Merge git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched

* git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched:
  futex: correctly return -EFAULT not -EINVAL
  lockdep: in_range() fix
  lockdep: fix debug_show_all_locks()
  sched: style cleanups
  futex: fix for futex_wait signal stack corruption
This commit is contained in:
Linus Torvalds 2007-12-05 09:27:46 -08:00
commit 7e1fb765c6
4 changed files with 114 additions and 91 deletions

View File

@ -7,12 +7,25 @@
#ifndef _LINUX_THREAD_INFO_H
#define _LINUX_THREAD_INFO_H
#include <linux/types.h>
/*
* System call restart block.
* System call restart block.
*/
struct restart_block {
long (*fn)(struct restart_block *);
unsigned long arg0, arg1, arg2, arg3;
union {
struct {
unsigned long arg0, arg1, arg2, arg3;
};
/* For futex_wait */
struct {
u32 *uaddr;
u32 val;
u32 flags;
u64 time;
} futex;
};
};
extern long do_no_restart_syscall(struct restart_block *parm);

View File

@ -658,7 +658,7 @@ static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
if (curval == -EFAULT)
ret = -EFAULT;
if (curval != uval)
else if (curval != uval)
ret = -EINVAL;
if (ret) {
spin_unlock(&pi_state->pi_mutex.wait_lock);
@ -1149,9 +1149,9 @@ static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
/*
* In case we must use restart_block to restart a futex_wait,
* we encode in the 'arg3' shared capability
* we encode in the 'flags' shared capability
*/
#define ARG3_SHARED 1
#define FLAGS_SHARED 1
static long futex_wait_restart(struct restart_block *restart);
@ -1290,12 +1290,13 @@ static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
struct restart_block *restart;
restart = &current_thread_info()->restart_block;
restart->fn = futex_wait_restart;
restart->arg0 = (unsigned long)uaddr;
restart->arg1 = (unsigned long)val;
restart->arg2 = (unsigned long)abs_time;
restart->arg3 = 0;
restart->futex.uaddr = (u32 *)uaddr;
restart->futex.val = val;
restart->futex.time = abs_time->tv64;
restart->futex.flags = 0;
if (fshared)
restart->arg3 |= ARG3_SHARED;
restart->futex.flags |= FLAGS_SHARED;
return -ERESTART_RESTARTBLOCK;
}
@ -1310,15 +1311,15 @@ static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
static long futex_wait_restart(struct restart_block *restart)
{
u32 __user *uaddr = (u32 __user *)restart->arg0;
u32 val = (u32)restart->arg1;
ktime_t *abs_time = (ktime_t *)restart->arg2;
u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
struct rw_semaphore *fshared = NULL;
ktime_t t;
t.tv64 = restart->futex.time;
restart->fn = do_no_restart_syscall;
if (restart->arg3 & ARG3_SHARED)
if (restart->futex.flags & FLAGS_SHARED)
fshared = &current->mm->mmap_sem;
return (long)futex_wait(uaddr, fshared, val, abs_time);
return (long)futex_wait(uaddr, fshared, restart->futex.val, &t);
}

View File

@ -3054,11 +3054,6 @@ void __init lockdep_info(void)
#endif
}
static inline int in_range(const void *start, const void *addr, const void *end)
{
return addr >= start && addr <= end;
}
static void
print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
const void *mem_to, struct held_lock *hlock)
@ -3080,6 +3075,13 @@ print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
dump_stack();
}
static inline int not_in_range(const void* mem_from, unsigned long mem_len,
const void* lock_from, unsigned long lock_len)
{
return lock_from + lock_len <= mem_from ||
mem_from + mem_len <= lock_from;
}
/*
* Called when kernel memory is freed (or unmapped), or if a lock
* is destroyed or reinitialized - this code checks whether there is
@ -3087,7 +3089,6 @@ print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
*/
void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
{
const void *mem_to = mem_from + mem_len, *lock_from, *lock_to;
struct task_struct *curr = current;
struct held_lock *hlock;
unsigned long flags;
@ -3100,14 +3101,11 @@ void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
for (i = 0; i < curr->lockdep_depth; i++) {
hlock = curr->held_locks + i;
lock_from = (void *)hlock->instance;
lock_to = (void *)(hlock->instance + 1);
if (!in_range(mem_from, lock_from, mem_to) &&
!in_range(mem_from, lock_to, mem_to))
if (not_in_range(mem_from, mem_len, hlock->instance,
sizeof(*hlock->instance)))
continue;
print_freed_lock_bug(curr, mem_from, mem_to, hlock);
print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
break;
}
local_irq_restore(flags);
@ -3173,6 +3171,13 @@ retry:
printk(" locked it.\n");
do_each_thread(g, p) {
/*
* It's not reliable to print a task's held locks
* if it's not sleeping (or if it's not the current
* task):
*/
if (p->state == TASK_RUNNING && p != current)
continue;
if (p->lockdep_depth)
lockdep_print_held_locks(p);
if (!unlock)

View File

@ -209,9 +209,8 @@ static inline struct task_group *task_group(struct task_struct *p)
tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
struct task_group, css);
#else
tg = &init_task_group;
tg = &init_task_group;
#endif
return tg;
}
@ -249,15 +248,16 @@ struct cfs_rq {
#ifdef CONFIG_FAIR_GROUP_SCHED
struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
/*
* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
* a hierarchy). Non-leaf lrqs hold other higher schedulable entities
* (like users, containers etc.)
*
* leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
* list is used during load balance.
*/
struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
struct task_group *tg; /* group that "owns" this runqueue */
struct list_head leaf_cfs_rq_list;
struct task_group *tg; /* group that "owns" this runqueue */
#endif
};
@ -300,7 +300,7 @@ struct rq {
/* list of leaf cfs_rq on this cpu: */
struct list_head leaf_cfs_rq_list;
#endif
struct rt_rq rt;
struct rt_rq rt;
/*
* This is part of a global counter where only the total sum
@ -457,8 +457,8 @@ enum {
SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
SCHED_FEAT_WAKEUP_PREEMPT = 2,
SCHED_FEAT_START_DEBIT = 4,
SCHED_FEAT_TREE_AVG = 8,
SCHED_FEAT_APPROX_AVG = 16,
SCHED_FEAT_TREE_AVG = 8,
SCHED_FEAT_APPROX_AVG = 16,
};
const_debug unsigned int sysctl_sched_features =
@ -591,7 +591,7 @@ static inline struct rq *__task_rq_lock(struct task_struct *p)
/*
* task_rq_lock - lock the runqueue a given task resides on and disable
* interrupts. Note the ordering: we can safely lookup the task_rq without
* interrupts. Note the ordering: we can safely lookup the task_rq without
* explicitly disabling preemption.
*/
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
@ -779,7 +779,7 @@ static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
* To aid in avoiding the subversion of "niceness" due to uneven distribution
* of tasks with abnormal "nice" values across CPUs the contribution that
* each task makes to its run queue's load is weighted according to its
* scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
* scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
* scaled version of the new time slice allocation that they receive on time
* slice expiry etc.
*/
@ -1854,7 +1854,7 @@ prepare_task_switch(struct rq *rq, struct task_struct *prev,
* and do any other architecture-specific cleanup actions.
*
* Note that we may have delayed dropping an mm in context_switch(). If
* so, we finish that here outside of the runqueue lock. (Doing it
* so, we finish that here outside of the runqueue lock. (Doing it
* with the lock held can cause deadlocks; see schedule() for
* details.)
*/
@ -2136,7 +2136,7 @@ static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
/*
* If dest_cpu is allowed for this process, migrate the task to it.
* This is accomplished by forcing the cpu_allowed mask to only
* allow dest_cpu, which will force the cpu onto dest_cpu. Then
* allow dest_cpu, which will force the cpu onto dest_cpu. Then
* the cpu_allowed mask is restored.
*/
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
@ -2581,7 +2581,7 @@ group_next:
* tasks around. Thus we look for the minimum possible imbalance.
* Negative imbalances (*we* are more loaded than anyone else) will
* be counted as no imbalance for these purposes -- we can't fix that
* by pulling tasks to us. Be careful of negative numbers as they'll
* by pulling tasks to us. Be careful of negative numbers as they'll
* appear as very large values with unsigned longs.
*/
if (max_load <= busiest_load_per_task)
@ -3016,7 +3016,7 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
/*
* This condition is "impossible", if it occurs
* we need to fix it. Originally reported by
* we need to fix it. Originally reported by
* Bjorn Helgaas on a 128-cpu setup.
*/
BUG_ON(busiest_rq == target_rq);
@ -3048,7 +3048,7 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
#ifdef CONFIG_NO_HZ
static struct {
atomic_t load_balancer;
cpumask_t cpu_mask;
cpumask_t cpu_mask;
} nohz ____cacheline_aligned = {
.load_balancer = ATOMIC_INIT(-1),
.cpu_mask = CPU_MASK_NONE,
@ -3552,7 +3552,7 @@ static noinline void __schedule_bug(struct task_struct *prev)
static inline void schedule_debug(struct task_struct *prev)
{
/*
* Test if we are atomic. Since do_exit() needs to call into
* Test if we are atomic. Since do_exit() needs to call into
* schedule() atomically, we ignore that path for now.
* Otherwise, whine if we are scheduling when we should not be.
*/
@ -3674,7 +3674,7 @@ EXPORT_SYMBOL(schedule);
#ifdef CONFIG_PREEMPT
/*
* this is the entry point to schedule() from in-kernel preemption
* off of preempt_enable. Kernel preemptions off return from interrupt
* off of preempt_enable. Kernel preemptions off return from interrupt
* occur there and call schedule directly.
*/
asmlinkage void __sched preempt_schedule(void)
@ -3686,7 +3686,7 @@ asmlinkage void __sched preempt_schedule(void)
#endif
/*
* If there is a non-zero preempt_count or interrupts are disabled,
* we do not want to preempt the current task. Just return..
* we do not want to preempt the current task. Just return..
*/
if (likely(ti->preempt_count || irqs_disabled()))
return;
@ -3772,12 +3772,12 @@ int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
EXPORT_SYMBOL(default_wake_function);
/*
* The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
* wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
* The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
* wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
* number) then we wake all the non-exclusive tasks and one exclusive task.
*
* There are circumstances in which we can try to wake a task which has already
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
* zero in this (rare) case, and we handle it by continuing to scan the queue.
*/
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
@ -4390,8 +4390,8 @@ do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
* @policy: new policy.
* @param: structure containing the new RT priority.
*/
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
struct sched_param __user *param)
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
{
/* negative values for policy are not valid */
if (policy < 0)
@ -4491,7 +4491,7 @@ long sched_setaffinity(pid_t pid, cpumask_t new_mask)
/*
* It is not safe to call set_cpus_allowed with the
* tasklist_lock held. We will bump the task_struct's
* tasklist_lock held. We will bump the task_struct's
* usage count and then drop tasklist_lock.
*/
get_task_struct(p);
@ -4687,7 +4687,7 @@ EXPORT_SYMBOL(cond_resched);
* cond_resched_lock() - if a reschedule is pending, drop the given lock,
* call schedule, and on return reacquire the lock.
*
* This works OK both with and without CONFIG_PREEMPT. We do strange low-level
* This works OK both with and without CONFIG_PREEMPT. We do strange low-level
* operations here to prevent schedule() from being called twice (once via
* spin_unlock(), once by hand).
*/
@ -4741,7 +4741,7 @@ void __sched yield(void)
EXPORT_SYMBOL(yield);
/*
* This task is about to go to sleep on IO. Increment rq->nr_iowait so
* This task is about to go to sleep on IO. Increment rq->nr_iowait so
* that process accounting knows that this is a task in IO wait state.
*
* But don't do that if it is a deliberate, throttling IO wait (this task
@ -5050,7 +5050,7 @@ static inline void sched_init_granularity(void)
* is removed from the allowed bitmask.
*
* NOTE: the caller must have a valid reference to the task, the
* task must not exit() & deallocate itself prematurely. The
* task must not exit() & deallocate itself prematurely. The
* call is not atomic; no spinlocks may be held.
*/
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
@ -5087,7 +5087,7 @@ out:
EXPORT_SYMBOL_GPL(set_cpus_allowed);
/*
* Move (not current) task off this cpu, onto dest cpu. We're doing
* Move (not current) task off this cpu, onto dest cpu. We're doing
* this because either it can't run here any more (set_cpus_allowed()
* away from this CPU, or CPU going down), or because we're
* attempting to rebalance this task on exec (sched_exec).
@ -5232,7 +5232,7 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
* Try to stay on the same cpuset, where the
* current cpuset may be a subset of all cpus.
* The cpuset_cpus_allowed_locked() variant of
* cpuset_cpus_allowed() will not block. It must be
* cpuset_cpus_allowed() will not block. It must be
* called within calls to cpuset_lock/cpuset_unlock.
*/
rq = task_rq_lock(p, &flags);
@ -5245,10 +5245,11 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
* kernel threads (both mm NULL), since they never
* leave kernel.
*/
if (p->mm && printk_ratelimit())
if (p->mm && printk_ratelimit()) {
printk(KERN_INFO "process %d (%s) no "
"longer affine to cpu%d\n",
task_pid_nr(p), p->comm, dead_cpu);
task_pid_nr(p), p->comm, dead_cpu);
}
}
} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
}
@ -5350,7 +5351,7 @@ static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
/*
* Drop lock around migration; if someone else moves it,
* that's OK. No task can be added to this CPU, so iteration is
* that's OK. No task can be added to this CPU, so iteration is
* fine.
*/
spin_unlock_irq(&rq->lock);
@ -5414,7 +5415,7 @@ static void sd_free_ctl_entry(struct ctl_table **tablep)
/*
* In the intermediate directories, both the child directory and
* procname are dynamically allocated and could fail but the mode
* will always be set. In the lowest directory the names are
* will always be set. In the lowest directory the names are
* static strings and all have proc handlers.
*/
for (entry = *tablep; entry->mode; entry++) {
@ -5585,7 +5586,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
case CPU_UP_CANCELED_FROZEN:
if (!cpu_rq(cpu)->migration_thread)
break;
/* Unbind it from offline cpu so it can run. Fall thru. */
/* Unbind it from offline cpu so it can run. Fall thru. */
kthread_bind(cpu_rq(cpu)->migration_thread,
any_online_cpu(cpu_online_map));
kthread_stop(cpu_rq(cpu)->migration_thread);
@ -5612,9 +5613,11 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
migrate_nr_uninterruptible(rq);
BUG_ON(rq->nr_running != 0);
/* No need to migrate the tasks: it was best-effort if
* they didn't take sched_hotcpu_mutex. Just wake up
* the requestors. */
/*
* No need to migrate the tasks: it was best-effort if
* they didn't take sched_hotcpu_mutex. Just wake up
* the requestors.
*/
spin_lock_irq(&rq->lock);
while (!list_empty(&rq->migration_queue)) {
struct migration_req *req;
@ -5922,7 +5925,7 @@ init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
* @node: node whose sched_domain we're building
* @used_nodes: nodes already in the sched_domain
*
* Find the next node to include in a given scheduling domain. Simply
* Find the next node to include in a given scheduling domain. Simply
* finds the closest node not already in the @used_nodes map.
*
* Should use nodemask_t.
@ -5962,7 +5965,7 @@ static int find_next_best_node(int node, unsigned long *used_nodes)
* @node: node whose cpumask we're constructing
* @size: number of nodes to include in this span
*
* Given a node, construct a good cpumask for its sched_domain to span. It
* Given a node, construct a good cpumask for its sched_domain to span. It
* should be one that prevents unnecessary balancing, but also spreads tasks
* out optimally.
*/
@ -5999,8 +6002,8 @@ int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
struct sched_group **sg)
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
{
if (sg)
*sg = &per_cpu(sched_group_cpus, cpu);
@ -6017,8 +6020,8 @@ static DEFINE_PER_CPU(struct sched_group, sched_group_core);
#endif
#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
struct sched_group **sg)
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
{
int group;
cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
@ -6029,8 +6032,8 @@ static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
return group;
}
#elif defined(CONFIG_SCHED_MC)
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
struct sched_group **sg)
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
{
if (sg)
*sg = &per_cpu(sched_group_core, cpu);
@ -6041,8 +6044,8 @@ static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
struct sched_group **sg)
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
{
int group;
#ifdef CONFIG_SCHED_MC
@ -6222,7 +6225,7 @@ static int build_sched_domains(const cpumask_t *cpu_map)
* Allocate the per-node list of sched groups
*/
sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
GFP_KERNEL);
GFP_KERNEL);
if (!sched_group_nodes) {
printk(KERN_WARNING "Can not alloc sched group node list\n");
return -ENOMEM;
@ -6469,7 +6472,7 @@ static int ndoms_cur; /* number of sched domains in 'doms_cur' */
static cpumask_t fallback_doms;
/*
* Set up scheduler domains and groups. Callers must hold the hotplug lock.
* Set up scheduler domains and groups. Callers must hold the hotplug lock.
* For now this just excludes isolated cpus, but could be used to
* exclude other special cases in the future.
*/
@ -6511,19 +6514,19 @@ static void detach_destroy_domains(const cpumask_t *cpu_map)
/*
* Partition sched domains as specified by the 'ndoms_new'
* cpumasks in the array doms_new[] of cpumasks. This compares
* cpumasks in the array doms_new[] of cpumasks. This compares
* doms_new[] to the current sched domain partitioning, doms_cur[].
* It destroys each deleted domain and builds each new domain.
*
* 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
* The masks don't intersect (don't overlap.) We should setup one
* sched domain for each mask. CPUs not in any of the cpumasks will
* not be load balanced. If the same cpumask appears both in the
* The masks don't intersect (don't overlap.) We should setup one
* sched domain for each mask. CPUs not in any of the cpumasks will
* not be load balanced. If the same cpumask appears both in the
* current 'doms_cur' domains and in the new 'doms_new', we can leave
* it as it is.
*
* The passed in 'doms_new' should be kmalloc'd. This routine takes
* ownership of it and will kfree it when done with it. If the caller
* The passed in 'doms_new' should be kmalloc'd. This routine takes
* ownership of it and will kfree it when done with it. If the caller
* failed the kmalloc call, then it can pass in doms_new == NULL,
* and partition_sched_domains() will fallback to the single partition
* 'fallback_doms'.
@ -6653,7 +6656,7 @@ int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
#endif
/*
* Force a reinitialization of the sched domains hierarchy. The domains
* Force a reinitialization of the sched domains hierarchy. The domains
* and groups cannot be updated in place without racing with the balancing
* code, so we temporarily attach all running cpus to the NULL domain
* which will prevent rebalancing while the sched domains are recalculated.
@ -6943,8 +6946,8 @@ struct task_struct *curr_task(int cpu)
* @p: the task pointer to set.
*
* Description: This function must only be used when non-maskable interrupts
* are serviced on a separate stack. It allows the architecture to switch the
* notion of the current task on a cpu in a non-blocking manner. This function
* are serviced on a separate stack. It allows the architecture to switch the
* notion of the current task on a cpu in a non-blocking manner. This function
* must be called with all CPU's synchronized, and interrupts disabled, the
* and caller must save the original value of the current task (see
* curr_task() above) and restore that value before reenabling interrupts and
@ -7193,16 +7196,17 @@ cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
return &tg->css;
}
static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
struct cgroup *cgrp)
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
{
struct task_group *tg = cgroup_tg(cgrp);
sched_destroy_group(tg);
}
static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
struct cgroup *cgrp, struct task_struct *tsk)
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
struct task_struct *tsk)
{
/* We don't support RT-tasks being in separate groups */
if (tsk->sched_class != &fair_sched_class)
@ -7308,8 +7312,8 @@ static struct cgroup_subsys_state *cpuacct_create(
}
/* destroy an existing cpu accounting group */
static void cpuacct_destroy(struct cgroup_subsys *ss,
struct cgroup *cont)
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
struct cpuacct *ca = cgroup_ca(cont);