From 77f88796cee819b9c4562b0b6b44691b3b7755b1 Mon Sep 17 00:00:00 2001 From: Tejun Heo Date: Thu, 16 Mar 2017 16:54:24 -0400 Subject: [PATCH] cgroup, kthread: close race window where new kthreads can be migrated to non-root cgroups Creation of a kthread goes through a couple interlocked stages between the kthread itself and its creator. Once the new kthread starts running, it initializes itself and wakes up the creator. The creator then can further configure the kthread and then let it start doing its job by waking it up. In this configuration-by-creator stage, the creator is the only one that can wake it up but the kthread is visible to userland. When altering the kthread's attributes from userland is allowed, this is fine; however, for cases where CPU affinity is critical, kthread_bind() is used to first disable affinity changes from userland and then set the affinity. This also prevents the kthread from being migrated into non-root cgroups as that can affect the CPU affinity and many other things. Unfortunately, the cgroup side of protection is racy. While the PF_NO_SETAFFINITY flag prevents further migrations, userland can win the race before the creator sets the flag with kthread_bind() and put the kthread in a non-root cgroup, which can lead to all sorts of problems including incorrect CPU affinity and starvation. This bug got triggered by userland which periodically tries to migrate all processes in the root cpuset cgroup to a non-root one. Per-cpu workqueue workers got caught while being created and ended up with incorrected CPU affinity breaking concurrency management and sometimes stalling workqueue execution. This patch adds task->no_cgroup_migration which disallows the task to be migrated by userland. kthreadd starts with the flag set making every child kthread start in the root cgroup with migration disallowed. The flag is cleared after the kthread finishes initialization by which time PF_NO_SETAFFINITY is set if the kthread should stay in the root cgroup. It'd be better to wait for the initialization instead of failing but I couldn't think of a way of implementing that without adding either a new PF flag, or sleeping and retrying from waiting side. Even if userland depends on changing cgroup membership of a kthread, it either has to be synchronized with kthread_create() or periodically repeat, so it's unlikely that this would break anything. v2: Switch to a simpler implementation using a new task_struct bit field suggested by Oleg. Signed-off-by: Tejun Heo Suggested-by: Oleg Nesterov Cc: Linus Torvalds Cc: Andrew Morton Cc: Peter Zijlstra (Intel) Cc: Thomas Gleixner Reported-and-debugged-by: Chris Mason Cc: stable@vger.kernel.org # v4.3+ (we can't close the race on < v4.3) Signed-off-by: Tejun Heo --- include/linux/cgroup.h | 21 +++++++++++++++++++++ include/linux/sched.h | 4 ++++ kernel/cgroup/cgroup.c | 9 +++++---- kernel/kthread.c | 3 +++ 4 files changed, 33 insertions(+), 4 deletions(-) diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h index f6b43fbb141c..af9c86e958bd 100644 --- a/include/linux/cgroup.h +++ b/include/linux/cgroup.h @@ -570,6 +570,25 @@ static inline void pr_cont_cgroup_path(struct cgroup *cgrp) pr_cont_kernfs_path(cgrp->kn); } +static inline void cgroup_init_kthreadd(void) +{ + /* + * kthreadd is inherited by all kthreads, keep it in the root so + * that the new kthreads are guaranteed to stay in the root until + * initialization is finished. + */ + current->no_cgroup_migration = 1; +} + +static inline void cgroup_kthread_ready(void) +{ + /* + * This kthread finished initialization. The creator should have + * set PF_NO_SETAFFINITY if this kthread should stay in the root. + */ + current->no_cgroup_migration = 0; +} + #else /* !CONFIG_CGROUPS */ struct cgroup_subsys_state; @@ -590,6 +609,8 @@ static inline void cgroup_free(struct task_struct *p) {} static inline int cgroup_init_early(void) { return 0; } static inline int cgroup_init(void) { return 0; } +static inline void cgroup_init_kthreadd(void) {} +static inline void cgroup_kthread_ready(void) {} static inline bool task_under_cgroup_hierarchy(struct task_struct *task, struct cgroup *ancestor) diff --git a/include/linux/sched.h b/include/linux/sched.h index d67eee84fd43..4cf9a59a4d08 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -604,6 +604,10 @@ struct task_struct { #ifdef CONFIG_COMPAT_BRK unsigned brk_randomized:1; #endif +#ifdef CONFIG_CGROUPS + /* disallow userland-initiated cgroup migration */ + unsigned no_cgroup_migration:1; +#endif unsigned long atomic_flags; /* Flags requiring atomic access. */ diff --git a/kernel/cgroup/cgroup.c b/kernel/cgroup/cgroup.c index 0125589c7428..638ef7568495 100644 --- a/kernel/cgroup/cgroup.c +++ b/kernel/cgroup/cgroup.c @@ -2425,11 +2425,12 @@ ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, tsk = tsk->group_leader; /* - * Workqueue threads may acquire PF_NO_SETAFFINITY and become - * trapped in a cpuset, or RT worker may be born in a cgroup - * with no rt_runtime allocated. Just say no. + * kthreads may acquire PF_NO_SETAFFINITY during initialization. + * If userland migrates such a kthread to a non-root cgroup, it can + * become trapped in a cpuset, or RT kthread may be born in a + * cgroup with no rt_runtime allocated. Just say no. */ - if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) { + if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { ret = -EINVAL; goto out_unlock_rcu; } diff --git a/kernel/kthread.c b/kernel/kthread.c index 2f26adea0f84..26db528c1d88 100644 --- a/kernel/kthread.c +++ b/kernel/kthread.c @@ -20,6 +20,7 @@ #include #include #include +#include #include static DEFINE_SPINLOCK(kthread_create_lock); @@ -225,6 +226,7 @@ static int kthread(void *_create) ret = -EINTR; if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { + cgroup_kthread_ready(); __kthread_parkme(self); ret = threadfn(data); } @@ -538,6 +540,7 @@ int kthreadd(void *unused) set_mems_allowed(node_states[N_MEMORY]); current->flags |= PF_NOFREEZE; + cgroup_init_kthreadd(); for (;;) { set_current_state(TASK_INTERRUPTIBLE);