i2c: rk3x: add i2c support for rk3399 soc

- new method to caculate i2c timings for rk3399:
  There was an timing issue about "repeated start" time at the I2C
  controller of version0, controller appears to drop SDA at .875x (7/8)
  programmed clk high. On version 1 of the controller, the rule(.875x)
  isn't enough to meet tSU;STA
  requirements on 100k's Standard-mode. To resolve this issue,
  sda_update_config, start_setup_config and stop_setup_config for I2C
  timing information are added, new rules are designed to calculate
  the timing information at new v1.
- pclk and function clk are separated at rk3399

Signed-off-by: David Wu <david.wu@rock-chips.com>
Tested-by: Caesar Wang <wxt@rock-chips.com>
Tested-by: Heiko Stuebner <heiko@sntech.de>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
[wsa: fixed whitespace issue]
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
This commit is contained in:
David Wu 2016-05-16 22:05:03 +08:00 committed by Wolfram Sang
parent 908dbd5391
commit 7e086c3fc2

View File

@ -58,6 +58,12 @@ enum {
#define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */
#define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */
#define REG_CON_TUNING_MASK GENMASK(15, 8)
#define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
#define REG_CON_STA_CFG(cfg) ((cfg) << 12)
#define REG_CON_STO_CFG(cfg) ((cfg) << 14)
/* REG_MRXADDR bits */
#define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
@ -77,40 +83,62 @@ enum {
/**
* struct i2c_spec_values:
* @min_hold_start_ns: min hold time (repeated) START condition
* @min_low_ns: min LOW period of the SCL clock
* @min_high_ns: min HIGH period of the SCL cloc
* @min_setup_start_ns: min set-up time for a repeated START conditio
* @max_data_hold_ns: max data hold time
* @min_data_setup_ns: min data set-up time
* @min_setup_stop_ns: min set-up time for STOP condition
* @min_hold_buffer_ns: min bus free time between a STOP and
* START condition
*/
struct i2c_spec_values {
unsigned long min_hold_start_ns;
unsigned long min_low_ns;
unsigned long min_high_ns;
unsigned long min_setup_start_ns;
unsigned long max_data_hold_ns;
unsigned long min_data_setup_ns;
unsigned long min_setup_stop_ns;
unsigned long min_hold_buffer_ns;
};
static const struct i2c_spec_values standard_mode_spec = {
.min_hold_start_ns = 4000,
.min_low_ns = 4700,
.min_high_ns = 4000,
.min_setup_start_ns = 4700,
.max_data_hold_ns = 3450,
.min_data_setup_ns = 250,
.min_setup_stop_ns = 4000,
.min_hold_buffer_ns = 4700,
};
static const struct i2c_spec_values fast_mode_spec = {
.min_hold_start_ns = 600,
.min_low_ns = 1300,
.min_high_ns = 600,
.min_setup_start_ns = 600,
.max_data_hold_ns = 900,
.min_data_setup_ns = 100,
.min_setup_stop_ns = 600,
.min_hold_buffer_ns = 1300,
};
/**
* struct rk3x_i2c_calced_timings:
* @div_low: Divider output for low
* @div_high: Divider output for high
* @tuning: Used to adjust setup/hold data time,
* setup/hold start time and setup stop time for
* v1's calc_timings, the tuning should all be 0
* for old hardware anyone using v0's calc_timings.
*/
struct rk3x_i2c_calced_timings {
unsigned long div_low;
unsigned long div_high;
unsigned int tuning;
};
enum rk3x_i2c_state {
@ -123,9 +151,12 @@ enum rk3x_i2c_state {
/**
* @grf_offset: offset inside the grf regmap for setting the i2c type
* @calc_timings: Callback function for i2c timing information calculated
*/
struct rk3x_i2c_soc_data {
int grf_offset;
int (*calc_timings)(unsigned long, struct i2c_timings *,
struct rk3x_i2c_calced_timings *);
};
/**
@ -134,7 +165,8 @@ struct rk3x_i2c_soc_data {
* @dev: device for this controller
* @soc_data: related soc data struct
* @regs: virtual memory area
* @clk: clock of i2c bus
* @clk: function clk for rk3399 or function & Bus clks for others
* @pclk: Bus clk for rk3399
* @clk_rate_nb: i2c clk rate change notify
* @t: I2C known timing information
* @lock: spinlock for the i2c bus
@ -156,6 +188,7 @@ struct rk3x_i2c {
/* Hardware resources */
void __iomem *regs;
struct clk *clk;
struct clk *pclk;
struct notifier_block clk_rate_nb;
/* Settings */
@ -200,12 +233,12 @@ static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
*/
static void rk3x_i2c_start(struct rk3x_i2c *i2c)
{
u32 val;
u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
i2c_writel(i2c, REG_INT_START, REG_IEN);
/* enable adapter with correct mode, send START condition */
val = REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
/* if we want to react to NACK, set ACTACK bit */
if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
@ -246,7 +279,8 @@ static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
* get the intended effect by resetting its internal state
* and issuing an ordinary START.
*/
i2c_writel(i2c, 0, REG_CON);
ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
i2c_writel(i2c, ctrl, REG_CON);
/* signal that we are finished with the current msg */
wake_up(&i2c->wait);
@ -513,9 +547,9 @@ static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
* a best-effort divider value is returned in divs. If the target rate is
* too high, we silently use the highest possible rate.
*/
static int rk3x_i2c_calc_divs(unsigned long clk_rate,
struct i2c_timings *t,
struct rk3x_i2c_calced_timings *t_calc)
static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
struct i2c_timings *t,
struct rk3x_i2c_calced_timings *t_calc)
{
unsigned long min_low_ns, min_high_ns;
unsigned long max_low_ns, min_total_ns;
@ -661,20 +695,191 @@ static int rk3x_i2c_calc_divs(unsigned long clk_rate,
return ret;
}
/**
* Calculate timing values for desired SCL frequency
*
* @clk_rate: I2C input clock rate
* @t: Known I2C timing information
* @t_calc: Caculated rk3x private timings that would be written into regs
*
* Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
* a best-effort divider value is returned in divs. If the target rate is
* too high, we silently use the highest possible rate.
* The following formulas are v1's method to calculate timings.
*
* l = divl + 1;
* h = divh + 1;
* s = sda_update_config + 1;
* u = start_setup_config + 1;
* p = stop_setup_config + 1;
* T = Tclk_i2c;
*
* tHigh = 8 * h * T;
* tLow = 8 * l * T;
*
* tHD;sda = (l * s + 1) * T;
* tSU;sda = [(8 - s) * l + 1] * T;
* tI2C = 8 * (l + h) * T;
*
* tSU;sta = (8h * u + 1) * T;
* tHD;sta = [8h * (u + 1) - 1] * T;
* tSU;sto = (8h * p + 1) * T;
*/
static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
struct i2c_timings *t,
struct rk3x_i2c_calced_timings *t_calc)
{
unsigned long min_low_ns, min_high_ns, min_total_ns;
unsigned long min_setup_start_ns, min_setup_data_ns;
unsigned long min_setup_stop_ns, max_hold_data_ns;
unsigned long clk_rate_khz, scl_rate_khz;
unsigned long min_low_div, min_high_div;
unsigned long min_div_for_hold, min_total_div;
unsigned long extra_div, extra_low_div;
unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
const struct i2c_spec_values *spec;
int ret = 0;
/* Support standard-mode and fast-mode */
if (WARN_ON(t->bus_freq_hz > 400000))
t->bus_freq_hz = 400000;
/* prevent scl_rate_khz from becoming 0 */
if (WARN_ON(t->bus_freq_hz < 1000))
t->bus_freq_hz = 1000;
/*
* min_low_ns: The minimum number of ns we need to hold low to
* meet I2C specification, should include fall time.
* min_high_ns: The minimum number of ns we need to hold high to
* meet I2C specification, should include rise time.
*/
spec = rk3x_i2c_get_spec(t->bus_freq_hz);
/* calculate min-divh and min-divl */
clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
scl_rate_khz = t->bus_freq_hz / 1000;
min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
min_high_ns = t->scl_rise_ns + spec->min_high_ns;
min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
min_low_ns = t->scl_fall_ns + spec->min_low_ns;
min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
/*
* Final divh and divl must be greater than 0, otherwise the
* hardware would not output the i2c clk.
*/
min_high_div = (min_high_div < 1) ? 2 : min_high_div;
min_low_div = (min_low_div < 1) ? 2 : min_low_div;
/* These are the min dividers needed for min hold times. */
min_div_for_hold = (min_low_div + min_high_div);
min_total_ns = min_low_ns + min_high_ns;
/*
* This is the maximum divider so we don't go over the maximum.
* We don't round up here (we round down) since this is a maximum.
*/
if (min_div_for_hold >= min_total_div) {
/*
* Time needed to meet hold requirements is important.
* Just use that.
*/
t_calc->div_low = min_low_div;
t_calc->div_high = min_high_div;
} else {
/*
* We've got to distribute some time among the low and high
* so we don't run too fast.
* We'll try to split things up by the scale of min_low_div and
* min_high_div, biasing slightly towards having a higher div
* for low (spend more time low).
*/
extra_div = min_total_div - min_div_for_hold;
extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
min_div_for_hold);
t_calc->div_low = min_low_div + extra_low_div;
t_calc->div_high = min_high_div + (extra_div - extra_low_div);
}
/*
* calculate sda data hold count by the rules, data_upd_st:3
* is a appropriate value to reduce calculated times.
*/
for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
max_hold_data_ns = DIV_ROUND_UP((sda_update_cfg
* (t_calc->div_low) + 1)
* 1000000, clk_rate_khz);
min_setup_data_ns = DIV_ROUND_UP(((8 - sda_update_cfg)
* (t_calc->div_low) + 1)
* 1000000, clk_rate_khz);
if ((max_hold_data_ns < spec->max_data_hold_ns) &&
(min_setup_data_ns > spec->min_data_setup_ns))
break;
}
/* calculate setup start config */
min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
- 1000000, 8 * 1000000 * (t_calc->div_high));
/* calculate setup stop config */
min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
- 1000000, 8 * 1000000 * (t_calc->div_high));
t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
REG_CON_STA_CFG(--stp_sta_cfg) |
REG_CON_STO_CFG(--stp_sto_cfg);
t_calc->div_low--;
t_calc->div_high--;
/* Maximum divider supported by hw is 0xffff */
if (t_calc->div_low > 0xffff) {
t_calc->div_low = 0xffff;
ret = -EINVAL;
}
if (t_calc->div_high > 0xffff) {
t_calc->div_high = 0xffff;
ret = -EINVAL;
}
return ret;
}
static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
{
struct i2c_timings *t = &i2c->t;
struct rk3x_i2c_calced_timings calc;
u64 t_low_ns, t_high_ns;
unsigned long flags;
u32 val;
int ret;
ret = rk3x_i2c_calc_divs(clk_rate, t, &calc);
ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
clk_enable(i2c->clk);
clk_enable(i2c->pclk);
spin_lock_irqsave(&i2c->lock, flags);
val = i2c_readl(i2c, REG_CON);
val &= ~REG_CON_TUNING_MASK;
val |= calc.tuning;
i2c_writel(i2c, val, REG_CON);
i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
REG_CLKDIV);
clk_disable(i2c->clk);
spin_unlock_irqrestore(&i2c->lock, flags);
clk_disable(i2c->pclk);
t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
@ -712,7 +917,13 @@ static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
switch (event) {
case PRE_RATE_CHANGE:
if (rk3x_i2c_calc_divs(ndata->new_rate, &i2c->t, &calc) != 0)
/*
* Try the calculation (but don't store the result) ahead of
* time to see if we need to block the clock change. Timings
* shouldn't actually take effect until rk3x_i2c_adapt_div().
*/
if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
&calc) != 0)
return NOTIFY_STOP;
/* scale up */
@ -822,12 +1033,14 @@ static int rk3x_i2c_xfer(struct i2c_adapter *adap,
{
struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
unsigned long timeout, flags;
u32 val;
int ret = 0;
int i;
spin_lock_irqsave(&i2c->lock, flags);
clk_enable(i2c->clk);
clk_enable(i2c->pclk);
i2c->is_last_msg = false;
@ -861,7 +1074,9 @@ static int rk3x_i2c_xfer(struct i2c_adapter *adap,
/* Force a STOP condition without interrupt */
i2c_writel(i2c, 0, REG_IEN);
i2c_writel(i2c, REG_CON_EN | REG_CON_STOP, REG_CON);
val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
val |= REG_CON_EN | REG_CON_STOP;
i2c_writel(i2c, val, REG_CON);
i2c->state = STATE_IDLE;
@ -875,7 +1090,9 @@ static int rk3x_i2c_xfer(struct i2c_adapter *adap,
}
}
clk_disable(i2c->pclk);
clk_disable(i2c->clk);
spin_unlock_irqrestore(&i2c->lock, flags);
return ret < 0 ? ret : num;
@ -893,18 +1110,27 @@ static const struct i2c_algorithm rk3x_i2c_algorithm = {
static const struct rk3x_i2c_soc_data rk3066_soc_data = {
.grf_offset = 0x154,
.calc_timings = rk3x_i2c_v0_calc_timings,
};
static const struct rk3x_i2c_soc_data rk3188_soc_data = {
.grf_offset = 0x0a4,
.calc_timings = rk3x_i2c_v0_calc_timings,
};
static const struct rk3x_i2c_soc_data rk3228_soc_data = {
.grf_offset = -1,
.calc_timings = rk3x_i2c_v0_calc_timings,
};
static const struct rk3x_i2c_soc_data rk3288_soc_data = {
.grf_offset = -1,
.calc_timings = rk3x_i2c_v0_calc_timings,
};
static const struct rk3x_i2c_soc_data rk3399_soc_data = {
.grf_offset = -1,
.calc_timings = rk3x_i2c_v1_calc_timings,
};
static const struct of_device_id rk3x_i2c_match[] = {
@ -924,6 +1150,10 @@ static const struct of_device_id rk3x_i2c_match[] = {
.compatible = "rockchip,rk3288-i2c",
.data = (void *)&rk3288_soc_data
},
{
.compatible = "rockchip,rk3399-i2c",
.data = (void *)&rk3399_soc_data
},
{},
};
MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
@ -963,12 +1193,6 @@ static int rk3x_i2c_probe(struct platform_device *pdev)
spin_lock_init(&i2c->lock);
init_waitqueue_head(&i2c->wait);
i2c->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(i2c->clk)) {
dev_err(&pdev->dev, "cannot get clock\n");
return PTR_ERR(i2c->clk);
}
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(i2c->regs))
@ -1022,17 +1246,44 @@ static int rk3x_i2c_probe(struct platform_device *pdev)
platform_set_drvdata(pdev, i2c);
if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
/* Only one clock to use for bus clock and peripheral clock */
i2c->clk = devm_clk_get(&pdev->dev, NULL);
i2c->pclk = i2c->clk;
} else {
i2c->clk = devm_clk_get(&pdev->dev, "i2c");
i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
}
if (IS_ERR(i2c->clk)) {
ret = PTR_ERR(i2c->clk);
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret);
return ret;
}
if (IS_ERR(i2c->pclk)) {
ret = PTR_ERR(i2c->pclk);
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret);
return ret;
}
ret = clk_prepare(i2c->clk);
if (ret < 0) {
dev_err(&pdev->dev, "Could not prepare clock\n");
dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
return ret;
}
ret = clk_prepare(i2c->pclk);
if (ret < 0) {
dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
goto err_clk;
}
i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
if (ret != 0) {
dev_err(&pdev->dev, "Unable to register clock notifier\n");
goto err_clk;
goto err_pclk;
}
clk_rate = clk_get_rate(i2c->clk);
@ -1050,6 +1301,8 @@ static int rk3x_i2c_probe(struct platform_device *pdev)
err_clk_notifier:
clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
err_pclk:
clk_unprepare(i2c->pclk);
err_clk:
clk_unprepare(i2c->clk);
return ret;
@ -1062,6 +1315,7 @@ static int rk3x_i2c_remove(struct platform_device *pdev)
i2c_del_adapter(&i2c->adap);
clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
clk_unprepare(i2c->pclk);
clk_unprepare(i2c->clk);
return 0;