- Add support for Bluefield-2 SOCs to bluefield_edac

- Add support for Intel Panther Lake-H to igen6_edac
 
 - Add polling support to igen6_edac as some Intel M100 chips have trouble with
   error interrupts
 
 - Add Kaby Lake-S support to ie31200_edac
 
 - Fix memory source detection in the SKX common module which is used by
   a couple of Intel EDAC drivers
 
 - Add support for the NXP i.MX9 memory controller to fsl_edac
 
 - The usual fixes and cleanups all over the place
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmc7KAcACgkQEsHwGGHe
 VUpzxQ/6Ahr49jXu58M69UQSW3DdzEU+5NNxmUrZdRrdW/oCJXGpuRdmdFWzvWTj
 HtfCS7GmaSIUPjLaNisyKdCaZxWysBqyLe0Vaexw5nuyybF5TzdYWETqFef1ij9z
 Wqq1j5LPrz+9BiqFqkpbgzo6Y6Ubsv2RKuZu+1GkMT2zRrgEJuJgHi6RlJ8vqj//
 7FePl3CFQ3HDdTom0/L/gsMqSObj7HEq9cbalIjIYw/GRVkZol21vDwKrUkM7rpF
 tfrN1qq3NuJyqM7Du2jw2VtXDomrQ/ZkABNXCbtbczf8trLYUHR5QqIQjxy2ZFts
 jMKIbdCNAfgiqai6bpmm4QHWAIAV3L5DX7OuPmbpQeAzSmOqSEqNbnLbvA1e472f
 5upQH4OLOsHgbnnFTQJ7vcU5jHf41DSauMCFp60h2hyn5RIiVY5ASxRfQ3xdh/+a
 hp2N+hB/y46AjXAidsGhAuUw8nt44MN2x1gtiUfbtMIx6gTewtuu0SbwOb85JW16
 glhD8vxRGTUWoQit+Nh3u/P/rLSGkUJK87mfPr6O/95lleYy5hOizK2jGDbDWkA+
 zOnNXnSWKK/WM+B9qnJnU1sCC7vT3j7cTaDXB1XS2MtcJbArkNC0FOd6xD81PoGh
 MhfWBAKpirXQEomFqpVziDa2wlaUnZrv7/4GGmaBRO401O9iaE4=
 =C3dY
 -----END PGP SIGNATURE-----

Merge tag 'edac_updates_for_v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/ras/ras

Pull EDAC updates from Borislav Petkov:

 - Add support for Bluefield-2 SOCs to bluefield_edac

 - Add support for Intel Panther Lake-H to igen6_edac

 - Add polling support to igen6_edac as some Intel M100 chips have
   trouble with error interrupts

 - Add Kaby Lake-S support to ie31200_edac

 - Fix memory source detection in the SKX common module which is used by
   a couple of Intel EDAC drivers

 - Add support for the NXP i.MX9 memory controller to fsl_edac

 - The usual fixes and cleanups all over the place

* tag 'edac_updates_for_v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/ras/ras:
  EDAC/igen6: Add polling support
  EDAC/igen6: Initialize edac_op_state according to the configuration data
  EDAC/igen6: Avoid segmentation fault on module unload
  EDAC/ie31200: Add Kaby Lake-S dual-core host bridge ID
  MAINTAINERS: Change FSL DDR EDAC maintainership
  EDAC/{skx_common,i10nm}: Fix incorrect far-memory error source indicator
  EDAC/skx_common: Differentiate memory error sources
  EDAC/fsl_ddr: Add support for i.MX9 DDR controller
  dt-bindings: memory: fsl: Add compatible string nxp,imx9-memory-controller
  EDAC/fsl_ddr: Fix bad bit shift operations
  EDAC/fsl_ddr: Move global variables into struct fsl_mc_pdata
  EDAC/fsl_ddr: Pass down fsl_mc_pdata in ddr_in32() and ddr_out32()
  RAS/AMD/ATL: Add debug prints for DF register reads
  EDAC/bluefield: Use Arm SMC for EMI access on BlueField-2
  EDAC/bluefield: Fix potential integer overflow
  EDAC/igen6: Add Intel Panther Lake-H SoCs support
This commit is contained in:
Linus Torvalds 2024-11-19 12:00:10 -08:00
commit 77286b868f
13 changed files with 399 additions and 97 deletions

View File

@ -3800,6 +3800,10 @@ S: Department of Zoology, University of Washington
S: Seattle, WA 98195-1800
S: USA
N: York Sun
E: york.sun@nxp.com
D: Freescale DDR EDAC
N: Eugene Surovegin
E: ebs@ebshome.net
W: https://kernel.ebshome.net/

View File

@ -40,6 +40,7 @@ properties:
- fsl,p1021-memory-controller
- fsl,p2020-memory-controller
- fsl,qoriq-memory-controller
- nxp,imx9-memory-controller
interrupts:
maxItems: 1
@ -51,13 +52,41 @@ properties:
type: boolean
reg:
maxItems: 1
items:
- description: Controller register space
- description: Inject register space
minItems: 1
reg-names:
items:
- const: ctrl
- const: inject
minItems: 1
required:
- compatible
- interrupts
- reg
allOf:
- if:
properties:
compatible:
contains:
enum:
- nxp,imx9-memory-controller
then:
properties:
reg:
minItems: 2
reg-names:
minItems: 2
else:
properties:
reg:
maxItems: 1
reg-names: false
additionalProperties: false
examples:

View File

@ -8103,7 +8103,8 @@ S: Maintained
F: drivers/edac/e7xxx_edac.c
EDAC-FSL_DDR
M: York Sun <york.sun@nxp.com>
R: Frank Li <Frank.Li@nxp.com>
L: imx@lists.linux.dev
L: linux-edac@vger.kernel.org
S: Maintained
F: drivers/edac/fsl_ddr_edac.*

View File

@ -47,13 +47,22 @@
#define MLXBF_EDAC_MAX_DIMM_PER_MC 2
#define MLXBF_EDAC_ERROR_GRAIN 8
#define MLXBF_WRITE_REG_32 (0x82000009)
#define MLXBF_READ_REG_32 (0x8200000A)
#define MLXBF_SIP_SVC_VERSION (0x8200ff03)
#define MLXBF_SMCCC_ACCESS_VIOLATION (-4)
#define MLXBF_SVC_REQ_MAJOR 0
#define MLXBF_SVC_REQ_MINOR 3
/*
* Request MLNX_SIP_GET_DIMM_INFO
* Request MLXBF_SIP_GET_DIMM_INFO
*
* Retrieve information about DIMM on a certain slot.
*
* Call register usage:
* a0: MLNX_SIP_GET_DIMM_INFO
* a0: MLXBF_SIP_GET_DIMM_INFO
* a1: (Memory controller index) << 16 | (Dimm index in memory controller)
* a2-7: not used.
*
@ -61,7 +70,7 @@
* a0: MLXBF_DIMM_INFO defined below describing the DIMM.
* a1-3: not used.
*/
#define MLNX_SIP_GET_DIMM_INFO 0x82000008
#define MLXBF_SIP_GET_DIMM_INFO 0x82000008
/* Format for the SMC response about the memory information */
#define MLXBF_DIMM_INFO__SIZE_GB GENMASK_ULL(15, 0)
@ -72,9 +81,15 @@
#define MLXBF_DIMM_INFO__PACKAGE_X GENMASK_ULL(31, 24)
struct bluefield_edac_priv {
/* pointer to device structure */
struct device *dev;
int dimm_ranks[MLXBF_EDAC_MAX_DIMM_PER_MC];
void __iomem *emi_base;
int dimm_per_mc;
/* access to secure regs supported */
bool svc_sreg_support;
/* SMC table# for secure regs access */
u32 sreg_tbl;
};
static u64 smc_call1(u64 smc_op, u64 smc_arg)
@ -86,6 +101,71 @@ static u64 smc_call1(u64 smc_op, u64 smc_arg)
return res.a0;
}
static int secure_readl(void __iomem *addr, u32 *result, u32 sreg_tbl)
{
struct arm_smccc_res res;
int status;
arm_smccc_smc(MLXBF_READ_REG_32, sreg_tbl, (uintptr_t)addr,
0, 0, 0, 0, 0, &res);
status = res.a0;
if (status == SMCCC_RET_NOT_SUPPORTED ||
status == MLXBF_SMCCC_ACCESS_VIOLATION)
return -1;
*result = (u32)res.a1;
return 0;
}
static int secure_writel(void __iomem *addr, u32 data, u32 sreg_tbl)
{
struct arm_smccc_res res;
int status;
arm_smccc_smc(MLXBF_WRITE_REG_32, sreg_tbl, data, (uintptr_t)addr,
0, 0, 0, 0, &res);
status = res.a0;
if (status == SMCCC_RET_NOT_SUPPORTED ||
status == MLXBF_SMCCC_ACCESS_VIOLATION)
return -1;
else
return 0;
}
static int bluefield_edac_readl(struct bluefield_edac_priv *priv, u32 offset, u32 *result)
{
void __iomem *addr;
int err = 0;
addr = priv->emi_base + offset;
if (priv->svc_sreg_support)
err = secure_readl(addr, result, priv->sreg_tbl);
else
*result = readl(addr);
return err;
}
static int bluefield_edac_writel(struct bluefield_edac_priv *priv, u32 offset, u32 data)
{
void __iomem *addr;
int err = 0;
addr = priv->emi_base + offset;
if (priv->svc_sreg_support)
err = secure_writel(addr, data, priv->sreg_tbl);
else
writel(data, addr);
return err;
}
/*
* Gather the ECC information from the External Memory Interface registers
* and report it to the edac handler.
@ -99,7 +179,7 @@ static void bluefield_gather_report_ecc(struct mem_ctl_info *mci,
u32 ecc_latch_select, dram_syndrom, serr, derr, syndrom;
enum hw_event_mc_err_type ecc_type;
u64 ecc_dimm_addr;
int ecc_dimm;
int ecc_dimm, err;
ecc_type = is_single_ecc ? HW_EVENT_ERR_CORRECTED :
HW_EVENT_ERR_UNCORRECTED;
@ -109,14 +189,19 @@ static void bluefield_gather_report_ecc(struct mem_ctl_info *mci,
* registers with information about the last ECC error occurrence.
*/
ecc_latch_select = MLXBF_ECC_LATCH_SEL__START;
writel(ecc_latch_select, priv->emi_base + MLXBF_ECC_LATCH_SEL);
err = bluefield_edac_writel(priv, MLXBF_ECC_LATCH_SEL, ecc_latch_select);
if (err)
dev_err(priv->dev, "ECC latch select write failed.\n");
/*
* Verify that the ECC reported info in the registers is of the
* same type as the one asked to report. If not, just report the
* error without the detailed information.
*/
dram_syndrom = readl(priv->emi_base + MLXBF_SYNDROM);
err = bluefield_edac_readl(priv, MLXBF_SYNDROM, &dram_syndrom);
if (err)
dev_err(priv->dev, "DRAM syndrom read failed.\n");
serr = FIELD_GET(MLXBF_SYNDROM__SERR, dram_syndrom);
derr = FIELD_GET(MLXBF_SYNDROM__DERR, dram_syndrom);
syndrom = FIELD_GET(MLXBF_SYNDROM__SYN, dram_syndrom);
@ -127,13 +212,21 @@ static void bluefield_gather_report_ecc(struct mem_ctl_info *mci,
return;
}
dram_additional_info = readl(priv->emi_base + MLXBF_ADD_INFO);
err = bluefield_edac_readl(priv, MLXBF_ADD_INFO, &dram_additional_info);
if (err)
dev_err(priv->dev, "DRAM additional info read failed.\n");
err_prank = FIELD_GET(MLXBF_ADD_INFO__ERR_PRANK, dram_additional_info);
ecc_dimm = (err_prank >= 2 && priv->dimm_ranks[0] <= 2) ? 1 : 0;
edea0 = readl(priv->emi_base + MLXBF_ERR_ADDR_0);
edea1 = readl(priv->emi_base + MLXBF_ERR_ADDR_1);
err = bluefield_edac_readl(priv, MLXBF_ERR_ADDR_0, &edea0);
if (err)
dev_err(priv->dev, "Error addr 0 read failed.\n");
err = bluefield_edac_readl(priv, MLXBF_ERR_ADDR_1, &edea1);
if (err)
dev_err(priv->dev, "Error addr 1 read failed.\n");
ecc_dimm_addr = ((u64)edea1 << 32) | edea0;
@ -147,6 +240,7 @@ static void bluefield_edac_check(struct mem_ctl_info *mci)
{
struct bluefield_edac_priv *priv = mci->pvt_info;
u32 ecc_count, single_error_count, double_error_count, ecc_error = 0;
int err;
/*
* The memory controller might not be initialized by the firmware
@ -155,7 +249,10 @@ static void bluefield_edac_check(struct mem_ctl_info *mci)
if (mci->edac_cap == EDAC_FLAG_NONE)
return;
ecc_count = readl(priv->emi_base + MLXBF_ECC_CNT);
err = bluefield_edac_readl(priv, MLXBF_ECC_CNT, &ecc_count);
if (err)
dev_err(priv->dev, "ECC count read failed.\n");
single_error_count = FIELD_GET(MLXBF_ECC_CNT__SERR_CNT, ecc_count);
double_error_count = FIELD_GET(MLXBF_ECC_CNT__DERR_CNT, ecc_count);
@ -172,15 +269,18 @@ static void bluefield_edac_check(struct mem_ctl_info *mci)
}
/* Write to clear reported errors. */
if (ecc_count)
writel(ecc_error, priv->emi_base + MLXBF_ECC_ERR);
if (ecc_count) {
err = bluefield_edac_writel(priv, MLXBF_ECC_ERR, ecc_error);
if (err)
dev_err(priv->dev, "ECC Error write failed.\n");
}
}
/* Initialize the DIMMs information for the given memory controller. */
static void bluefield_edac_init_dimms(struct mem_ctl_info *mci)
{
struct bluefield_edac_priv *priv = mci->pvt_info;
int mem_ctrl_idx = mci->mc_idx;
u64 mem_ctrl_idx = mci->mc_idx;
struct dimm_info *dimm;
u64 smc_info, smc_arg;
int is_empty = 1, i;
@ -189,7 +289,7 @@ static void bluefield_edac_init_dimms(struct mem_ctl_info *mci)
dimm = mci->dimms[i];
smc_arg = mem_ctrl_idx << 16 | i;
smc_info = smc_call1(MLNX_SIP_GET_DIMM_INFO, smc_arg);
smc_info = smc_call1(MLXBF_SIP_GET_DIMM_INFO, smc_arg);
if (!FIELD_GET(MLXBF_DIMM_INFO__SIZE_GB, smc_info)) {
dimm->mtype = MEM_EMPTY;
@ -244,6 +344,7 @@ static int bluefield_edac_mc_probe(struct platform_device *pdev)
struct bluefield_edac_priv *priv;
struct device *dev = &pdev->dev;
struct edac_mc_layer layers[1];
struct arm_smccc_res res;
struct mem_ctl_info *mci;
struct resource *emi_res;
unsigned int mc_idx, dimm_count;
@ -279,13 +380,43 @@ static int bluefield_edac_mc_probe(struct platform_device *pdev)
return -ENOMEM;
priv = mci->pvt_info;
priv->dev = dev;
/*
* The "sec_reg_block" property in the ACPI table determines the method
* the driver uses to access the EMI registers:
* a) property is not present - directly access registers via readl/writel
* b) property is present - indirectly access registers via SMC calls
* (assuming required Silicon Provider service version found)
*/
if (device_property_read_u32(dev, "sec_reg_block", &priv->sreg_tbl)) {
priv->svc_sreg_support = false;
} else {
/*
* Check for minimum required Arm Silicon Provider (SiP) service
* version, ensuring support of required SMC function IDs.
*/
arm_smccc_smc(MLXBF_SIP_SVC_VERSION, 0, 0, 0, 0, 0, 0, 0, &res);
if (res.a0 == MLXBF_SVC_REQ_MAJOR &&
res.a1 >= MLXBF_SVC_REQ_MINOR) {
priv->svc_sreg_support = true;
} else {
dev_err(dev, "Required SMCs are not supported.\n");
ret = -EINVAL;
goto err;
}
}
priv->dimm_per_mc = dimm_count;
priv->emi_base = devm_ioremap_resource(dev, emi_res);
if (IS_ERR(priv->emi_base)) {
dev_err(dev, "failed to map EMI IO resource\n");
ret = PTR_ERR(priv->emi_base);
goto err;
if (!priv->svc_sreg_support) {
priv->emi_base = devm_ioremap_resource(dev, emi_res);
if (IS_ERR(priv->emi_base)) {
dev_err(dev, "failed to map EMI IO resource\n");
ret = PTR_ERR(priv->emi_base);
goto err;
}
} else {
priv->emi_base = (void __iomem *)emi_res->start;
}
mci->pdev = dev;
@ -320,7 +451,6 @@ err:
edac_mc_free(mci);
return ret;
}
static void bluefield_edac_mc_remove(struct platform_device *pdev)

View File

@ -31,18 +31,30 @@
static int edac_mc_idx;
static u32 orig_ddr_err_disable;
static u32 orig_ddr_err_sbe;
static bool little_endian;
static inline u32 ddr_in32(void __iomem *addr)
static inline void __iomem *ddr_reg_addr(struct fsl_mc_pdata *pdata, unsigned int off)
{
return little_endian ? ioread32(addr) : ioread32be(addr);
if (pdata->flag == TYPE_IMX9 && off >= FSL_MC_DATA_ERR_INJECT_HI && off <= FSL_MC_ERR_SBE)
return pdata->inject_vbase + off - FSL_MC_DATA_ERR_INJECT_HI
+ IMX9_MC_DATA_ERR_INJECT_OFF;
if (pdata->flag == TYPE_IMX9 && off >= IMX9_MC_ERR_EN)
return pdata->inject_vbase + off - IMX9_MC_ERR_EN;
return pdata->mc_vbase + off;
}
static inline void ddr_out32(void __iomem *addr, u32 value)
static inline u32 ddr_in32(struct fsl_mc_pdata *pdata, unsigned int off)
{
if (little_endian)
void __iomem *addr = ddr_reg_addr(pdata, off);
return pdata->little_endian ? ioread32(addr) : ioread32be(addr);
}
static inline void ddr_out32(struct fsl_mc_pdata *pdata, unsigned int off, u32 value)
{
void __iomem *addr = ddr_reg_addr(pdata, off);
if (pdata->little_endian)
iowrite32(value, addr);
else
iowrite32be(value, addr);
@ -60,7 +72,7 @@ static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
ddr_in32(pdata, FSL_MC_DATA_ERR_INJECT_HI));
}
static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
@ -70,7 +82,7 @@ static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
ddr_in32(pdata, FSL_MC_DATA_ERR_INJECT_LO));
}
static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
@ -80,7 +92,7 @@ static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
ddr_in32(pdata, FSL_MC_ECC_ERR_INJECT));
}
static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
@ -97,7 +109,7 @@ static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
if (rc)
return rc;
ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
ddr_out32(pdata, FSL_MC_DATA_ERR_INJECT_HI, val);
return count;
}
return 0;
@ -117,7 +129,7 @@ static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
if (rc)
return rc;
ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
ddr_out32(pdata, FSL_MC_DATA_ERR_INJECT_LO, val);
return count;
}
return 0;
@ -137,7 +149,7 @@ static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
if (rc)
return rc;
ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
ddr_out32(pdata, FSL_MC_ECC_ERR_INJECT, val);
return count;
}
return 0;
@ -286,7 +298,7 @@ static void fsl_mc_check(struct mem_ctl_info *mci)
int bad_data_bit;
int bad_ecc_bit;
err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
err_detect = ddr_in32(pdata, FSL_MC_ERR_DETECT);
if (!err_detect)
return;
@ -295,14 +307,14 @@ static void fsl_mc_check(struct mem_ctl_info *mci)
/* no more processing if not ECC bit errors */
if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
ddr_out32(pdata, FSL_MC_ERR_DETECT, err_detect);
return;
}
syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
syndrome = ddr_in32(pdata, FSL_MC_CAPTURE_ECC);
/* Mask off appropriate bits of syndrome based on bus width */
bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
bus_width = (ddr_in32(pdata, FSL_MC_DDR_SDRAM_CFG) &
DSC_DBW_MASK) ? 32 : 64;
if (bus_width == 64)
syndrome &= 0xff;
@ -310,8 +322,8 @@ static void fsl_mc_check(struct mem_ctl_info *mci)
syndrome &= 0xffff;
err_addr = make64(
ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
ddr_in32(pdata, FSL_MC_CAPTURE_EXT_ADDRESS),
ddr_in32(pdata, FSL_MC_CAPTURE_ADDRESS));
pfn = err_addr >> PAGE_SHIFT;
for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
@ -320,29 +332,33 @@ static void fsl_mc_check(struct mem_ctl_info *mci)
break;
}
cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
cap_high = ddr_in32(pdata, FSL_MC_CAPTURE_DATA_HI);
cap_low = ddr_in32(pdata, FSL_MC_CAPTURE_DATA_LO);
/*
* Analyze single-bit errors on 64-bit wide buses
* TODO: Add support for 32-bit wide buses
*/
if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
u64 cap = (u64)cap_high << 32 | cap_low;
u32 s = syndrome;
sbe_ecc_decode(cap_high, cap_low, syndrome,
&bad_data_bit, &bad_ecc_bit);
if (bad_data_bit != -1)
fsl_mc_printk(mci, KERN_ERR,
"Faulty Data bit: %d\n", bad_data_bit);
if (bad_ecc_bit != -1)
fsl_mc_printk(mci, KERN_ERR,
"Faulty ECC bit: %d\n", bad_ecc_bit);
if (bad_data_bit >= 0) {
fsl_mc_printk(mci, KERN_ERR, "Faulty Data bit: %d\n", bad_data_bit);
cap ^= 1ULL << bad_data_bit;
}
if (bad_ecc_bit >= 0) {
fsl_mc_printk(mci, KERN_ERR, "Faulty ECC bit: %d\n", bad_ecc_bit);
s ^= 1 << bad_ecc_bit;
}
fsl_mc_printk(mci, KERN_ERR,
"Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
cap_high ^ (1 << (bad_data_bit - 32)),
cap_low ^ (1 << bad_data_bit),
syndrome ^ (1 << bad_ecc_bit));
upper_32_bits(cap), lower_32_bits(cap), s);
}
fsl_mc_printk(mci, KERN_ERR,
@ -367,7 +383,7 @@ static void fsl_mc_check(struct mem_ctl_info *mci)
row_index, 0, -1,
mci->ctl_name, "");
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
ddr_out32(pdata, FSL_MC_ERR_DETECT, err_detect);
}
static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
@ -376,7 +392,7 @@ static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
struct fsl_mc_pdata *pdata = mci->pvt_info;
u32 err_detect;
err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
err_detect = ddr_in32(pdata, FSL_MC_ERR_DETECT);
if (!err_detect)
return IRQ_NONE;
@ -396,7 +412,7 @@ static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
u32 cs_bnds;
int index;
sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
sdram_ctl = ddr_in32(pdata, FSL_MC_DDR_SDRAM_CFG);
sdtype = sdram_ctl & DSC_SDTYPE_MASK;
if (sdram_ctl & DSC_RD_EN) {
@ -431,6 +447,9 @@ static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
case 0x05000000:
mtype = MEM_DDR4;
break;
case 0x04000000:
mtype = MEM_LPDDR4;
break;
default:
mtype = MEM_UNKNOWN;
break;
@ -444,7 +463,7 @@ static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
csrow = mci->csrows[index];
dimm = csrow->channels[0]->dimm;
cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
cs_bnds = ddr_in32(pdata, FSL_MC_CS_BNDS_0 +
(index * FSL_MC_CS_BNDS_OFS));
start = (cs_bnds & 0xffff0000) >> 16;
@ -464,7 +483,9 @@ static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
dimm->grain = 8;
dimm->mtype = mtype;
dimm->dtype = DEV_UNKNOWN;
if (sdram_ctl & DSC_X32_EN)
if (pdata->flag == TYPE_IMX9)
dimm->dtype = DEV_X16;
else if (sdram_ctl & DSC_X32_EN)
dimm->dtype = DEV_X32;
dimm->edac_mode = EDAC_SECDED;
}
@ -476,6 +497,7 @@ int fsl_mc_err_probe(struct platform_device *op)
struct edac_mc_layer layers[2];
struct fsl_mc_pdata *pdata;
struct resource r;
u32 ecc_en_mask;
u32 sdram_ctl;
int res;
@ -503,11 +525,13 @@ int fsl_mc_err_probe(struct platform_device *op)
mci->ctl_name = pdata->name;
mci->dev_name = pdata->name;
pdata->flag = (unsigned long)device_get_match_data(&op->dev);
/*
* Get the endianness of DDR controller registers.
* Default is big endian.
*/
little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
pdata->little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
res = of_address_to_resource(op->dev.of_node, 0, &r);
if (res) {
@ -531,8 +555,23 @@ int fsl_mc_err_probe(struct platform_device *op)
goto err;
}
sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
if (!(sdram_ctl & DSC_ECC_EN)) {
if (pdata->flag == TYPE_IMX9) {
pdata->inject_vbase = devm_platform_ioremap_resource_byname(op, "inject");
if (IS_ERR(pdata->inject_vbase)) {
res = -ENOMEM;
goto err;
}
}
if (pdata->flag == TYPE_IMX9) {
sdram_ctl = ddr_in32(pdata, IMX9_MC_ERR_EN);
ecc_en_mask = ERR_ECC_EN | ERR_INLINE_ECC;
} else {
sdram_ctl = ddr_in32(pdata, FSL_MC_DDR_SDRAM_CFG);
ecc_en_mask = DSC_ECC_EN;
}
if ((sdram_ctl & ecc_en_mask) != ecc_en_mask) {
/* no ECC */
pr_warn("%s: No ECC DIMMs discovered\n", __func__);
res = -ENODEV;
@ -543,7 +582,8 @@ int fsl_mc_err_probe(struct platform_device *op)
mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
MEM_FLAG_DDR4 | MEM_FLAG_RDDR4 |
MEM_FLAG_LPDDR4;
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = EDAC_MOD_STR;
@ -558,11 +598,11 @@ int fsl_mc_err_probe(struct platform_device *op)
fsl_ddr_init_csrows(mci);
/* store the original error disable bits */
orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
pdata->orig_ddr_err_disable = ddr_in32(pdata, FSL_MC_ERR_DISABLE);
ddr_out32(pdata, FSL_MC_ERR_DISABLE, 0);
/* clear all error bits */
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
ddr_out32(pdata, FSL_MC_ERR_DETECT, ~0);
res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
if (res) {
@ -571,15 +611,15 @@ int fsl_mc_err_probe(struct platform_device *op)
}
if (edac_op_state == EDAC_OPSTATE_INT) {
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
ddr_out32(pdata, FSL_MC_ERR_INT_EN,
DDR_EIE_MBEE | DDR_EIE_SBEE);
/* store the original error management threshold */
orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
FSL_MC_ERR_SBE) & 0xff0000;
pdata->orig_ddr_err_sbe = ddr_in32(pdata,
FSL_MC_ERR_SBE) & 0xff0000;
/* set threshold to 1 error per interrupt */
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
ddr_out32(pdata, FSL_MC_ERR_SBE, 0x10000);
/* register interrupts */
pdata->irq = platform_get_irq(op, 0);
@ -620,12 +660,13 @@ void fsl_mc_err_remove(struct platform_device *op)
edac_dbg(0, "\n");
if (edac_op_state == EDAC_OPSTATE_INT) {
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
ddr_out32(pdata, FSL_MC_ERR_INT_EN, 0);
}
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
orig_ddr_err_disable);
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
ddr_out32(pdata, FSL_MC_ERR_DISABLE,
pdata->orig_ddr_err_disable);
ddr_out32(pdata, FSL_MC_ERR_SBE, pdata->orig_ddr_err_sbe);
edac_mc_del_mc(&op->dev);
edac_mc_free(mci);

View File

@ -39,6 +39,9 @@
#define FSL_MC_CAPTURE_EXT_ADDRESS 0x0e54
#define FSL_MC_ERR_SBE 0x0e58
#define IMX9_MC_ERR_EN 0x1000
#define IMX9_MC_DATA_ERR_INJECT_OFF 0x100
#define DSC_MEM_EN 0x80000000
#define DSC_ECC_EN 0x20000000
#define DSC_RD_EN 0x10000000
@ -46,6 +49,9 @@
#define DSC_DBW_32 0x00080000
#define DSC_DBW_64 0x00000000
#define ERR_ECC_EN 0x80000000
#define ERR_INLINE_ECC 0x40000000
#define DSC_SDTYPE_MASK 0x07000000
#define DSC_X32_EN 0x00000020
@ -65,11 +71,18 @@
#define DDR_EDI_SBED 0x4 /* single-bit ECC error disable */
#define DDR_EDI_MBED 0x8 /* multi-bit ECC error disable */
#define TYPE_IMX9 0x1 /* MC used by iMX9 having registers changed */
struct fsl_mc_pdata {
char *name;
int edac_idx;
void __iomem *mc_vbase;
void __iomem *inject_vbase;
int irq;
u32 orig_ddr_err_disable;
u32 orig_ddr_err_sbe;
bool little_endian;
unsigned long flag;
};
int fsl_mc_err_probe(struct platform_device *op);
void fsl_mc_err_remove(struct platform_device *op);

View File

@ -1036,6 +1036,7 @@ static int __init i10nm_init(void)
return -ENODEV;
cfg = (struct res_config *)id->driver_data;
skx_set_res_cfg(cfg);
res_cfg = cfg;
rc = skx_get_hi_lo(0x09a2, off, &tolm, &tohm);

View File

@ -19,7 +19,8 @@
* 0c04: Xeon E3-1200 v3/4th Gen Core Processor DRAM Controller
* 0c08: Xeon E3-1200 v3 Processor DRAM Controller
* 1918: Xeon E3-1200 v5 Skylake Host Bridge/DRAM Registers
* 5918: Xeon E3-1200 Xeon E3-1200 v6/7th Gen Core Processor Host Bridge/DRAM Registers
* 590f: Xeon E3-1200 v6/7th Gen Core Processor Host Bridge/DRAM Registers
* 5918: Xeon E3-1200 v6/7th Gen Core Processor Host Bridge/DRAM Registers
* 190f: 6th Gen Core Dual-Core Processor Host Bridge/DRAM Registers
* 191f: 6th Gen Core Quad-Core Processor Host Bridge/DRAM Registers
* 3e..: 8th/9th Gen Core Processor Host Bridge/DRAM Registers
@ -67,7 +68,8 @@
#define PCI_DEVICE_ID_INTEL_IE31200_HB_8 0x190F
#define PCI_DEVICE_ID_INTEL_IE31200_HB_9 0x1918
#define PCI_DEVICE_ID_INTEL_IE31200_HB_10 0x191F
#define PCI_DEVICE_ID_INTEL_IE31200_HB_11 0x5918
#define PCI_DEVICE_ID_INTEL_IE31200_HB_11 0x590f
#define PCI_DEVICE_ID_INTEL_IE31200_HB_12 0x5918
/* Coffee Lake-S */
#define PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_MASK 0x3e00
@ -88,6 +90,7 @@
((did) == PCI_DEVICE_ID_INTEL_IE31200_HB_9) || \
((did) == PCI_DEVICE_ID_INTEL_IE31200_HB_10) || \
((did) == PCI_DEVICE_ID_INTEL_IE31200_HB_11) || \
((did) == PCI_DEVICE_ID_INTEL_IE31200_HB_12) || \
(((did) & PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_MASK) == \
PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_MASK))
@ -587,6 +590,7 @@ static const struct pci_device_id ie31200_pci_tbl[] = {
{ PCI_VEND_DEV(INTEL, IE31200_HB_9), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 },
{ PCI_VEND_DEV(INTEL, IE31200_HB_10), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 },
{ PCI_VEND_DEV(INTEL, IE31200_HB_11), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 },
{ PCI_VEND_DEV(INTEL, IE31200_HB_12), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 },
{ PCI_VEND_DEV(INTEL, IE31200_HB_CFL_1), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 },
{ PCI_VEND_DEV(INTEL, IE31200_HB_CFL_2), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 },
{ PCI_VEND_DEV(INTEL, IE31200_HB_CFL_3), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 },

View File

@ -263,6 +263,11 @@ static struct work_struct ecclog_work;
#define DID_ARL_UH_SKU2 0x7d20
#define DID_ARL_UH_SKU3 0x7d30
/* Compute die IDs for Panther Lake-H with IBECC */
#define DID_PTL_H_SKU1 0xb000
#define DID_PTL_H_SKU2 0xb001
#define DID_PTL_H_SKU3 0xb002
static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
{
union {
@ -605,6 +610,9 @@ static const struct pci_device_id igen6_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU1), (kernel_ulong_t)&mtl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU2), (kernel_ulong_t)&mtl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU3), (kernel_ulong_t)&mtl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU1), (kernel_ulong_t)&mtl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU2), (kernel_ulong_t)&mtl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU3), (kernel_ulong_t)&mtl_p_cfg },
{ },
};
MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
@ -1170,6 +1178,20 @@ fail:
return -ENODEV;
}
static void igen6_check(struct mem_ctl_info *mci)
{
struct igen6_imc *imc = mci->pvt_info;
u64 ecclog;
/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
ecclog = ecclog_read_and_clear(imc);
if (!ecclog)
return;
if (!ecclog_gen_pool_add(imc->mc, ecclog))
irq_work_queue(&ecclog_irq_work);
}
static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
{
struct edac_mc_layer layers[2];
@ -1211,6 +1233,8 @@ static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = EDAC_MOD_STR;
mci->dev_name = pci_name(pdev);
if (edac_op_state == EDAC_OPSTATE_POLL)
mci->edac_check = igen6_check;
mci->pvt_info = &igen6_pvt->imc[mc];
imc = mci->pvt_info;
@ -1245,6 +1269,7 @@ static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
imc->mci = mci;
return 0;
fail3:
mci->pvt_info = NULL;
kfree(mci->ctl_name);
fail2:
edac_mc_free(mci);
@ -1269,6 +1294,7 @@ static void igen6_unregister_mcis(void)
edac_mc_del_mc(mci->pdev);
kfree(mci->ctl_name);
mci->pvt_info = NULL;
edac_mc_free(mci);
iounmap(imc->window);
}
@ -1348,6 +1374,25 @@ static void unregister_err_handler(void)
unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
}
static void opstate_set(struct res_config *cfg, const struct pci_device_id *ent)
{
/*
* Quirk: Certain SoCs' error reporting interrupts don't work.
* Force polling mode for them to ensure that memory error
* events can be handled.
*/
if (ent->device == DID_ADL_N_SKU4) {
edac_op_state = EDAC_OPSTATE_POLL;
return;
}
/* Set the mode according to the configuration data. */
if (cfg->machine_check)
edac_op_state = EDAC_OPSTATE_INT;
else
edac_op_state = EDAC_OPSTATE_NMI;
}
static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
u64 mchbar;
@ -1365,6 +1410,8 @@ static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
if (rc)
goto fail;
opstate_set(res_cfg, ent);
for (i = 0; i < res_cfg->num_imc; i++) {
rc = igen6_register_mci(i, mchbar, pdev);
if (rc)
@ -1448,8 +1495,6 @@ static int __init igen6_init(void)
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
return -EBUSY;
edac_op_state = EDAC_OPSTATE_NMI;
rc = pci_register_driver(&igen6_driver);
if (rc)
return rc;

View File

@ -21,6 +21,7 @@
static const struct of_device_id fsl_ddr_mc_err_of_match[] = {
{ .compatible = "fsl,qoriq-memory-controller", },
{ .compatible = "nxp,imx9-memory-controller", .data = (void *)TYPE_IMX9, },
{},
};
MODULE_DEVICE_TABLE(of, fsl_ddr_mc_err_of_match);

View File

@ -47,6 +47,7 @@ static skx_show_retry_log_f skx_show_retry_rd_err_log;
static u64 skx_tolm, skx_tohm;
static LIST_HEAD(dev_edac_list);
static bool skx_mem_cfg_2lm;
static struct res_config *skx_res_cfg;
int skx_adxl_get(void)
{
@ -119,7 +120,7 @@ void skx_adxl_put(void)
}
EXPORT_SYMBOL_GPL(skx_adxl_put);
static bool skx_adxl_decode(struct decoded_addr *res, bool error_in_1st_level_mem)
static bool skx_adxl_decode(struct decoded_addr *res, enum error_source err_src)
{
struct skx_dev *d;
int i, len = 0;
@ -135,8 +136,24 @@ static bool skx_adxl_decode(struct decoded_addr *res, bool error_in_1st_level_me
return false;
}
/*
* GNR with a Flat2LM memory configuration may mistakenly classify
* a near-memory error(DDR5) as a far-memory error(CXL), resulting
* in the incorrect selection of decoded ADXL components.
* To address this, prefetch the decoded far-memory controller ID
* and adjust the error source to near-memory if the far-memory
* controller ID is invalid.
*/
if (skx_res_cfg && skx_res_cfg->type == GNR && err_src == ERR_SRC_2LM_FM) {
res->imc = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
if (res->imc == -1) {
err_src = ERR_SRC_2LM_NM;
edac_dbg(0, "Adjust the error source to near-memory.\n");
}
}
res->socket = (int)adxl_values[component_indices[INDEX_SOCKET]];
if (error_in_1st_level_mem) {
if (err_src == ERR_SRC_2LM_NM) {
res->imc = (adxl_nm_bitmap & BIT_NM_MEMCTRL) ?
(int)adxl_values[component_indices[INDEX_NM_MEMCTRL]] : -1;
res->channel = (adxl_nm_bitmap & BIT_NM_CHANNEL) ?
@ -191,6 +208,12 @@ void skx_set_mem_cfg(bool mem_cfg_2lm)
}
EXPORT_SYMBOL_GPL(skx_set_mem_cfg);
void skx_set_res_cfg(struct res_config *cfg)
{
skx_res_cfg = cfg;
}
EXPORT_SYMBOL_GPL(skx_set_res_cfg);
void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log)
{
driver_decode = decode;
@ -620,31 +643,27 @@ static void skx_mce_output_error(struct mem_ctl_info *mci,
optype, skx_msg);
}
static bool skx_error_in_1st_level_mem(const struct mce *m)
static enum error_source skx_error_source(const struct mce *m)
{
u32 errcode;
u32 errcode = GET_BITFIELD(m->status, 0, 15) & MCACOD_MEM_ERR_MASK;
if (errcode != MCACOD_MEM_CTL_ERR && errcode != MCACOD_EXT_MEM_ERR)
return ERR_SRC_NOT_MEMORY;
if (!skx_mem_cfg_2lm)
return false;
return ERR_SRC_1LM;
errcode = GET_BITFIELD(m->status, 0, 15) & MCACOD_MEM_ERR_MASK;
if (errcode == MCACOD_EXT_MEM_ERR)
return ERR_SRC_2LM_NM;
return errcode == MCACOD_EXT_MEM_ERR;
}
static bool skx_error_in_mem(const struct mce *m)
{
u32 errcode;
errcode = GET_BITFIELD(m->status, 0, 15) & MCACOD_MEM_ERR_MASK;
return (errcode == MCACOD_MEM_CTL_ERR || errcode == MCACOD_EXT_MEM_ERR);
return ERR_SRC_2LM_FM;
}
int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *mce = (struct mce *)data;
enum error_source err_src;
struct decoded_addr res;
struct mem_ctl_info *mci;
char *type;
@ -652,8 +671,10 @@ int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
if (mce->kflags & MCE_HANDLED_CEC)
return NOTIFY_DONE;
err_src = skx_error_source(mce);
/* Ignore unless this is memory related with an address */
if (!skx_error_in_mem(mce) || !(mce->status & MCI_STATUS_ADDRV))
if (err_src == ERR_SRC_NOT_MEMORY || !(mce->status & MCI_STATUS_ADDRV))
return NOTIFY_DONE;
memset(&res, 0, sizeof(res));
@ -667,7 +688,7 @@ int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
/* Try driver decoder first */
if (!(driver_decode && driver_decode(&res))) {
/* Then try firmware decoder (ACPI DSM methods) */
if (!(adxl_component_count && skx_adxl_decode(&res, skx_error_in_1st_level_mem(mce))))
if (!(adxl_component_count && skx_adxl_decode(&res, err_src)))
return NOTIFY_DONE;
}

View File

@ -146,6 +146,13 @@ enum {
INDEX_MAX
};
enum error_source {
ERR_SRC_1LM,
ERR_SRC_2LM_NM,
ERR_SRC_2LM_FM,
ERR_SRC_NOT_MEMORY,
};
#define BIT_NM_MEMCTRL BIT_ULL(INDEX_NM_MEMCTRL)
#define BIT_NM_CHANNEL BIT_ULL(INDEX_NM_CHANNEL)
#define BIT_NM_DIMM BIT_ULL(INDEX_NM_DIMM)
@ -234,6 +241,7 @@ int skx_adxl_get(void);
void skx_adxl_put(void);
void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log);
void skx_set_mem_cfg(bool mem_cfg_2lm);
void skx_set_res_cfg(struct res_config *cfg);
int skx_get_src_id(struct skx_dev *d, int off, u8 *id);
int skx_get_node_id(struct skx_dev *d, u8 *id);

View File

@ -70,12 +70,16 @@ static int __df_indirect_read(u16 node, u8 func, u16 reg, u8 instance_id, u32 *l
u32 ficaa = 0;
node = get_accessible_node(node);
if (node >= amd_nb_num())
if (node >= amd_nb_num()) {
pr_debug("Node %u is out of bounds\n", node);
goto out;
}
F4 = node_to_amd_nb(node)->link;
if (!F4)
if (!F4) {
pr_debug("DF function 4 not found\n");
goto out;
}
/* Enable instance-specific access. */
if (instance_id != DF_BROADCAST) {