mm/hugetlb: refactor subpage recording

For a given hugepage backing a VA, there's a rather ineficient loop which
is solely responsible for storing subpages in GUP @pages/@vmas array.  For
each subpage we check whether it's within range or size of @pages and keep
increment @pfn_offset and a couple other variables per subpage iteration.

Simplify this logic and minimize the cost of each iteration to just store
the output page/vma.  Instead of incrementing number of @refs iteratively,
we do it through pre-calculation of @refs and only with a tight loop for
storing pinned subpages/vmas.

Additionally, retain existing behaviour with using mem_map_offset() when
recording the subpages for configurations that don't have a contiguous
mem_map.

pinning consequently improves bringing us close to
{pin,get}_user_pages_fast:

  - 16G with 1G huge page size
  gup_test -f /mnt/huge/file -m 16384 -r 30 -L -S -n 512 -w

PIN_LONGTERM_BENCHMARK: ~12.8k us -> ~5.8k us
PIN_FAST_BENCHMARK: ~3.7k us

Link: https://lkml.kernel.org/r/20210128182632.24562-3-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Joao Martins 2021-02-24 12:07:16 -08:00 committed by Linus Torvalds
parent 0fa5bc4023
commit 82e5d378b0

View File

@ -4787,6 +4787,20 @@ out_release_nounlock:
goto out;
}
static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
int refs, struct page **pages,
struct vm_area_struct **vmas)
{
int nr;
for (nr = 0; nr < refs; nr++) {
if (likely(pages))
pages[nr] = mem_map_offset(page, nr);
if (vmas)
vmas[nr] = vma;
}
}
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
struct page **pages, struct vm_area_struct **vmas,
unsigned long *position, unsigned long *nr_pages,
@ -4916,28 +4930,16 @@ long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
continue;
}
refs = 0;
refs = min3(pages_per_huge_page(h) - pfn_offset,
(vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
same_page:
if (pages)
pages[i] = mem_map_offset(page, pfn_offset);
if (pages || vmas)
record_subpages_vmas(mem_map_offset(page, pfn_offset),
vma, refs,
likely(pages) ? pages + i : NULL,
vmas ? vmas + i : NULL);
if (vmas)
vmas[i] = vma;
vaddr += PAGE_SIZE;
++pfn_offset;
--remainder;
++i;
++refs;
if (vaddr < vma->vm_end && remainder &&
pfn_offset < pages_per_huge_page(h)) {
/*
* We use pfn_offset to avoid touching the pageframes
* of this compound page.
*/
goto same_page;
} else if (pages) {
if (pages) {
/*
* try_grab_compound_head() should always succeed here,
* because: a) we hold the ptl lock, and b) we've just
@ -4948,7 +4950,7 @@ same_page:
* any way. So this page must be available at this
* point, unless the page refcount overflowed:
*/
if (WARN_ON_ONCE(!try_grab_compound_head(pages[i-1],
if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
refs,
flags))) {
spin_unlock(ptl);
@ -4957,6 +4959,11 @@ same_page:
break;
}
}
vaddr += (refs << PAGE_SHIFT);
remainder -= refs;
i += refs;
spin_unlock(ptl);
}
*nr_pages = remainder;