Documentation: sparc: correct spelling

Correct spelling problems for Documentation/sparc/ as reported
by codespell.

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-doc@vger.kernel.org
Cc: "David S. Miller" <davem@davemloft.net>
Cc: sparclinux@vger.kernel.org
Link: https://lore.kernel.org/r/20230129231053.20863-9-rdunlap@infradead.org
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
Randy Dunlap 2023-01-29 15:10:52 -08:00 committed by Jonathan Corbet
parent 7852fe3a09
commit 810edcd576
2 changed files with 24 additions and 24 deletions

View File

@ -38,7 +38,7 @@ virtual addresses that contain 0xa in bits 63-60.
ADI is enabled on a set of pages using mprotect() with PROT_ADI flag.
When ADI is enabled on a set of pages by a task for the first time,
kernel sets the PSTATE.mcde bit fot the task. Version tags for memory
kernel sets the PSTATE.mcde bit for the task. Version tags for memory
addresses are set with an stxa instruction on the addresses using
ASI_MCD_PRIMARY or ASI_MCD_ST_BLKINIT_PRIMARY. ADI block size is
provided by the hypervisor to the kernel. Kernel returns the value of
@ -97,7 +97,7 @@ With ADI enabled, following new traps may occur:
Disrupting memory corruption
----------------------------
When a store accesses a memory localtion that has TTE.mcd=1,
When a store accesses a memory location that has TTE.mcd=1,
the task is running with ADI enabled (PSTATE.mcde=1), and the ADI
tag in the address used (bits 63:60) does not match the tag set on
the corresponding cacheline, a memory corruption trap occurs. By

View File

@ -22,7 +22,7 @@ Chapter 36. Coprocessor services
functionality offered may vary by virtual machine implementation.
The DAX is a virtual device to sun4v guests, with supported data operations indicated by the virtual device
compatibilty property. Functionality is accessed through the submission of Command Control Blocks
compatibility property. Functionality is accessed through the submission of Command Control Blocks
(CCBs) via the ccb_submit API function. The operations are processed asynchronously, with the status
of the submitted operations reported through a Completion Area linked to each CCB. Each CCB has a
separate Completion Area and, unless execution order is specifically restricted through the use of serial-
@ -313,7 +313,7 @@ bits set, and terminate at a CCB that has the Conditional bit set, but not the P
Secondary Input Description
Format Code
0 Element is stored as value minus 1 (0 evalutes to 1, 1 evalutes
0 Element is stored as value minus 1 (0 evaluates to 1, 1 evaluates
to 2, etc)
1 Element is stored as value
@ -659,7 +659,7 @@ Offset Size Field Description
“Secondary Input Element Size”
[13:10] Output Format (see Section 36.2.1.1.6, “Output Format”)
[9:5] Operand size for first scan criteria value. In a scan value
operation, this is one of two potential extact match values.
operation, this is one of two potential exact match values.
In a scan range operation, this is the size of the upper range
@ -673,7 +673,7 @@ Offset Size Field Description
operand, minus 1. Values 0xF-0x1E are reserved. A value of
0x1F indicates this operand is not in use for this scan operation.
[4:0] Operand size for second scan criteria value. In a scan value
operation, this is one of two potential extact match values.
operation, this is one of two potential exact match values.
In a scan range operation, this is the size of the lower range
boundary. The value of this field is the number of bytes in the
operand, minus 1. Values 0xF-0x1E are reserved. A value of
@ -690,24 +690,24 @@ Offset Size Field Description
48 8 Output (same fields as Primary Input)
56 8 Symbol Table (if used by Primary Input). Same fields as Section 36.2.1.2,
“Extract command”
64 4 Next 4 most significant bytes of first scan criteria operand occuring after the
64 4 Next 4 most significant bytes of first scan criteria operand occurring after the
bytes specified at offset 40, if needed by the operand size. If first operand
is less than 8 bytes, the valid bytes are left-aligned to the lowest address.
68 4 Next 4 most significant bytes of second scan criteria operand occuring after
68 4 Next 4 most significant bytes of second scan criteria operand occurring after
the bytes specified at offset 44, if needed by the operand size. If second
operand is less than 8 bytes, the valid bytes are left-aligned to the lowest
address.
72 4 Next 4 most significant bytes of first scan criteria operand occuring after the
72 4 Next 4 most significant bytes of first scan criteria operand occurring after the
bytes specified at offset 64, if needed by the operand size. If first operand
is less than 12 bytes, the valid bytes are left-aligned to the lowest address.
76 4 Next 4 most significant bytes of second scan criteria operand occuring after
76 4 Next 4 most significant bytes of second scan criteria operand occurring after
the bytes specified at offset 68, if needed by the operand size. If second
operand is less than 12 bytes, the valid bytes are left-aligned to the lowest
address.
80 4 Next 4 most significant bytes of first scan criteria operand occuring after the
80 4 Next 4 most significant bytes of first scan criteria operand occurring after the
bytes specified at offset 72, if needed by the operand size. If first operand
is less than 16 bytes, the valid bytes are left-aligned to the lowest address.
84 4 Next 4 most significant bytes of second scan criteria operand occuring after
84 4 Next 4 most significant bytes of second scan criteria operand occurring after
the bytes specified at offset 76, if needed by the operand size. If second
operand is less than 16 bytes, the valid bytes are left-aligned to the lowest
address.
@ -721,10 +721,10 @@ Offset Size Field Description
36.2.1.4. Translate commands
The translate commands takes an input array of indicies, and a table of single bit values indexed by those
indicies, and outputs a bit vector or index array created by reading the tables bit value at each index in
The translate commands takes an input array of indices, and a table of single bit values indexed by those
indices, and outputs a bit vector or index array created by reading the tables bit value at each index in
the input array. The output should therefore contain exactly one bit per index in the input data stream,
when outputing as a bit vector. When outputing as an index array, the number of elements depends on the
when outputting as a bit vector. When outputting as an index array, the number of elements depends on the
values read in the bit table, but will always be less than, or equal to, the number of input elements. Only
a restricted subset of the possible input format types are supported. No variable width or Huffman/OZIP
encoded input streams are allowed. The primary input data element size must be 3 bytes or less.
@ -742,7 +742,7 @@ Offset Size Field Description
code in the CCB header.
There are two supported formats for the output stream: the bit vector and index array formats (codes 0x8,
0xD, and 0xE). The index array format is an array of indicies of bits which would have been set if the
0xD, and 0xE). The index array format is an array of indices of bits which would have been set if the
output format was a bit array.
The return value of the CCB completion area contains the number of bits set in the output bit vector,
@ -1254,7 +1254,7 @@ EUNAVAILABLE The requested CCB operation could not be performed at this time.
submitted CCB, or may apply to a larger scope. The status should not be
interpreted as permanent, and the guest should attempt to submit CCBs in
the future which had previously been unable to be performed. The status
data provides additional information about scope of the retricted availability
data provides additional information about scope of the restricted availability
as follows:
Value Description
0 Processing for the exact CCB instance submitted was unavailable,
@ -1330,20 +1330,20 @@ EUNAVAILABLE The requested CCB operation could not be performed at this time.
of other CCBs ahead of the requested CCB, to provide a relative estimate of when the CCB may execute.
The dax return value is only valid when the state is ENQUEUED. The value returned is the DAX unit
instance indentifier for the DAX unit processing the queue where the requested CCB is located. The value
instance identifier for the DAX unit processing the queue where the requested CCB is located. The value
matches the value that would have been, or was, returned by ccb_submit using the queue info flag.
The queue return value is only valid when the state is ENQUEUED. The value returned is the DAX
queue instance indentifier for the DAX unit processing the queue where the requested CCB is located. The
queue instance identifier for the DAX unit processing the queue where the requested CCB is located. The
value matches the value that would have been, or was, returned by ccb_submit using the queue info flag.
36.3.2.1. Errors
EOK The request was proccessed and the CCB state is valid.
EOK The request was processed and the CCB state is valid.
EBADALIGN address is not on a 64-byte aligned.
ENORADDR The real address provided for address is not valid.
EINVAL The CCB completion area contents are not valid.
EWOULDBLOCK Internal resource contraints prevented the CCB state from being queried at this
EWOULDBLOCK Internal resource constraints prevented the CCB state from being queried at this
time. The guest should retry the request.
ENOACCESS The guest does not have permission to access the coprocessor virtual device
functionality.
@ -1401,11 +1401,11 @@ EUNAVAILABLE The requested CCB operation could not be performed at this time.
36.3.3.2. Errors
EOK The request was proccessed and the result is valid.
EOK The request was processed and the result is valid.
EBADALIGN address is not on a 64-byte aligned.
ENORADDR The real address provided for address is not valid.
EINVAL The CCB completion area contents are not valid.
EWOULDBLOCK Internal resource contraints prevented the CCB from being killed at this time.
EWOULDBLOCK Internal resource constraints prevented the CCB from being killed at this time.
The guest should retry the request.
ENOACCESS The guest does not have permission to access the coprocessor virtual device
functionality.
@ -1423,7 +1423,7 @@ EUNAVAILABLE The requested CCB operation could not be performed at this time.
36.3.4.1. Errors
EOK The request was proccessed and the number of enabled/disabled DAX units
EOK The request was processed and the number of enabled/disabled DAX units
are valid.