Merge tag 'kvm-x86-generic-6.12' of https://github.com/kvm-x86/linux into HEAD

KVK generic changes for 6.12:

 - Fix a bug that results in KVM prematurely exiting to userspace for coalesced
   MMIO/PIO in many cases, clean up the related code, and add a testcase.

 - Fix a bug in kvm_clear_guest() where it would trigger a buffer overflow _if_
   the gpa+len crosses a page boundary, which thankfully is guaranteed to not
   happen in the current code base.  Add WARNs in more helpers that read/write
   guest memory to detect similar bugs.
This commit is contained in:
Paolo Bonzini 2024-09-14 09:34:30 -04:00
commit 7056c4e2a1
5 changed files with 283 additions and 24 deletions

View File

@ -130,6 +130,7 @@ TEST_GEN_PROGS_x86_64 += x86_64/max_vcpuid_cap_test
TEST_GEN_PROGS_x86_64 += x86_64/triple_fault_event_test
TEST_GEN_PROGS_x86_64 += x86_64/recalc_apic_map_test
TEST_GEN_PROGS_x86_64 += access_tracking_perf_test
TEST_GEN_PROGS_x86_64 += coalesced_io_test
TEST_GEN_PROGS_x86_64 += demand_paging_test
TEST_GEN_PROGS_x86_64 += dirty_log_test
TEST_GEN_PROGS_x86_64 += dirty_log_perf_test
@ -167,6 +168,7 @@ TEST_GEN_PROGS_aarch64 += aarch64/vpmu_counter_access
TEST_GEN_PROGS_aarch64 += aarch64/no-vgic-v3
TEST_GEN_PROGS_aarch64 += access_tracking_perf_test
TEST_GEN_PROGS_aarch64 += arch_timer
TEST_GEN_PROGS_aarch64 += coalesced_io_test
TEST_GEN_PROGS_aarch64 += demand_paging_test
TEST_GEN_PROGS_aarch64 += dirty_log_test
TEST_GEN_PROGS_aarch64 += dirty_log_perf_test
@ -201,6 +203,7 @@ TEST_GEN_PROGS_s390x += kvm_binary_stats_test
TEST_GEN_PROGS_riscv += riscv/sbi_pmu_test
TEST_GEN_PROGS_riscv += riscv/ebreak_test
TEST_GEN_PROGS_riscv += arch_timer
TEST_GEN_PROGS_riscv += coalesced_io_test
TEST_GEN_PROGS_riscv += demand_paging_test
TEST_GEN_PROGS_riscv += dirty_log_test
TEST_GEN_PROGS_riscv += get-reg-list

View File

@ -0,0 +1,236 @@
// SPDX-License-Identifier: GPL-2.0
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <linux/sizes.h>
#include <kvm_util.h>
#include <processor.h>
#include "ucall_common.h"
struct kvm_coalesced_io {
struct kvm_coalesced_mmio_ring *ring;
uint32_t ring_size;
uint64_t mmio_gpa;
uint64_t *mmio;
/*
* x86-only, but define pio_port for all architectures to minimize the
* amount of #ifdeffery and complexity, without having to sacrifice
* verbose error messages.
*/
uint8_t pio_port;
};
static struct kvm_coalesced_io kvm_builtin_io_ring;
#ifdef __x86_64__
static const int has_pio = 1;
#else
static const int has_pio = 0;
#endif
static void guest_code(struct kvm_coalesced_io *io)
{
int i, j;
for (;;) {
for (j = 0; j < 1 + has_pio; j++) {
/*
* KVM always leaves one free entry, i.e. exits to
* userspace before the last entry is filled.
*/
for (i = 0; i < io->ring_size - 1; i++) {
#ifdef __x86_64__
if (i & 1)
outl(io->pio_port, io->pio_port + i);
else
#endif
WRITE_ONCE(*io->mmio, io->mmio_gpa + i);
}
#ifdef __x86_64__
if (j & 1)
outl(io->pio_port, io->pio_port + i);
else
#endif
WRITE_ONCE(*io->mmio, io->mmio_gpa + i);
}
GUEST_SYNC(0);
WRITE_ONCE(*io->mmio, io->mmio_gpa + i);
#ifdef __x86_64__
outl(io->pio_port, io->pio_port + i);
#endif
}
}
static void vcpu_run_and_verify_io_exit(struct kvm_vcpu *vcpu,
struct kvm_coalesced_io *io,
uint32_t ring_start,
uint32_t expected_exit)
{
const bool want_pio = expected_exit == KVM_EXIT_IO;
struct kvm_coalesced_mmio_ring *ring = io->ring;
struct kvm_run *run = vcpu->run;
uint32_t pio_value;
WRITE_ONCE(ring->first, ring_start);
WRITE_ONCE(ring->last, ring_start);
vcpu_run(vcpu);
/*
* Annoyingly, reading PIO data is safe only for PIO exits, otherwise
* data_offset is garbage, e.g. an MMIO gpa.
*/
if (run->exit_reason == KVM_EXIT_IO)
pio_value = *(uint32_t *)((void *)run + run->io.data_offset);
else
pio_value = 0;
TEST_ASSERT((!want_pio && (run->exit_reason == KVM_EXIT_MMIO && run->mmio.is_write &&
run->mmio.phys_addr == io->mmio_gpa && run->mmio.len == 8 &&
*(uint64_t *)run->mmio.data == io->mmio_gpa + io->ring_size - 1)) ||
(want_pio && (run->exit_reason == KVM_EXIT_IO && run->io.port == io->pio_port &&
run->io.direction == KVM_EXIT_IO_OUT && run->io.count == 1 &&
pio_value == io->pio_port + io->ring_size - 1)),
"For start = %u, expected exit on %u-byte %s write 0x%llx = %lx, got exit_reason = %u (%s)\n "
"(MMIO addr = 0x%llx, write = %u, len = %u, data = %lx)\n "
"(PIO port = 0x%x, write = %u, len = %u, count = %u, data = %x",
ring_start, want_pio ? 4 : 8, want_pio ? "PIO" : "MMIO",
want_pio ? (unsigned long long)io->pio_port : io->mmio_gpa,
(want_pio ? io->pio_port : io->mmio_gpa) + io->ring_size - 1, run->exit_reason,
run->exit_reason == KVM_EXIT_MMIO ? "MMIO" : run->exit_reason == KVM_EXIT_IO ? "PIO" : "other",
run->mmio.phys_addr, run->mmio.is_write, run->mmio.len, *(uint64_t *)run->mmio.data,
run->io.port, run->io.direction, run->io.size, run->io.count, pio_value);
}
static void vcpu_run_and_verify_coalesced_io(struct kvm_vcpu *vcpu,
struct kvm_coalesced_io *io,
uint32_t ring_start,
uint32_t expected_exit)
{
struct kvm_coalesced_mmio_ring *ring = io->ring;
int i;
vcpu_run_and_verify_io_exit(vcpu, io, ring_start, expected_exit);
TEST_ASSERT((ring->last + 1) % io->ring_size == ring->first,
"Expected ring to be full (minus 1), first = %u, last = %u, max = %u, start = %u",
ring->first, ring->last, io->ring_size, ring_start);
for (i = 0; i < io->ring_size - 1; i++) {
uint32_t idx = (ring->first + i) % io->ring_size;
struct kvm_coalesced_mmio *entry = &ring->coalesced_mmio[idx];
#ifdef __x86_64__
if (i & 1)
TEST_ASSERT(entry->phys_addr == io->pio_port &&
entry->len == 4 && entry->pio &&
*(uint32_t *)entry->data == io->pio_port + i,
"Wanted 4-byte port I/O 0x%x = 0x%x in entry %u, got %u-byte %s 0x%llx = 0x%x",
io->pio_port, io->pio_port + i, i,
entry->len, entry->pio ? "PIO" : "MMIO",
entry->phys_addr, *(uint32_t *)entry->data);
else
#endif
TEST_ASSERT(entry->phys_addr == io->mmio_gpa &&
entry->len == 8 && !entry->pio,
"Wanted 8-byte MMIO to 0x%lx = %lx in entry %u, got %u-byte %s 0x%llx = 0x%lx",
io->mmio_gpa, io->mmio_gpa + i, i,
entry->len, entry->pio ? "PIO" : "MMIO",
entry->phys_addr, *(uint64_t *)entry->data);
}
}
static void test_coalesced_io(struct kvm_vcpu *vcpu,
struct kvm_coalesced_io *io, uint32_t ring_start)
{
struct kvm_coalesced_mmio_ring *ring = io->ring;
kvm_vm_register_coalesced_io(vcpu->vm, io->mmio_gpa, 8, false /* pio */);
#ifdef __x86_64__
kvm_vm_register_coalesced_io(vcpu->vm, io->pio_port, 8, true /* pio */);
#endif
vcpu_run_and_verify_coalesced_io(vcpu, io, ring_start, KVM_EXIT_MMIO);
#ifdef __x86_64__
vcpu_run_and_verify_coalesced_io(vcpu, io, ring_start, KVM_EXIT_IO);
#endif
/*
* Verify ucall, which may use non-coalesced MMIO or PIO, generates an
* immediate exit.
*/
WRITE_ONCE(ring->first, ring_start);
WRITE_ONCE(ring->last, ring_start);
vcpu_run(vcpu);
TEST_ASSERT_EQ(get_ucall(vcpu, NULL), UCALL_SYNC);
TEST_ASSERT_EQ(ring->first, ring_start);
TEST_ASSERT_EQ(ring->last, ring_start);
/* Verify that non-coalesced MMIO/PIO generates an exit to userspace. */
kvm_vm_unregister_coalesced_io(vcpu->vm, io->mmio_gpa, 8, false /* pio */);
vcpu_run_and_verify_io_exit(vcpu, io, ring_start, KVM_EXIT_MMIO);
#ifdef __x86_64__
kvm_vm_unregister_coalesced_io(vcpu->vm, io->pio_port, 8, true /* pio */);
vcpu_run_and_verify_io_exit(vcpu, io, ring_start, KVM_EXIT_IO);
#endif
}
int main(int argc, char *argv[])
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
int i;
TEST_REQUIRE(kvm_has_cap(KVM_CAP_COALESCED_MMIO));
#ifdef __x86_64__
TEST_REQUIRE(kvm_has_cap(KVM_CAP_COALESCED_PIO));
#endif
vm = vm_create_with_one_vcpu(&vcpu, guest_code);
kvm_builtin_io_ring = (struct kvm_coalesced_io) {
/*
* The I/O ring is a kernel-allocated page whose address is
* relative to each vCPU's run page, with the page offset
* provided by KVM in the return of KVM_CAP_COALESCED_MMIO.
*/
.ring = (void *)vcpu->run +
(kvm_check_cap(KVM_CAP_COALESCED_MMIO) * getpagesize()),
/*
* The size of the I/O ring is fixed, but KVM defines the sized
* based on the kernel's PAGE_SIZE. Thus, userspace must query
* the host's page size at runtime to compute the ring size.
*/
.ring_size = (getpagesize() - sizeof(struct kvm_coalesced_mmio_ring)) /
sizeof(struct kvm_coalesced_mmio),
/*
* Arbitrary address+port (MMIO mustn't overlap memslots), with
* the MMIO GPA identity mapped in the guest.
*/
.mmio_gpa = 4ull * SZ_1G,
.mmio = (uint64_t *)(4ull * SZ_1G),
.pio_port = 0x80,
};
virt_map(vm, (uint64_t)kvm_builtin_io_ring.mmio, kvm_builtin_io_ring.mmio_gpa, 1);
sync_global_to_guest(vm, kvm_builtin_io_ring);
vcpu_args_set(vcpu, 1, &kvm_builtin_io_ring);
for (i = 0; i < kvm_builtin_io_ring.ring_size; i++)
test_coalesced_io(vcpu, &kvm_builtin_io_ring, i);
kvm_vm_free(vm);
return 0;
}

View File

@ -460,6 +460,32 @@ static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
}
static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm,
uint64_t address,
uint64_t size, bool pio)
{
struct kvm_coalesced_mmio_zone zone = {
.addr = address,
.size = size,
.pio = pio,
};
vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone);
}
static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm,
uint64_t address,
uint64_t size, bool pio)
{
struct kvm_coalesced_mmio_zone zone = {
.addr = address,
.size = size,
.pio = pio,
};
vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone);
}
static inline int vm_get_stats_fd(struct kvm_vm *vm)
{
int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);

View File

@ -40,27 +40,6 @@ static int coalesced_mmio_in_range(struct kvm_coalesced_mmio_dev *dev,
return 1;
}
static int coalesced_mmio_has_room(struct kvm_coalesced_mmio_dev *dev, u32 last)
{
struct kvm_coalesced_mmio_ring *ring;
unsigned avail;
/* Are we able to batch it ? */
/* last is the first free entry
* check if we don't meet the first used entry
* there is always one unused entry in the buffer
*/
ring = dev->kvm->coalesced_mmio_ring;
avail = (ring->first - last - 1) % KVM_COALESCED_MMIO_MAX;
if (avail == 0) {
/* full */
return 0;
}
return 1;
}
static int coalesced_mmio_write(struct kvm_vcpu *vcpu,
struct kvm_io_device *this, gpa_t addr,
int len, const void *val)
@ -74,9 +53,15 @@ static int coalesced_mmio_write(struct kvm_vcpu *vcpu,
spin_lock(&dev->kvm->ring_lock);
/*
* last is the index of the entry to fill. Verify userspace hasn't
* set last to be out of range, and that there is room in the ring.
* Leave one entry free in the ring so that userspace can differentiate
* between an empty ring and a full ring.
*/
insert = READ_ONCE(ring->last);
if (!coalesced_mmio_has_room(dev, insert) ||
insert >= KVM_COALESCED_MMIO_MAX) {
if (insert >= KVM_COALESCED_MMIO_MAX ||
(insert + 1) % KVM_COALESCED_MMIO_MAX == READ_ONCE(ring->first)) {
spin_unlock(&dev->kvm->ring_lock);
return -EOPNOTSUPP;
}

View File

@ -3275,6 +3275,9 @@ static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
int r;
unsigned long addr;
if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
return -EFAULT;
addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
if (kvm_is_error_hva(addr))
return -EFAULT;
@ -3348,6 +3351,9 @@ static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
int r;
unsigned long addr;
if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
return -EFAULT;
addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
if (kvm_is_error_hva(addr))
return -EFAULT;
@ -3378,6 +3384,9 @@ static int __kvm_write_guest_page(struct kvm *kvm,
int r;
unsigned long addr;
if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
return -EFAULT;
addr = gfn_to_hva_memslot(memslot, gfn);
if (kvm_is_error_hva(addr))
return -EFAULT;
@ -3581,7 +3590,7 @@ int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
int ret;
while ((seg = next_segment(len, offset)) != 0) {
ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
if (ret < 0)
return ret;
offset = 0;