffies);
i915_gem_request_unreference__unlocked(req);

View File

@ -507,7 +507,8 @@ static void hsw_psr_disable(struct intel_dp *intel_dp)
/* Wait till PSR is idle */
if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
EDP_PSR_STATUS_STATE_MASK) == 0,
2 * USEC_PER_SEC, 10 * USEC_PER_MSEC))
DRM_ERROR("Timed out waiting for PSR Idle State\n");
dev_priv->psr.active = false;
@ -780,8 +781,7 @@ void intel_psr_init(struct drm_device *dev)
/* Per platform default */
if (i915.enable_psr == -1) {
if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
i915.enable_psr = 1;
else
i915.enable_psr = 0;

File diff suppressed because it is too large Load Diff

View File

@ -55,31 +55,30 @@ struct intel_hw_status_page {
#define i915_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SIGNAL_OFFSET(__ring, to) \
(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
((__ring)->id * I915_NUM_RINGS * i915_semaphore_seqno_size) + \
((__ring)->id * I915_NUM_ENGINES * i915_semaphore_seqno_size) + \
(i915_semaphore_seqno_size * (to)))
#define GEN8_WAIT_OFFSET(__ring, from) \
(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
((from) * I915_NUM_RINGS * i915_semaphore_seqno_size) + \
((from) * I915_NUM_ENGINES * i915_semaphore_seqno_size) + \
(i915_semaphore_seqno_size * (__ring)->id))
#define GEN8_RING_SEMAPHORE_INIT do { \
#define GEN8_RING_SEMAPHORE_INIT(e) do { \
if (!dev_priv->semaphore_obj) { \
break; \
} \
ring->semaphore.signal_ggtt[RCS] = GEN8_SIGNAL_OFFSET(ring, RCS); \
ring->semaphore.signal_ggtt[VCS] = GEN8_SIGNAL_OFFSET(ring, VCS); \
ring->semaphore.signal_ggtt[BCS] = GEN8_SIGNAL_OFFSET(ring, BCS); \
ring->semaphore.signal_ggtt[VECS] = GEN8_SIGNAL_OFFSET(ring, VECS); \
ring->semaphore.signal_ggtt[VCS2] = GEN8_SIGNAL_OFFSET(ring, VCS2); \
ring->semaphore.signal_ggtt[ring->id] = MI_SEMAPHORE_SYNC_INVALID; \
(e)->semaphore.signal_ggtt[RCS] = GEN8_SIGNAL_OFFSET((e), RCS); \
(e)->semaphore.signal_ggtt[VCS] = GEN8_SIGNAL_OFFSET((e), VCS); \
(e)->semaphore.signal_ggtt[BCS] = GEN8_SIGNAL_OFFSET((e), BCS); \
(e)->semaphore.signal_ggtt[VECS] = GEN8_SIGNAL_OFFSET((e), VECS); \
(e)->semaphore.signal_ggtt[VCS2] = GEN8_SIGNAL_OFFSET((e), VCS2); \
(e)->semaphore.signal_ggtt[(e)->id] = MI_SEMAPHORE_SYNC_INVALID; \
} while(0)
enum intel_ring_hangcheck_action {
HANGCHECK_IDLE = 0,
HANGCHECK_WAIT,
HANGCHECK_ACTIVE,
HANGCHECK_ACTIVE_LOOP,
HANGCHECK_KICK,
HANGCHECK_HUNG,
};
@ -88,7 +87,6 @@ enum intel_ring_hangcheck_action {
struct intel_ring_hangcheck {
u64 acthd;
u64 max_acthd;
u32 seqno;
int score;
enum intel_ring_hangcheck_action action;
@ -101,7 +99,7 @@ struct intel_ringbuffer {
void __iomem *virtual_start;
struct i915_vma *vma;
struct intel_engine_cs *ring;
struct intel_engine_cs *engine;
struct list_head link;
u32 head;
@ -125,7 +123,7 @@ struct intel_ringbuffer {
};
struct intel_context;
struct drm_i915_reg_descriptor;
struct drm_i915_reg_table;
/*
* we use a single page to load ctx workarounds so all of these
@ -148,14 +146,14 @@ struct i915_ctx_workarounds {
struct intel_engine_cs {
const char *name;
enum intel_ring_id {
enum intel_engine_id {
RCS = 0,
BCS,
VCS,
VCS2, /* Keep instances of the same type engine together. */
VECS
} id;
#define I915_NUM_RINGS 5
#define I915_NUM_ENGINES 5
#define _VCS(n) (VCS + (n))
unsigned int exec_id;
unsigned int guc_id;
@ -246,16 +244,16 @@ struct intel_engine_cs {
* ie. transpose of f(x, y)
*/
struct {
u32 sync_seqno[I915_NUM_RINGS-1];
u32 sync_seqno[I915_NUM_ENGINES-1];
union {
struct {
/* our mbox written by others */
u32 wait[I915_NUM_RINGS];
u32 wait[I915_NUM_ENGINES];
/* mboxes this ring signals to */
i915_reg_t signal[I915_NUM_RINGS];
i915_reg_t signal[I915_NUM_ENGINES];
} mbox;
u64 signal_ggtt[I915_NUM_RINGS];
u64 signal_ggtt[I915_NUM_ENGINES];
};
/* AKA wait() */
@ -271,7 +269,8 @@ struct intel_engine_cs {
spinlock_t execlist_lock;
struct list_head execlist_queue;
struct list_head execlist_retired_req_list;
u8 next_context_status_buffer;
unsigned int next_context_status_buffer;
unsigned int idle_lite_restore_wa;
bool disable_lite_restore_wa;
u32 ctx_desc_template;
u32 irq_keep_mask; /* bitmask for interrupts that should not be masked */
@ -332,15 +331,8 @@ struct intel_engine_cs {
/*
* Table of registers allowed in commands that read/write registers.
*/
const struct drm_i915_reg_descriptor *reg_table;
int reg_count;
/*
* Table of registers allowed in commands that read/write registers, but
* only from the DRM master.
*/
const struct drm_i915_reg_descriptor *master_reg_table;
int master_reg_count;
const struct drm_i915_reg_table *reg_tables;
int reg_table_count;
/*
* Returns the bitmask for the length field of the specified command.
@ -356,19 +348,19 @@ struct intel_engine_cs {
};
static inline bool
intel_ring_initialized(struct intel_engine_cs *ring)
intel_engine_initialized(struct intel_engine_cs *engine)
{
return ring->dev != NULL;
return engine->dev != NULL;
}
static inline unsigned
intel_ring_flag(struct intel_engine_cs *ring)
intel_engine_flag(struct intel_engine_cs *engine)
{
return 1 << ring->id;
return 1 << engine->id;
}
static inline u32
intel_ring_sync_index(struct intel_engine_cs *ring,
intel_ring_sync_index(struct intel_engine_cs *engine,
struct intel_engine_cs *other)
{
int idx;
@ -381,34 +373,34 @@ intel_ring_sync_index(struct intel_engine_cs *ring,
* vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
*/
idx = (other - ring) - 1;
idx = (other - engine) - 1;
if (idx < 0)
idx += I915_NUM_RINGS;
idx += I915_NUM_ENGINES;
return idx;
}
static inline void
intel_flush_status_page(struct intel_engine_cs *ring, int reg)
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
{
drm_clflush_virt_range(&ring->status_page.page_addr[reg],
drm_clflush_virt_range(&engine->status_page.page_addr[reg],
sizeof(uint32_t));
}
static inline u32
intel_read_status_page(struct intel_engine_cs *ring,
intel_read_status_page(struct intel_engine_cs *engine,
int reg)
{
/* Ensure that the compiler doesn't optimize away the load. */
barrier();
return ring->status_page.page_addr[reg];
return engine->status_page.page_addr[reg];
}
static inline void
intel_write_status_page(struct intel_engine_cs *ring,
intel_write_status_page(struct intel_engine_cs *engine,
int reg, u32 value)
{
ring->status_page.page_addr[reg] = value;
engine->status_page.page_addr[reg] = value;
}
/*
@ -439,42 +431,42 @@ int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf);
void intel_ringbuffer_free(struct intel_ringbuffer *ring);
void intel_stop_ring_buffer(struct intel_engine_cs *ring);
void intel_cleanup_ring_buffer(struct intel_engine_cs *ring);
void intel_stop_engine(struct intel_engine_cs *engine);
void intel_cleanup_engine(struct intel_engine_cs *engine);
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
static inline void intel_ring_emit(struct intel_engine_cs *ring,
static inline void intel_ring_emit(struct intel_engine_cs *engine,
u32 data)
{
struct intel_ringbuffer *ringbuf = ring->buffer;
struct intel_ringbuffer *ringbuf = engine->buffer;
iowrite32(data, ringbuf->virtual_start + ringbuf->tail);
ringbuf->tail += 4;
}
static inline void intel_ring_emit_reg(struct intel_engine_cs *ring,
static inline void intel_ring_emit_reg(struct intel_engine_cs *engine,
i915_reg_t reg)
{
intel_ring_emit(ring, i915_mmio_reg_offset(reg));
intel_ring_emit(engine, i915_mmio_reg_offset(reg));
}
static inline void intel_ring_advance(struct intel_engine_cs *ring)
static inline void intel_ring_advance(struct intel_engine_cs *engine)
{
struct intel_ringbuffer *ringbuf = ring->buffer;
struct intel_ringbuffer *ringbuf = engine->buffer;
ringbuf->tail &= ringbuf->size - 1;
}
int __intel_ring_space(int head, int tail, int size);
void intel_ring_update_space(struct intel_ringbuffer *ringbuf);
int intel_ring_space(struct intel_ringbuffer *ringbuf);
bool intel_ring_stopped(struct intel_engine_cs *ring);
bool intel_engine_stopped(struct intel_engine_cs *engine);
int __must_check intel_ring_idle(struct intel_engine_cs *ring);
void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno);
int __must_check intel_engine_idle(struct intel_engine_cs *engine);
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno);
int intel_ring_flush_all_caches(struct drm_i915_gem_request *req);
int intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req);
void intel_fini_pipe_control(struct intel_engine_cs *ring);
int intel_init_pipe_control(struct intel_engine_cs *ring);
void intel_fini_pipe_control(struct intel_engine_cs *engine);
int intel_init_pipe_control(struct intel_engine_cs *engine);
int intel_init_render_ring_buffer(struct drm_device *dev);
int intel_init_bsd_ring_buffer(struct drm_device *dev);
@ -482,9 +474,9 @@ int intel_init_bsd2_ring_buffer(struct drm_device *dev);
int intel_init_blt_ring_buffer(struct drm_device *dev);
int intel_init_vebox_ring_buffer(struct drm_device *dev);
u64 intel_ring_get_active_head(struct intel_engine_cs *ring);
u64 intel_ring_get_active_head(struct intel_engine_cs *engine);
int init_workarounds_ring(struct intel_engine_cs *ring);
int init_workarounds_ring(struct intel_engine_cs *engine);
static inline u32 intel_ring_get_tail(struct intel_ringbuffer *ringbuf)
{

View File

@ -89,6 +89,10 @@ intel_display_power_domain_str(enum intel_display_power_domain domain)
return "TRANSCODER_C";
case POWER_DOMAIN_TRANSCODER_EDP:
return "TRANSCODER_EDP";
case POWER_DOMAIN_TRANSCODER_DSI_A:
return "TRANSCODER_DSI_A";
case POWER_DOMAIN_TRANSCODER_DSI_C:
return "TRANSCODER_DSI_C";
case POWER_DOMAIN_PORT_DDI_A_LANES:
return "PORT_DDI_A_LANES";
case POWER_DOMAIN_PORT_DDI_B_LANES:
@ -419,8 +423,11 @@ static void hsw_set_power_well(struct drm_i915_private *dev_priv,
BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
BIT(POWER_DOMAIN_PIPE_A) | \
BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
BIT(POWER_DOMAIN_TRANSCODER_DSI_A) | \
BIT(POWER_DOMAIN_TRANSCODER_DSI_C) | \
BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
BIT(POWER_DOMAIN_PORT_DSI) | \
BIT(POWER_DOMAIN_AUX_A) | \
BIT(POWER_DOMAIN_PLLS) | \
BIT(POWER_DOMAIN_INIT))
@ -458,8 +465,6 @@ static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
{
WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
"DC9 already programmed to be disabled.\n");
WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
"DC5 still not disabled.\n");
@ -472,24 +477,6 @@ static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
*/
}
static void gen9_set_dc_state_debugmask(struct drm_i915_private *dev_priv)
{
uint32_t val, mask;
mask = DC_STATE_DEBUG_MASK_MEMORY_UP;
if (IS_BROXTON(dev_priv))
mask |= DC_STATE_DEBUG_MASK_CORES;
/* The below bit doesn't need to be cleared ever afterwards */
val = I915_READ(DC_STATE_DEBUG);
if ((val & mask) != mask) {
val |= mask;
I915_WRITE(DC_STATE_DEBUG, val);
POSTING_READ(DC_STATE_DEBUG);
}
}
static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
u32 state)
{
@ -538,12 +525,8 @@ static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
else
mask |= DC_STATE_EN_UPTO_DC6;
WARN_ON_ONCE(state & ~mask);
if (i915.enable_dc == 0)
state = DC_STATE_DISABLE;
else if (i915.enable_dc == 1 && state > DC_STATE_EN_UPTO_DC5)
state = DC_STATE_EN_UPTO_DC5;
if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
state &= dev_priv->csr.allowed_dc_mask;
val = I915_READ(DC_STATE_EN);
DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
@ -606,18 +589,6 @@ static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
assert_csr_loaded(dev_priv);
}
static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
{
/*
* During initialization, the firmware may not be loaded yet.
* We still want to make sure that the DC enabling flag is cleared.
*/
if (dev_priv->power_domains.initializing)
return;
assert_rpm_wakelock_held(dev_priv);
}
static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
{
assert_can_enable_dc5(dev_priv);
@ -642,30 +613,6 @@ static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
assert_csr_loaded(dev_priv);
}
static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
{
/*
* During initialization, the firmware may not be loaded yet.
* We still want to make sure that the DC enabling flag is cleared.
*/
if (dev_priv->power_domains.initializing)
return;
WARN_ONCE(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
"DC6 already programmed to be disabled.\n");
}
static void gen9_disable_dc5_dc6(struct drm_i915_private *dev_priv)
{
assert_can_disable_dc5(dev_priv);
if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
i915.enable_dc != 0 && i915.enable_dc != 1)
assert_can_disable_dc6(dev_priv);
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
}
void skl_enable_dc6(struct drm_i915_private *dev_priv)
{
assert_can_enable_dc6(dev_priv);
@ -678,8 +625,6 @@ void skl_enable_dc6(struct drm_i915_private *dev_priv)
void skl_disable_dc6(struct drm_i915_private *dev_priv)
{
assert_can_disable_dc6(dev_priv);
DRM_DEBUG_KMS("Disabling DC6\n");
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
@ -833,32 +778,25 @@ static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
gen9_disable_dc5_dc6(dev_priv);
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
}
static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
i915.enable_dc != 0 && i915.enable_dc != 1)
if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
skl_enable_dc6(dev_priv);
else
else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
gen9_enable_dc5(dev_priv);
}
static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if (power_well->count > 0) {
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
} else {
if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
i915.enable_dc != 0 &&
i915.enable_dc != 1)
gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
else
gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
}
if (power_well->count > 0)
gen9_dc_off_power_well_enable(dev_priv, power_well);
else
gen9_dc_off_power_well_disable(dev_priv, power_well);
}
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
@ -2023,6 +1961,55 @@ sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
return 1;
}
static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
int enable_dc)
{
uint32_t mask;
int requested_dc;
int max_dc;
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
max_dc = 2;
mask = 0;
} else if (IS_BROXTON(dev_priv)) {
max_dc = 1;
/*
* DC9 has a separate HW flow from the rest of the DC states,
* not depending on the DMC firmware. It's needed by system
* suspend/resume, so allow it unconditionally.
*/
mask = DC_STATE_EN_DC9;
} else {
max_dc = 0;
mask = 0;
}
if (!i915.disable_power_well)
max_dc = 0;
if (enable_dc >= 0 && enable_dc <= max_dc) {
requested_dc = enable_dc;
} else if (enable_dc == -1) {
requested_dc = max_dc;
} else if (enable_dc > max_dc && enable_dc <= 2) {
DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
enable_dc, max_dc);
requested_dc = max_dc;
} else {
DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
requested_dc = max_dc;
}
if (requested_dc > 1)
mask |= DC_STATE_EN_UPTO_DC6;
if (requested_dc > 0)
mask |= DC_STATE_EN_UPTO_DC5;
DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
return mask;
}
#define set_power_wells(power_domains, __power_wells) ({ \
(power_domains)->power_wells = (__power_wells); \
(power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
@ -2041,6 +2028,8 @@ int intel_power_domains_init(struct drm_i915_private *dev_priv)
i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
i915.disable_power_well);
dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
i915.enable_dc);
BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
@ -2141,8 +2130,8 @@ static void skl_display_core_init(struct drm_i915_private *dev_priv,
skl_init_cdclk(dev_priv);
if (dev_priv->csr.dmc_payload && intel_csr_load_program(dev_priv))
gen9_set_dc_state_debugmask(dev_priv);
if (dev_priv->csr.dmc_payload)
intel_csr_load_program(dev_priv);
}
static void skl_display_core_uninit(struct drm_i915_private *dev_priv)

View File

@ -1398,12 +1398,10 @@ static void intel_sdvo_get_config(struct intel_encoder *encoder,
}
dotclock = pipe_config->port_clock;
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
if (HAS_PCH_SPLIT(dev))
ironlake_check_encoder_dotclock(pipe_config, dotclock);
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
/* Cross check the port pixel multiplier with the sdvo encoder state. */
@ -2262,9 +2260,9 @@ intel_sdvo_select_ddc_bus(struct drm_i915_private *dev_priv,
struct sdvo_device_mapping *mapping;
if (sdvo->port == PORT_B)
mapping = &(dev_priv->sdvo_mappings[0]);
mapping = &dev_priv->vbt.sdvo_mappings[0];
else
mapping = &(dev_priv->sdvo_mappings[1]);
mapping = &dev_priv->vbt.sdvo_mappings[1];
if (mapping->initialized)
sdvo->ddc_bus = 1 << ((mapping->ddc_pin & 0xf0) >> 4);
@ -2280,9 +2278,9 @@ intel_sdvo_select_i2c_bus(struct drm_i915_private *dev_priv,
u8 pin;
if (sdvo->port == PORT_B)
mapping = &dev_priv->sdvo_mappings[0];
mapping = &dev_priv->vbt.sdvo_mappings[0];
else
mapping = &dev_priv->sdvo_mappings[1];
mapping = &dev_priv->vbt.sdvo_mappings[1];
if (mapping->initialized &&
intel_gmbus_is_valid_pin(dev_priv, mapping->i2c_pin))
@ -2318,11 +2316,11 @@ intel_sdvo_get_slave_addr(struct drm_device *dev, struct intel_sdvo *sdvo)
struct sdvo_device_mapping *my_mapping, *other_mapping;
if (sdvo->port == PORT_B) {
my_mapping = &dev_priv->sdvo_mappings[0];
other_mapping = &dev_priv->sdvo_mappings[1];
my_mapping = &dev_priv->vbt.sdvo_mappings[0];
other_mapping = &dev_priv->vbt.sdvo_mappings[1];
} else {
my_mapping = &dev_priv->sdvo_mappings[1];
other_mapping = &dev_priv->sdvo_mappings[0];
my_mapping = &dev_priv->vbt.sdvo_mappings[1];
other_mapping = &dev_priv->vbt.sdvo_mappings[0];
}
/* If the BIOS described our SDVO device, take advantage of it. */

View File

@ -193,7 +193,7 @@ skl_update_plane(struct drm_plane *drm_plane,
const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
u32 surf_addr;
u32 tile_height, plane_offset, plane_size;
unsigned int rotation;
unsigned int rotation = plane_state->base.rotation;
int x_offset, y_offset;
int crtc_x = plane_state->dst.x1;
int crtc_y = plane_state->dst.y1;
@ -213,7 +213,6 @@ skl_update_plane(struct drm_plane *drm_plane,
plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
rotation = plane_state->base.rotation;
plane_ctl |= skl_plane_ctl_rotation(rotation);
stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
@ -351,6 +350,7 @@ vlv_update_plane(struct drm_plane *dplane,
int plane = intel_plane->plane;
u32 sprctl;
u32 sprsurf_offset, linear_offset;
unsigned int rotation = dplane->state->rotation;
int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
int crtc_x = plane_state->dst.x1;
@ -423,12 +423,11 @@ vlv_update_plane(struct drm_plane *dplane,
crtc_h--;
linear_offset = y * fb->pitches[0] + x * cpp;
sprsurf_offset = intel_compute_tile_offset(dev_priv, &x, &y,
fb->modifier[0], cpp,
fb->pitches[0]);
sprsurf_offset = intel_compute_tile_offset(&x, &y, fb, 0,
fb->pitches[0], rotation);
linear_offset -= sprsurf_offset;
if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
if (rotation == BIT(DRM_ROTATE_180)) {
sprctl |= SP_ROTATE_180;
x += src_w;
@ -493,6 +492,7 @@ ivb_update_plane(struct drm_plane *plane,
enum pipe pipe = intel_plane->pipe;
u32 sprctl, sprscale = 0;
u32 sprsurf_offset, linear_offset;
unsigned int rotation = plane_state->base.rotation;
int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
int crtc_x = plane_state->dst.x1;
@ -556,12 +556,11 @@ ivb_update_plane(struct drm_plane *plane,
sprscale = SPRITE_SCALE_ENABLE | (src_w << 16) | src_h;
linear_offset = y * fb->pitches[0] + x * cpp;
sprsurf_offset = intel_compute_tile_offset(dev_priv, &x, &y,
fb->modifier[0], cpp,
fb->pitches[0]);
sprsurf_offset = intel_compute_tile_offset(&x, &y, fb, 0,
fb->pitches[0], rotation);
linear_offset -= sprsurf_offset;
if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
if (rotation == BIT(DRM_ROTATE_180)) {
sprctl |= SPRITE_ROTATE_180;
/* HSW and BDW does this automagically in hardware */
@ -634,6 +633,7 @@ ilk_update_plane(struct drm_plane *plane,
int pipe = intel_plane->pipe;
u32 dvscntr, dvsscale;
u32 dvssurf_offset, linear_offset;
unsigned int rotation = plane_state->base.rotation;
int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
int crtc_x = plane_state->dst.x1;
@ -693,12 +693,11 @@ ilk_update_plane(struct drm_plane *plane,
dvsscale = DVS_SCALE_ENABLE | (src_w << 16) | src_h;
linear_offset = y * fb->pitches[0] + x * cpp;
dvssurf_offset = intel_compute_tile_offset(dev_priv, &x, &y,
fb->modifier[0], cpp,
fb->pitches[0]);
dvssurf_offset = intel_compute_tile_offset(&x, &y, fb, 0,
fb->pitches[0], rotation);
linear_offset -= dvssurf_offset;
if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
if (rotation == BIT(DRM_ROTATE_180)) {
dvscntr |= DVS_ROTATE_180;
x += src_w;

View File

@ -326,24 +326,12 @@ static const struct color_conversion sdtv_csc_yprpb = {
.rv = 0x0100, .gv = 0x03ad, .bv = 0x074d, .av = 0x0200,
};
static const struct color_conversion sdtv_csc_rgb = {
.ry = 0x0000, .gy = 0x0f00, .by = 0x0000, .ay = 0x0166,
.ru = 0x0000, .gu = 0x0000, .bu = 0x0f00, .au = 0x0166,
.rv = 0x0f00, .gv = 0x0000, .bv = 0x0000, .av = 0x0166,
};
static const struct color_conversion hdtv_csc_yprpb = {
.ry = 0x05b3, .gy = 0x016e, .by = 0x0728, .ay = 0x0145,
.ru = 0x07d5, .gu = 0x038b, .bu = 0x0100, .au = 0x0200,
.rv = 0x0100, .gv = 0x03d1, .bv = 0x06bc, .av = 0x0200,
};
static const struct color_conversion hdtv_csc_rgb = {
.ry = 0x0000, .gy = 0x0f00, .by = 0x0000, .ay = 0x0166,
.ru = 0x0000, .gu = 0x0000, .bu = 0x0f00, .au = 0x0166,
.rv = 0x0f00, .gv = 0x0000, .bv = 0x0000, .av = 0x0166,
};
static const struct video_levels component_levels = {
.blank = 279, .black = 279, .burst = 0,
};
@ -1531,47 +1519,6 @@ static const struct drm_encoder_funcs intel_tv_enc_funcs = {
.destroy = intel_encoder_destroy,
};
/*
* Enumerate the child dev array parsed from VBT to check whether
* the integrated TV is present.
* If it is present, return 1.
* If it is not present, return false.
* If no child dev is parsed from VBT, it assumes that the TV is present.
*/
static int tv_is_present_in_vbt(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
union child_device_config *p_child;
int i, ret;
if (!dev_priv->vbt.child_dev_num)
return 1;
ret = 0;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
p_child = dev_priv->vbt.child_dev + i;
/*
* If the device type is not TV, continue.
*/
switch (p_child->old.device_type) {
case DEVICE_TYPE_INT_TV:
case DEVICE_TYPE_TV:
case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
break;
default:
continue;
}
/* Only when the addin_offset is non-zero, it is regarded
* as present.
*/
if (p_child->old.addin_offset) {
ret = 1;
break;
}
}
return ret;
}
void
intel_tv_init(struct drm_device *dev)
{
@ -1587,13 +1534,10 @@ intel_tv_init(struct drm_device *dev)
if ((I915_READ(TV_CTL) & TV_FUSE_STATE_MASK) == TV_FUSE_STATE_DISABLED)
return;
if (!tv_is_present_in_vbt(dev)) {
if (!intel_bios_is_tv_present(dev_priv)) {
DRM_DEBUG_KMS("Integrated TV is not present.\n");
return;
}
/* Even if we have an encoder we may not have a connector */
if (!dev_priv->vbt.int_tv_support)
return;
/*
* Sanity check the TV output by checking to see if the

View File

@ -1433,7 +1433,7 @@ static int i915_reset_complete(struct drm_device *dev)
return (gdrst & GRDOM_RESET_STATUS) == 0;
}
static int i915_do_reset(struct drm_device *dev)
static int i915_do_reset(struct drm_device *dev, unsigned engine_mask)
{
/* assert reset for at least 20 usec */
pci_write_config_byte(dev->pdev, I915_GDRST, GRDOM_RESET_ENABLE);
@ -1450,13 +1450,13 @@ static int g4x_reset_complete(struct drm_device *dev)
return (gdrst & GRDOM_RESET_ENABLE) == 0;
}
static int g33_do_reset(struct drm_device *dev)
static int g33_do_reset(struct drm_device *dev, unsigned engine_mask)
{
pci_write_config_byte(dev->pdev, I915_GDRST, GRDOM_RESET_ENABLE);
return wait_for(g4x_reset_complete(dev), 500);
}
static int g4x_do_reset(struct drm_device *dev)
static int g4x_do_reset(struct drm_device *dev, unsigned engine_mask)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
@ -1486,7 +1486,7 @@ static int g4x_do_reset(struct drm_device *dev)
return 0;
}
static int ironlake_do_reset(struct drm_device *dev)
static int ironlake_do_reset(struct drm_device *dev, unsigned engine_mask)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
@ -1510,75 +1510,132 @@ static int ironlake_do_reset(struct drm_device *dev)
return 0;
}
static int gen6_do_reset(struct drm_device *dev)
/* Reset the hardware domains (GENX_GRDOM_*) specified by mask */
static int gen6_hw_domain_reset(struct drm_i915_private *dev_priv,
u32 hw_domain_mask)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
/* Reset the chip */
int ret;
/* GEN6_GDRST is not in the gt power well, no need to check
* for fifo space for the write or forcewake the chip for
* the read
*/
__raw_i915_write32(dev_priv, GEN6_GDRST, GEN6_GRDOM_FULL);
__raw_i915_write32(dev_priv, GEN6_GDRST, hw_domain_mask);
/* Spin waiting for the device to ack the reset request */
ret = wait_for((__raw_i915_read32(dev_priv, GEN6_GDRST) & GEN6_GRDOM_FULL) == 0, 500);
#define ACKED ((__raw_i915_read32(dev_priv, GEN6_GDRST) & hw_domain_mask) == 0)
/* Spin waiting for the device to ack the reset requests */
ret = wait_for(ACKED, 500);
#undef ACKED
return ret;
}
/**
* gen6_reset_engines - reset individual engines
* @dev: DRM device
* @engine_mask: mask of intel_ring_flag() engines or ALL_ENGINES for full reset
*
* This function will reset the individual engines that are set in engine_mask.
* If you provide ALL_ENGINES as mask, full global domain reset will be issued.
*
* Note: It is responsibility of the caller to handle the difference between
* asking full domain reset versus reset for all available individual engines.
*
* Returns 0 on success, nonzero on error.
*/
static int gen6_reset_engines(struct drm_device *dev, unsigned engine_mask)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *engine;
const u32 hw_engine_mask[I915_NUM_ENGINES] = {
[RCS] = GEN6_GRDOM_RENDER,
[BCS] = GEN6_GRDOM_BLT,
[VCS] = GEN6_GRDOM_MEDIA,
[VCS2] = GEN8_GRDOM_MEDIA2,
[VECS] = GEN6_GRDOM_VECS,
};
u32 hw_mask;
int ret;
if (engine_mask == ALL_ENGINES) {
hw_mask = GEN6_GRDOM_FULL;
} else {
hw_mask = 0;
for_each_engine_masked(engine, dev_priv, engine_mask)
hw_mask |= hw_engine_mask[engine->id];
}
ret = gen6_hw_domain_reset(dev_priv, hw_mask);
intel_uncore_forcewake_reset(dev, true);
return ret;
}
static int wait_for_register(struct drm_i915_private *dev_priv,
i915_reg_t reg,
const u32 mask,
const u32 value,
const unsigned long timeout_ms)
static int wait_for_register_fw(struct drm_i915_private *dev_priv,
i915_reg_t reg,
const u32 mask,
const u32 value,
const unsigned long timeout_ms)
{
return wait_for((I915_READ(reg) & mask) == value, timeout_ms);
return wait_for((I915_READ_FW(reg) & mask) == value, timeout_ms);
}
static int gen8_do_reset(struct drm_device *dev)
static int gen8_request_engine_reset(struct intel_engine_cs *engine)
{
int ret;
struct drm_i915_private *dev_priv = engine->dev->dev_private;
I915_WRITE_FW(RING_RESET_CTL(engine->mmio_base),
_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET));
ret = wait_for_register_fw(dev_priv,
RING_RESET_CTL(engine->mmio_base),
RESET_CTL_READY_TO_RESET,
RESET_CTL_READY_TO_RESET,
700);
if (ret)
DRM_ERROR("%s: reset request timeout\n", engine->name);
return ret;
}
static void gen8_unrequest_engine_reset(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->dev->dev_private;
I915_WRITE_FW(RING_RESET_CTL(engine->mmio_base),
_MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET));
}
static int gen8_reset_engines(struct drm_device *dev, unsigned engine_mask)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *engine;
int i;
for_each_ring(engine, dev_priv, i) {
I915_WRITE(RING_RESET_CTL(engine->mmio_base),
_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET));
if (wait_for_register(dev_priv,
RING_RESET_CTL(engine->mmio_base),
RESET_CTL_READY_TO_RESET,
RESET_CTL_READY_TO_RESET,
700)) {
DRM_ERROR("%s: reset request timeout\n", engine->name);
for_each_engine_masked(engine, dev_priv, engine_mask)
if (gen8_request_engine_reset(engine))
goto not_ready;
}
}
return gen6_do_reset(dev);
return gen6_reset_engines(dev, engine_mask);
not_ready:
for_each_ring(engine, dev_priv, i)
I915_WRITE(RING_RESET_CTL(engine->mmio_base),
_MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET));
for_each_engine_masked(engine, dev_priv, engine_mask)
gen8_unrequest_engine_reset(engine);
return -EIO;
}
static int (*intel_get_gpu_reset(struct drm_device *dev))(struct drm_device *)
static int (*intel_get_gpu_reset(struct drm_device *dev))(struct drm_device *,
unsigned engine_mask)
{
if (!i915.reset)
return NULL;
if (INTEL_INFO(dev)->gen >= 8)
return gen8_do_reset;
return gen8_reset_engines;
else if (INTEL_INFO(dev)->gen >= 6)
return gen6_do_reset;
return gen6_reset_engines;
else if (IS_GEN5(dev))
return ironlake_do_reset;
else if (IS_G4X(dev))
@ -1591,10 +1648,10 @@ static int (*intel_get_gpu_reset(struct drm_device *dev))(struct drm_device *)
return NULL;
}
int intel_gpu_reset(struct drm_device *dev)
int intel_gpu_reset(struct drm_device *dev, unsigned engine_mask)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int (*reset)(struct drm_device *);
int (*reset)(struct drm_device *, unsigned);
int ret;
reset = intel_get_gpu_reset(dev);
@ -1605,7 +1662,7 @@ int intel_gpu_reset(struct drm_device *dev)
* request may be dropped and never completes (causing -EIO).
*/
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
ret = reset(dev);
ret = reset(dev, engine_mask);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
return ret;

View File

@ -0,0 +1,826 @@
/*
* Copyright © 2006-2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
/*
* This information is private to VBT parsing in intel_bios.c.
*
* Please do NOT include anywhere else.
*/
#ifndef _INTEL_BIOS_PRIVATE
#error "intel_vbt_defs.h is private to intel_bios.c"
#endif
#ifndef _INTEL_VBT_DEFS_H_
#define _INTEL_VBT_DEFS_H_
#include "intel_bios.h"
/**
* struct vbt_header - VBT Header structure
* @signature: VBT signature, always starts with "$VBT"
* @version: Version of this structure
* @header_size: Size of this structure
* @vbt_size: Size of VBT (VBT Header, BDB Header and data blocks)
* @vbt_checksum: Checksum
* @reserved0: Reserved
* @bdb_offset: Offset of &struct bdb_header from beginning of VBT
* @aim_offset: Offsets of add-in data blocks from beginning of VBT
*/
struct vbt_header {
u8 signature[20];
u16 version;
u16 header_size;
u16 vbt_size;
u8 vbt_checksum;
u8 reserved0;
u32 bdb_offset;
u32 aim_offset[4];
} __packed;
/**
* struct bdb_header - BDB Header structure
* @signature: BDB signature "BIOS_DATA_BLOCK"
* @version: Version of the data block definitions
* @header_size: Size of this structure
* @bdb_size: Size of BDB (BDB Header and data blocks)
*/
struct bdb_header {
u8 signature[16];
u16 version;
u16 header_size;
u16 bdb_size;
} __packed;
/* strictly speaking, this is a "skip" block, but it has interesting info */
struct vbios_data {
u8 type; /* 0 == desktop, 1 == mobile */
u8 relstage;
u8 chipset;
u8 lvds_present:1;
u8 tv_present:1;
u8 rsvd2:6; /* finish byte */
u8 rsvd3[4];
u8 signon[155];
u8 copyright[61];
u16 code_segment;
u8 dos_boot_mode;
u8 bandwidth_percent;
u8 rsvd4; /* popup memory size */
u8 resize_pci_bios;
u8 rsvd5; /* is crt already on ddc2 */
} __packed;
/*
* There are several types of BIOS data blocks (BDBs), each block has
* an ID and size in the first 3 bytes (ID in first, size in next 2).
* Known types are listed below.
*/
#define BDB_GENERAL_FEATURES 1
#define BDB_GENERAL_DEFINITIONS 2
#define BDB_OLD_TOGGLE_LIST 3
#define BDB_MODE_SUPPORT_LIST 4
#define BDB_GENERIC_MODE_TABLE 5
#define BDB_EXT_MMIO_REGS 6
#define BDB_SWF_IO 7
#define BDB_SWF_MMIO 8
#define BDB_PSR 9
#define BDB_MODE_REMOVAL_TABLE 10
#define BDB_CHILD_DEVICE_TABLE 11
#define BDB_DRIVER_FEATURES 12
#define BDB_DRIVER_PERSISTENCE 13
#define BDB_EXT_TABLE_PTRS 14
#define BDB_DOT_CLOCK_OVERRIDE 15
#define BDB_DISPLAY_SELECT 16
/* 17 rsvd */
#define BDB_DRIVER_ROTATION 18
#define BDB_DISPLAY_REMOVE 19
#define BDB_OEM_CUSTOM 20
#define BDB_EFP_LIST 21 /* workarounds for VGA hsync/vsync */
#define BDB_SDVO_LVDS_OPTIONS 22
#define BDB_SDVO_PANEL_DTDS 23
#define BDB_SDVO_LVDS_PNP_IDS 24
#define BDB_SDVO_LVDS_POWER_SEQ 25
#define BDB_TV_OPTIONS 26
#define BDB_EDP 27
#define BDB_LVDS_OPTIONS 40
#define BDB_LVDS_LFP_DATA_PTRS 41
#define BDB_LVDS_LFP_DATA 42
#define BDB_LVDS_BACKLIGHT 43
#define BDB_LVDS_POWER 44
#define BDB_MIPI_CONFIG 52
#define BDB_MIPI_SEQUENCE 53
#define BDB_SKIP 254 /* VBIOS private block, ignore */
struct bdb_general_features {
/* bits 1 */
u8 panel_fitting:2;
u8 flexaim:1;
u8 msg_enable:1;
u8 clear_screen:3;
u8 color_flip:1;
/* bits 2 */
u8 download_ext_vbt:1;
u8 enable_ssc:1;
u8 ssc_freq:1;
u8 enable_lfp_on_override:1;
u8 disable_ssc_ddt:1;
u8 rsvd7:1;
u8 display_clock_mode:1;
u8 rsvd8:1; /* finish byte */
/* bits 3 */
u8 disable_smooth_vision:1;
u8 single_dvi:1;
u8 rsvd9:1;
u8 fdi_rx_polarity_inverted:1;
u8 rsvd10:4; /* finish byte */
/* bits 4 */
u8 legacy_monitor_detect;
/* bits 5 */
u8 int_crt_support:1;
u8 int_tv_support:1;
u8 int_efp_support:1;
u8 dp_ssc_enb:1; /* PCH attached eDP supports SSC */
u8 dp_ssc_freq:1; /* SSC freq for PCH attached eDP */
u8 rsvd11:3; /* finish byte */
} __packed;
/* pre-915 */
#define GPIO_PIN_DVI_LVDS 0x03 /* "DVI/LVDS DDC GPIO pins" */
#define GPIO_PIN_ADD_I2C 0x05 /* "ADDCARD I2C GPIO pins" */
#define GPIO_PIN_ADD_DDC 0x04 /* "ADDCARD DDC GPIO pins" */
#define GPIO_PIN_ADD_DDC_I2C 0x06 /* "ADDCARD DDC/I2C GPIO pins" */
/* Pre 915 */
#define DEVICE_TYPE_NONE 0x00
#define DEVICE_TYPE_CRT 0x01
#define DEVICE_TYPE_TV 0x09
#define DEVICE_TYPE_EFP 0x12
#define DEVICE_TYPE_LFP 0x22
/* On 915+ */
#define DEVICE_TYPE_CRT_DPMS 0x6001
#define DEVICE_TYPE_CRT_DPMS_HOTPLUG 0x4001
#define DEVICE_TYPE_TV_COMPOSITE 0x0209
#define DEVICE_TYPE_TV_MACROVISION 0x0289
#define DEVICE_TYPE_TV_RF_COMPOSITE 0x020c
#define DEVICE_TYPE_TV_SVIDEO_COMPOSITE 0x0609
#define DEVICE_TYPE_TV_SCART 0x0209
#define DEVICE_TYPE_TV_CODEC_HOTPLUG_PWR 0x6009
#define DEVICE_TYPE_EFP_HOTPLUG_PWR 0x6012
#define DEVICE_TYPE_EFP_DVI_HOTPLUG_PWR 0x6052
#define DEVICE_TYPE_EFP_DVI_I 0x6053
#define DEVICE_TYPE_EFP_DVI_D_DUAL 0x6152
#define DEVICE_TYPE_EFP_DVI_D_HDCP 0x60d2
#define DEVICE_TYPE_OPENLDI_HOTPLUG_PWR 0x6062
#define DEVICE_TYPE_OPENLDI_DUALPIX 0x6162
#define DEVICE_TYPE_LFP_PANELLINK 0x5012
#define DEVICE_TYPE_LFP_CMOS_PWR 0x5042
#define DEVICE_TYPE_LFP_LVDS_PWR 0x5062
#define DEVICE_TYPE_LFP_LVDS_DUAL 0x5162
#define DEVICE_TYPE_LFP_LVDS_DUAL_HDCP 0x51e2
#define DEVICE_CFG_NONE 0x00
#define DEVICE_CFG_12BIT_DVOB 0x01
#define DEVICE_CFG_12BIT_DVOC 0x02
#define DEVICE_CFG_24BIT_DVOBC 0x09
#define DEVICE_CFG_24BIT_DVOCB 0x0a
#define DEVICE_CFG_DUAL_DVOB 0x11
#define DEVICE_CFG_DUAL_DVOC 0x12
#define DEVICE_CFG_DUAL_DVOBC 0x13
#define DEVICE_CFG_DUAL_LINK_DVOBC 0x19
#define DEVICE_CFG_DUAL_LINK_DVOCB 0x1a
#define DEVICE_WIRE_NONE 0x00
#define DEVICE_WIRE_DVOB 0x01
#define DEVICE_WIRE_DVOC 0x02
#define DEVICE_WIRE_DVOBC 0x03
#define DEVICE_WIRE_DVOBB 0x05
#define DEVICE_WIRE_DVOCC 0x06
#define DEVICE_WIRE_DVOB_MASTER 0x0d
#define DEVICE_WIRE_DVOC_MASTER 0x0e
#define DEVICE_PORT_DVOA 0x00 /* none on 845+ */
#define DEVICE_PORT_DVOB 0x01
#define DEVICE_PORT_DVOC 0x02
/*
* We used to keep this struct but without any version control. We should avoid
* using it in the future, but it should be safe to keep using it in the old
* code. Do not change; we rely on its size.
*/
struct old_child_dev_config {
u16 handle;
u16 device_type;
u8 device_id[10]; /* ascii string */
u16 addin_offset;
u8 dvo_port; /* See Device_PORT_* above */
u8 i2c_pin;
u8 slave_addr;
u8 ddc_pin;
u16 edid_ptr;
u8 dvo_cfg; /* See DEVICE_CFG_* above */
u8 dvo2_port;
u8 i2c2_pin;
u8 slave2_addr;
u8 ddc2_pin;
u8 capabilities;
u8 dvo_wiring;/* See DEVICE_WIRE_* above */
u8 dvo2_wiring;
u16 extended_type;
u8 dvo_function;
} __packed;
/* This one contains field offsets that are known to be common for all BDB
* versions. Notice that the meaning of the contents contents may still change,
* but at least the offsets are consistent. */
/* Definitions for flags_1 */
#define IBOOST_ENABLE (1<<3)
struct common_child_dev_config {
u16 handle;
u16 device_type;
u8 not_common1[12];
u8 dvo_port;
u8 not_common2[2];
u8 ddc_pin;
u16 edid_ptr;
u8 obsolete;
u8 flags_1;
u8 not_common3[13];
u8 iboost_level;
} __packed;
/* This field changes depending on the BDB version, so the most reliable way to
* read it is by checking the BDB version and reading the raw pointer. */
union child_device_config {
/* This one is safe to be used anywhere, but the code should still check
* the BDB version. */
u8 raw[33];
/* This one should only be kept for legacy code. */
struct old_child_dev_config old;
/* This one should also be safe to use anywhere, even without version
* checks. */
struct common_child_dev_config common;
} __packed;
struct bdb_general_definitions {
/* DDC GPIO */
u8 crt_ddc_gmbus_pin;
/* DPMS bits */
u8 dpms_acpi:1;
u8 skip_boot_crt_detect:1;
u8 dpms_aim:1;
u8 rsvd1:5; /* finish byte */
/* boot device bits */
u8 boot_display[2];
u8 child_dev_size;
/*
* Device info:
* If TV is present, it'll be at devices[0].
* LVDS will be next, either devices[0] or [1], if present.
* On some platforms the number of device is 6. But could be as few as
* 4 if both TV and LVDS are missing.
* And the device num is related with the size of general definition
* block. It is obtained by using the following formula:
* number = (block_size - sizeof(bdb_general_definitions))/
* defs->child_dev_size;
*/
uint8_t devices[0];
} __packed;
/* Mask for DRRS / Panel Channel / SSC / BLT control bits extraction */
#define MODE_MASK 0x3
struct bdb_lvds_options {
u8 panel_type;
u8 rsvd1;
/* LVDS capabilities, stored in a dword */
u8 pfit_mode:2;
u8 pfit_text_mode_enhanced:1;
u8 pfit_gfx_mode_enhanced:1;
u8 pfit_ratio_auto:1;
u8 pixel_dither:1;
u8 lvds_edid:1;
u8 rsvd2:1;
u8 rsvd4;
/* LVDS Panel channel bits stored here */
u32 lvds_panel_channel_bits;
/* LVDS SSC (Spread Spectrum Clock) bits stored here. */
u16 ssc_bits;
u16 ssc_freq;
u16 ssc_ddt;
/* Panel color depth defined here */
u16 panel_color_depth;
/* LVDS panel type bits stored here */
u32 dps_panel_type_bits;
/* LVDS backlight control type bits stored here */
u32 blt_control_type_bits;
} __packed;
/* LFP pointer table contains entries to the struct below */
struct bdb_lvds_lfp_data_ptr {
u16 fp_timing_offset; /* offsets are from start of bdb */
u8 fp_table_size;
u16 dvo_timing_offset;
u8 dvo_table_size;
u16 panel_pnp_id_offset;
u8 pnp_table_size;
} __packed;
struct bdb_lvds_lfp_data_ptrs {
u8 lvds_entries; /* followed by one or more lvds_data_ptr structs */
struct bdb_lvds_lfp_data_ptr ptr[16];
} __packed;
/* LFP data has 3 blocks per entry */
struct lvds_fp_timing {
u16 x_res;
u16 y_res;
u32 lvds_reg;
u32 lvds_reg_val;
u32 pp_on_reg;
u32 pp_on_reg_val;
u32 pp_off_reg;
u32 pp_off_reg_val;
u32 pp_cycle_reg;
u32 pp_cycle_reg_val;
u32 pfit_reg;
u32 pfit_reg_val;
u16 terminator;
} __packed;
struct lvds_dvo_timing {
u16 clock; /**< In 10khz */
u8 hactive_lo;
u8 hblank_lo;
u8 hblank_hi:4;
u8 hactive_hi:4;
u8 vactive_lo;
u8 vblank_lo;
u8 vblank_hi:4;
u8 vactive_hi:4;
u8 hsync_off_lo;
u8 hsync_pulse_width;
u8 vsync_pulse_width:4;
u8 vsync_off:4;
u8 rsvd0:6;
u8 hsync_off_hi:2;
u8 h_image;
u8 v_image;
u8 max_hv;
u8 h_border;
u8 v_border;
u8 rsvd1:3;
u8 digital:2;
u8 vsync_positive:1;
u8 hsync_positive:1;
u8 rsvd2:1;
} __packed;
struct lvds_pnp_id {
u16 mfg_name;
u16 product_code;
u32 serial;
u8 mfg_week;
u8 mfg_year;
} __packed;
struct bdb_lvds_lfp_data_entry {
struct lvds_fp_timing fp_timing;
struct lvds_dvo_timing dvo_timing;
struct lvds_pnp_id pnp_id;
} __packed;
struct bdb_lvds_lfp_data {
struct bdb_lvds_lfp_data_entry data[16];
} __packed;
#define BDB_BACKLIGHT_TYPE_NONE 0
#define BDB_BACKLIGHT_TYPE_PWM 2
struct bdb_lfp_backlight_data_entry {
u8 type:2;
u8 active_low_pwm:1;
u8 obsolete1:5;
u16 pwm_freq_hz;
u8 min_brightness;
u8 obsolete2;
u8 obsolete3;
} __packed;
struct bdb_lfp_backlight_data {
u8 entry_size;
struct bdb_lfp_backlight_data_entry data[16];
u8 level[16];
} __packed;
struct aimdb_header {
char signature[16];
char oem_device[20];
u16 aimdb_version;
u16 aimdb_header_size;
u16 aimdb_size;
} __packed;
struct aimdb_block {
u8 aimdb_id;
u16 aimdb_size;
} __packed;
struct vch_panel_data {
u16 fp_timing_offset;
u8 fp_timing_size;
u16 dvo_timing_offset;
u8 dvo_timing_size;
u16 text_fitting_offset;
u8 text_fitting_size;
u16 graphics_fitting_offset;
u8 graphics_fitting_size;
} __packed;
struct vch_bdb_22 {
struct aimdb_block aimdb_block;
struct vch_panel_data panels[16];
} __packed;
struct bdb_sdvo_lvds_options {
u8 panel_backlight;
u8 h40_set_panel_type;
u8 panel_type;
u8 ssc_clk_freq;
u16 als_low_trip;
u16 als_high_trip;
u8 sclalarcoeff_tab_row_num;
u8 sclalarcoeff_tab_row_size;
u8 coefficient[8];
u8 panel_misc_bits_1;
u8 panel_misc_bits_2;
u8 panel_misc_bits_3;
u8 panel_misc_bits_4;
} __packed;
#define BDB_DRIVER_FEATURE_NO_LVDS 0
#define BDB_DRIVER_FEATURE_INT_LVDS 1
#define BDB_DRIVER_FEATURE_SDVO_LVDS 2
#define BDB_DRIVER_FEATURE_EDP 3
struct bdb_driver_features {
u8 boot_dev_algorithm:1;
u8 block_display_switch:1;
u8 allow_display_switch:1;
u8 hotplug_dvo:1;
u8 dual_view_zoom:1;
u8 int15h_hook:1;
u8 sprite_in_clone:1;
u8 primary_lfp_id:1;
u16 boot_mode_x;
u16 boot_mode_y;
u8 boot_mode_bpp;
u8 boot_mode_refresh;
u16 enable_lfp_primary:1;
u16 selective_mode_pruning:1;
u16 dual_frequency:1;
u16 render_clock_freq:1; /* 0: high freq; 1: low freq */
u16 nt_clone_support:1;
u16 power_scheme_ui:1; /* 0: CUI; 1: 3rd party */
u16 sprite_display_assign:1; /* 0: secondary; 1: primary */
u16 cui_aspect_scaling:1;
u16 preserve_aspect_ratio:1;
u16 sdvo_device_power_down:1;
u16 crt_hotplug:1;
u16 lvds_config:2;
u16 tv_hotplug:1;
u16 hdmi_config:2;
u8 static_display:1;
u8 reserved2:7;
u16 legacy_crt_max_x;
u16 legacy_crt_max_y;
u8 legacy_crt_max_refresh;
u8 hdmi_termination;
u8 custom_vbt_version;
/* Driver features data block */
u16 rmpm_enabled:1;
u16 s2ddt_enabled:1;
u16 dpst_enabled:1;
u16 bltclt_enabled:1;
u16 adb_enabled:1;
u16 drrs_enabled:1;
u16 grs_enabled:1;
u16 gpmt_enabled:1;
u16 tbt_enabled:1;
u16 psr_enabled:1;
u16 ips_enabled:1;
u16 reserved3:4;
u16 pc_feature_valid:1;
} __packed;
#define EDP_18BPP 0
#define EDP_24BPP 1
#define EDP_30BPP 2
#define EDP_RATE_1_62 0
#define EDP_RATE_2_7 1
#define EDP_LANE_1 0
#define EDP_LANE_2 1
#define EDP_LANE_4 3
#define EDP_PREEMPHASIS_NONE 0
#define EDP_PREEMPHASIS_3_5dB 1
#define EDP_PREEMPHASIS_6dB 2
#define EDP_PREEMPHASIS_9_5dB 3
#define EDP_VSWING_0_4V 0
#define EDP_VSWING_0_6V 1
#define EDP_VSWING_0_8V 2
#define EDP_VSWING_1_2V 3
struct edp_link_params {
u8 rate:4;
u8 lanes:4;
u8 preemphasis:4;
u8 vswing:4;
} __packed;
struct bdb_edp {
struct edp_power_seq power_seqs[16];
u32 color_depth;
struct edp_link_params link_params[16];
u32 sdrrs_msa_timing_delay;
/* ith bit indicates enabled/disabled for (i+1)th panel */
u16 edp_s3d_feature;
u16 edp_t3_optimization;
u64 edp_vswing_preemph; /* v173 */
} __packed;
struct psr_table {
/* Feature bits */
u8 full_link:1;
u8 require_aux_to_wakeup:1;
u8 feature_bits_rsvd:6;
/* Wait times */
u8 idle_frames:4;
u8 lines_to_wait:3;
u8 wait_times_rsvd:1;
/* TP wake up time in multiple of 100 */
u16 tp1_wakeup_time;
u16 tp2_tp3_wakeup_time;
} __packed;
struct bdb_psr {
struct psr_table psr_table[16];
} __packed;
/*
* Driver<->VBIOS interaction occurs through scratch bits in
* GR18 & SWF*.
*/
/* GR18 bits are set on display switch and hotkey events */
#define GR18_DRIVER_SWITCH_EN (1<<7) /* 0: VBIOS control, 1: driver control */
#define GR18_HOTKEY_MASK 0x78 /* See also SWF4 15:0 */
#define GR18_HK_NONE (0x0<<3)
#define GR18_HK_LFP_STRETCH (0x1<<3)
#define GR18_HK_TOGGLE_DISP (0x2<<3)
#define GR18_HK_DISP_SWITCH (0x4<<3) /* see SWF14 15:0 for what to enable */
#define GR18_HK_POPUP_DISABLED (0x6<<3)
#define GR18_HK_POPUP_ENABLED (0x7<<3)
#define GR18_HK_PFIT (0x8<<3)
#define GR18_HK_APM_CHANGE (0xa<<3)
#define GR18_HK_MULTIPLE (0xc<<3)
#define GR18_USER_INT_EN (1<<2)
#define GR18_A0000_FLUSH_EN (1<<1)
#define GR18_SMM_EN (1<<0)
/* Set by driver, cleared by VBIOS */
#define SWF00_YRES_SHIFT 16
#define SWF00_XRES_SHIFT 0
#define SWF00_RES_MASK 0xffff
/* Set by VBIOS at boot time and driver at runtime */
#define SWF01_TV2_FORMAT_SHIFT 8
#define SWF01_TV1_FORMAT_SHIFT 0
#define SWF01_TV_FORMAT_MASK 0xffff
#define SWF10_VBIOS_BLC_I2C_EN (1<<29)
#define SWF10_GTT_OVERRIDE_EN (1<<28)
#define SWF10_LFP_DPMS_OVR (1<<27) /* override DPMS on display switch */
#define SWF10_ACTIVE_TOGGLE_LIST_MASK (7<<24)
#define SWF10_OLD_TOGGLE 0x0
#define SWF10_TOGGLE_LIST_1 0x1
#define SWF10_TOGGLE_LIST_2 0x2
#define SWF10_TOGGLE_LIST_3 0x3
#define SWF10_TOGGLE_LIST_4 0x4
#define SWF10_PANNING_EN (1<<23)
#define SWF10_DRIVER_LOADED (1<<22)
#define SWF10_EXTENDED_DESKTOP (1<<21)
#define SWF10_EXCLUSIVE_MODE (1<<20)
#define SWF10_OVERLAY_EN (1<<19)
#define SWF10_PLANEB_HOLDOFF (1<<18)
#define SWF10_PLANEA_HOLDOFF (1<<17)
#define SWF10_VGA_HOLDOFF (1<<16)
#define SWF10_ACTIVE_DISP_MASK 0xffff
#define SWF10_PIPEB_LFP2 (1<<15)
#define SWF10_PIPEB_EFP2 (1<<14)
#define SWF10_PIPEB_TV2 (1<<13)
#define SWF10_PIPEB_CRT2 (1<<12)
#define SWF10_PIPEB_LFP (1<<11)
#define SWF10_PIPEB_EFP (1<<10)
#define SWF10_PIPEB_TV (1<<9)
#define SWF10_PIPEB_CRT (1<<8)
#define SWF10_PIPEA_LFP2 (1<<7)
#define SWF10_PIPEA_EFP2 (1<<6)
#define SWF10_PIPEA_TV2 (1<<5)
#define SWF10_PIPEA_CRT2 (1<<4)
#define SWF10_PIPEA_LFP (1<<3)
#define SWF10_PIPEA_EFP (1<<2)
#define SWF10_PIPEA_TV (1<<1)
#define SWF10_PIPEA_CRT (1<<0)
#define SWF11_MEMORY_SIZE_SHIFT 16
#define SWF11_SV_TEST_EN (1<<15)
#define SWF11_IS_AGP (1<<14)
#define SWF11_DISPLAY_HOLDOFF (1<<13)
#define SWF11_DPMS_REDUCED (1<<12)
#define SWF11_IS_VBE_MODE (1<<11)
#define SWF11_PIPEB_ACCESS (1<<10) /* 0 here means pipe a */
#define SWF11_DPMS_MASK 0x07
#define SWF11_DPMS_OFF (1<<2)
#define SWF11_DPMS_SUSPEND (1<<1)
#define SWF11_DPMS_STANDBY (1<<0)
#define SWF11_DPMS_ON 0
#define SWF14_GFX_PFIT_EN (1<<31)
#define SWF14_TEXT_PFIT_EN (1<<30)
#define SWF14_LID_STATUS_CLOSED (1<<29) /* 0 here means open */
#define SWF14_POPUP_EN (1<<28)
#define SWF14_DISPLAY_HOLDOFF (1<<27)
#define SWF14_DISP_DETECT_EN (1<<26)
#define SWF14_DOCKING_STATUS_DOCKED (1<<25) /* 0 here means undocked */
#define SWF14_DRIVER_STATUS (1<<24)
#define SWF14_OS_TYPE_WIN9X (1<<23)
#define SWF14_OS_TYPE_WINNT (1<<22)
/* 21:19 rsvd */
#define SWF14_PM_TYPE_MASK 0x00070000
#define SWF14_PM_ACPI_VIDEO (0x4 << 16)
#define SWF14_PM_ACPI (0x3 << 16)
#define SWF14_PM_APM_12 (0x2 << 16)
#define SWF14_PM_APM_11 (0x1 << 16)
#define SWF14_HK_REQUEST_MASK 0x0000ffff /* see GR18 6:3 for event type */
/* if GR18 indicates a display switch */
#define SWF14_DS_PIPEB_LFP2_EN (1<<15)
#define SWF14_DS_PIPEB_EFP2_EN (1<<14)
#define SWF14_DS_PIPEB_TV2_EN (1<<13)
#define SWF14_DS_PIPEB_CRT2_EN (1<<12)
#define SWF14_DS_PIPEB_LFP_EN (1<<11)
#define SWF14_DS_PIPEB_EFP_EN (1<<10)
#define SWF14_DS_PIPEB_TV_EN (1<<9)
#define SWF14_DS_PIPEB_CRT_EN (1<<8)
#define SWF14_DS_PIPEA_LFP2_EN (1<<7)
#define SWF14_DS_PIPEA_EFP2_EN (1<<6)
#define SWF14_DS_PIPEA_TV2_EN (1<<5)
#define SWF14_DS_PIPEA_CRT2_EN (1<<4)
#define SWF14_DS_PIPEA_LFP_EN (1<<3)
#define SWF14_DS_PIPEA_EFP_EN (1<<2)
#define SWF14_DS_PIPEA_TV_EN (1<<1)
#define SWF14_DS_PIPEA_CRT_EN (1<<0)
/* if GR18 indicates a panel fitting request */
#define SWF14_PFIT_EN (1<<0) /* 0 means disable */
/* if GR18 indicates an APM change request */
#define SWF14_APM_HIBERNATE 0x4
#define SWF14_APM_SUSPEND 0x3
#define SWF14_APM_STANDBY 0x1
#define SWF14_APM_RESTORE 0x0
/* Add the device class for LFP, TV, HDMI */
#define DEVICE_TYPE_INT_LFP 0x1022
#define DEVICE_TYPE_INT_TV 0x1009
#define DEVICE_TYPE_HDMI 0x60D2
#define DEVICE_TYPE_DP 0x68C6
#define DEVICE_TYPE_eDP 0x78C6
#define DEVICE_TYPE_CLASS_EXTENSION (1 << 15)
#define DEVICE_TYPE_POWER_MANAGEMENT (1 << 14)
#define DEVICE_TYPE_HOTPLUG_SIGNALING (1 << 13)
#define DEVICE_TYPE_INTERNAL_CONNECTOR (1 << 12)
#define DEVICE_TYPE_NOT_HDMI_OUTPUT (1 << 11)
#define DEVICE_TYPE_MIPI_OUTPUT (1 << 10)
#define DEVICE_TYPE_COMPOSITE_OUTPUT (1 << 9)
#define DEVICE_TYPE_DUAL_CHANNEL (1 << 8)
#define DEVICE_TYPE_HIGH_SPEED_LINK (1 << 6)
#define DEVICE_TYPE_LVDS_SINGALING (1 << 5)
#define DEVICE_TYPE_TMDS_DVI_SIGNALING (1 << 4)
#define DEVICE_TYPE_VIDEO_SIGNALING (1 << 3)
#define DEVICE_TYPE_DISPLAYPORT_OUTPUT (1 << 2)
#define DEVICE_TYPE_DIGITAL_OUTPUT (1 << 1)
#define DEVICE_TYPE_ANALOG_OUTPUT (1 << 0)
/*
* Bits we care about when checking for DEVICE_TYPE_eDP
* Depending on the system, the other bits may or may not
* be set for eDP outputs.
*/
#define DEVICE_TYPE_eDP_BITS \
(DEVICE_TYPE_INTERNAL_CONNECTOR | \
DEVICE_TYPE_MIPI_OUTPUT | \
DEVICE_TYPE_COMPOSITE_OUTPUT | \
DEVICE_TYPE_DUAL_CHANNEL | \
DEVICE_TYPE_LVDS_SINGALING | \
DEVICE_TYPE_TMDS_DVI_SIGNALING | \
DEVICE_TYPE_VIDEO_SIGNALING | \
DEVICE_TYPE_DISPLAYPORT_OUTPUT | \
DEVICE_TYPE_ANALOG_OUTPUT)
/* define the DVO port for HDMI output type */
#define DVO_B 1
#define DVO_C 2
#define DVO_D 3
/* Possible values for the "DVO Port" field for versions >= 155: */
#define DVO_PORT_HDMIA 0
#define DVO_PORT_HDMIB 1
#define DVO_PORT_HDMIC 2
#define DVO_PORT_HDMID 3
#define DVO_PORT_LVDS 4
#define DVO_PORT_TV 5
#define DVO_PORT_CRT 6
#define DVO_PORT_DPB 7
#define DVO_PORT_DPC 8
#define DVO_PORT_DPD 9
#define DVO_PORT_DPA 10
#define DVO_PORT_DPE 11
#define DVO_PORT_HDMIE 12
#define DVO_PORT_MIPIA 21
#define DVO_PORT_MIPIB 22
#define DVO_PORT_MIPIC 23
#define DVO_PORT_MIPID 24
/* Block 52 contains MIPI configuration block
* 6 * bdb_mipi_config, followed by 6 pps data block
* block below
*/
#define MAX_MIPI_CONFIGURATIONS 6
struct bdb_mipi_config {
struct mipi_config config[MAX_MIPI_CONFIGURATIONS];
struct mipi_pps_data pps[MAX_MIPI_CONFIGURATIONS];
} __packed;
/* Block 53 contains MIPI sequences as needed by the panel
* for enabling it. This block can be variable in size and
* can be maximum of 6 blocks
*/
struct bdb_mipi_sequence {
u8 version;
u8 data[0];
} __packed;
enum mipi_gpio_pin_index {
MIPI_GPIO_UNDEFINED = 0,
MIPI_GPIO_PANEL_ENABLE,
MIPI_GPIO_BL_ENABLE,
MIPI_GPIO_PWM_ENABLE,
MIPI_GPIO_RESET_N,
MIPI_GPIO_PWR_DOWN_R,
MIPI_GPIO_STDBY_RST_N,
MIPI_GPIO_MAX
};
#endif /* _INTEL_VBT_DEFS_H_ */