mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
mm/slub: enable debugging memory wasting of kmalloc
kmalloc's API family is critical for mm, with one nature that it will round up the request size to a fixed one (mostly power of 2). Say when user requests memory for '2^n + 1' bytes, actually 2^(n+1) bytes could be allocated, so in worst case, there is around 50% memory space waste. The wastage is not a big issue for requests that get allocated/freed quickly, but may cause problems with objects that have longer life time. We've met a kernel boot OOM panic (v5.10), and from the dumped slab info: [ 26.062145] kmalloc-2k 814056KB 814056KB From debug we found there are huge number of 'struct iova_magazine', whose size is 1032 bytes (1024 + 8), so each allocation will waste 1016 bytes. Though the issue was solved by giving the right (bigger) size of RAM, it is still nice to optimize the size (either use a kmalloc friendly size or create a dedicated slab for it). And from lkml archive, there was another crash kernel OOM case [1] back in 2019, which seems to be related with the similar slab waste situation, as the log is similar: [ 4.332648] iommu: Adding device 0000:20:02.0 to group 16 [ 4.338946] swapper/0 invoked oom-killer: gfp_mask=0x6040c0(GFP_KERNEL|__GFP_COMP), nodemask=(null), order=0, oom_score_adj=0 ... [ 4.857565] kmalloc-2048 59164KB 59164KB The crash kernel only has 256M memory, and 59M is pretty big here. (Note: the related code has been changed and optimised in recent kernel [2], these logs are just picked to demo the problem, also a patch changing its size to 1024 bytes has been merged) So add an way to track each kmalloc's memory waste info, and leverage the existing SLUB debug framework (specifically SLUB_STORE_USER) to show its call stack of original allocation, so that user can evaluate the waste situation, identify some hot spots and optimize accordingly, for a better utilization of memory. The waste info is integrated into existing interface: '/sys/kernel/debug/slab/kmalloc-xx/alloc_traces', one example of 'kmalloc-4k' after boot is: 126 ixgbe_alloc_q_vector+0xbe/0x830 [ixgbe] waste=233856/1856 age=280763/281414/282065 pid=1330 cpus=32 nodes=1 __kmem_cache_alloc_node+0x11f/0x4e0 __kmalloc_node+0x4e/0x140 ixgbe_alloc_q_vector+0xbe/0x830 [ixgbe] ixgbe_init_interrupt_scheme+0x2ae/0xc90 [ixgbe] ixgbe_probe+0x165f/0x1d20 [ixgbe] local_pci_probe+0x78/0xc0 work_for_cpu_fn+0x26/0x40 ... which means in 'kmalloc-4k' slab, there are 126 requests of 2240 bytes which got a 4KB space (wasting 1856 bytes each and 233856 bytes in total), from ixgbe_alloc_q_vector(). And when system starts some real workload like multiple docker instances, there could are more severe waste. [1]. https://lkml.org/lkml/2019/8/12/266 [2]. https://lore.kernel.org/lkml/2920df89-9975-5785-f79b-257d3052dfaf@huawei.com/ [Thanks Hyeonggon for pointing out several bugs about sorting/format] [Thanks Vlastimil for suggesting way to reduce memory usage of orig_size and keep it only for kmalloc objects] Signed-off-by: Feng Tang <feng.tang@intel.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: John Garry <john.garry@huawei.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
This commit is contained in:
parent
1f04b07d97
commit
6edf2576a6
@ -400,21 +400,30 @@ information:
|
||||
allocated objects. The output is sorted by frequency of each trace.
|
||||
|
||||
Information in the output:
|
||||
Number of objects, allocating function, minimal/average/maximal jiffies since alloc,
|
||||
pid range of the allocating processes, cpu mask of allocating cpus, and stack trace.
|
||||
Number of objects, allocating function, possible memory wastage of
|
||||
kmalloc objects(total/per-object), minimal/average/maximal jiffies
|
||||
since alloc, pid range of the allocating processes, cpu mask of
|
||||
allocating cpus, numa node mask of origins of memory, and stack trace.
|
||||
|
||||
Example:::
|
||||
|
||||
1085 populate_error_injection_list+0x97/0x110 age=166678/166680/166682 pid=1 cpus=1::
|
||||
__slab_alloc+0x6d/0x90
|
||||
kmem_cache_alloc_trace+0x2eb/0x300
|
||||
populate_error_injection_list+0x97/0x110
|
||||
init_error_injection+0x1b/0x71
|
||||
do_one_initcall+0x5f/0x2d0
|
||||
kernel_init_freeable+0x26f/0x2d7
|
||||
kernel_init+0xe/0x118
|
||||
ret_from_fork+0x22/0x30
|
||||
|
||||
338 pci_alloc_dev+0x2c/0xa0 waste=521872/1544 age=290837/291891/293509 pid=1 cpus=106 nodes=0-1
|
||||
__kmem_cache_alloc_node+0x11f/0x4e0
|
||||
kmalloc_trace+0x26/0xa0
|
||||
pci_alloc_dev+0x2c/0xa0
|
||||
pci_scan_single_device+0xd2/0x150
|
||||
pci_scan_slot+0xf7/0x2d0
|
||||
pci_scan_child_bus_extend+0x4e/0x360
|
||||
acpi_pci_root_create+0x32e/0x3b0
|
||||
pci_acpi_scan_root+0x2b9/0x2d0
|
||||
acpi_pci_root_add.cold.11+0x110/0xb0a
|
||||
acpi_bus_attach+0x262/0x3f0
|
||||
device_for_each_child+0xb7/0x110
|
||||
acpi_dev_for_each_child+0x77/0xa0
|
||||
acpi_bus_attach+0x108/0x3f0
|
||||
device_for_each_child+0xb7/0x110
|
||||
acpi_dev_for_each_child+0x77/0xa0
|
||||
acpi_bus_attach+0x108/0x3f0
|
||||
|
||||
2. free_traces::
|
||||
|
||||
|
@ -29,6 +29,8 @@
|
||||
#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
|
||||
/* DEBUG: Poison objects */
|
||||
#define SLAB_POISON ((slab_flags_t __force)0x00000800U)
|
||||
/* Indicate a kmalloc slab */
|
||||
#define SLAB_KMALLOC ((slab_flags_t __force)0x00001000U)
|
||||
/* Align objs on cache lines */
|
||||
#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
|
||||
/* Use GFP_DMA memory */
|
||||
|
@ -649,7 +649,8 @@ struct kmem_cache *__init create_kmalloc_cache(const char *name,
|
||||
if (!s)
|
||||
panic("Out of memory when creating slab %s\n", name);
|
||||
|
||||
create_boot_cache(s, name, size, flags, useroffset, usersize);
|
||||
create_boot_cache(s, name, size, flags | SLAB_KMALLOC, useroffset,
|
||||
usersize);
|
||||
kasan_cache_create_kmalloc(s);
|
||||
list_add(&s->list, &slab_caches);
|
||||
s->refcount = 1;
|
||||
|
154
mm/slub.c
154
mm/slub.c
@ -194,11 +194,24 @@ DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
|
||||
#endif
|
||||
#endif /* CONFIG_SLUB_DEBUG */
|
||||
|
||||
/* Structure holding parameters for get_partial() call chain */
|
||||
struct partial_context {
|
||||
struct slab **slab;
|
||||
gfp_t flags;
|
||||
unsigned int orig_size;
|
||||
};
|
||||
|
||||
static inline bool kmem_cache_debug(struct kmem_cache *s)
|
||||
{
|
||||
return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
|
||||
}
|
||||
|
||||
static inline bool slub_debug_orig_size(struct kmem_cache *s)
|
||||
{
|
||||
return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
|
||||
(s->flags & SLAB_KMALLOC));
|
||||
}
|
||||
|
||||
void *fixup_red_left(struct kmem_cache *s, void *p)
|
||||
{
|
||||
if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
|
||||
@ -785,6 +798,39 @@ static void print_slab_info(const struct slab *slab)
|
||||
folio_flags(folio, 0));
|
||||
}
|
||||
|
||||
/*
|
||||
* kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
|
||||
* family will round up the real request size to these fixed ones, so
|
||||
* there could be an extra area than what is requested. Save the original
|
||||
* request size in the meta data area, for better debug and sanity check.
|
||||
*/
|
||||
static inline void set_orig_size(struct kmem_cache *s,
|
||||
void *object, unsigned int orig_size)
|
||||
{
|
||||
void *p = kasan_reset_tag(object);
|
||||
|
||||
if (!slub_debug_orig_size(s))
|
||||
return;
|
||||
|
||||
p += get_info_end(s);
|
||||
p += sizeof(struct track) * 2;
|
||||
|
||||
*(unsigned int *)p = orig_size;
|
||||
}
|
||||
|
||||
static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
|
||||
{
|
||||
void *p = kasan_reset_tag(object);
|
||||
|
||||
if (!slub_debug_orig_size(s))
|
||||
return s->object_size;
|
||||
|
||||
p += get_info_end(s);
|
||||
p += sizeof(struct track) * 2;
|
||||
|
||||
return *(unsigned int *)p;
|
||||
}
|
||||
|
||||
static void slab_bug(struct kmem_cache *s, char *fmt, ...)
|
||||
{
|
||||
struct va_format vaf;
|
||||
@ -844,6 +890,9 @@ static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
|
||||
if (s->flags & SLAB_STORE_USER)
|
||||
off += 2 * sizeof(struct track);
|
||||
|
||||
if (slub_debug_orig_size(s))
|
||||
off += sizeof(unsigned int);
|
||||
|
||||
off += kasan_metadata_size(s);
|
||||
|
||||
if (off != size_from_object(s))
|
||||
@ -977,7 +1026,8 @@ skip_bug_print:
|
||||
*
|
||||
* A. Free pointer (if we cannot overwrite object on free)
|
||||
* B. Tracking data for SLAB_STORE_USER
|
||||
* C. Padding to reach required alignment boundary or at minimum
|
||||
* C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
|
||||
* D. Padding to reach required alignment boundary or at minimum
|
||||
* one word if debugging is on to be able to detect writes
|
||||
* before the word boundary.
|
||||
*
|
||||
@ -995,10 +1045,14 @@ static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
|
||||
{
|
||||
unsigned long off = get_info_end(s); /* The end of info */
|
||||
|
||||
if (s->flags & SLAB_STORE_USER)
|
||||
if (s->flags & SLAB_STORE_USER) {
|
||||
/* We also have user information there */
|
||||
off += 2 * sizeof(struct track);
|
||||
|
||||
if (s->flags & SLAB_KMALLOC)
|
||||
off += sizeof(unsigned int);
|
||||
}
|
||||
|
||||
off += kasan_metadata_size(s);
|
||||
|
||||
if (size_from_object(s) == off)
|
||||
@ -1293,7 +1347,7 @@ static inline int alloc_consistency_checks(struct kmem_cache *s,
|
||||
}
|
||||
|
||||
static noinline int alloc_debug_processing(struct kmem_cache *s,
|
||||
struct slab *slab, void *object)
|
||||
struct slab *slab, void *object, int orig_size)
|
||||
{
|
||||
if (s->flags & SLAB_CONSISTENCY_CHECKS) {
|
||||
if (!alloc_consistency_checks(s, slab, object))
|
||||
@ -1302,6 +1356,7 @@ static noinline int alloc_debug_processing(struct kmem_cache *s,
|
||||
|
||||
/* Success. Perform special debug activities for allocs */
|
||||
trace(s, slab, object, 1);
|
||||
set_orig_size(s, object, orig_size);
|
||||
init_object(s, object, SLUB_RED_ACTIVE);
|
||||
return 1;
|
||||
|
||||
@ -1570,7 +1625,7 @@ static inline
|
||||
void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
|
||||
|
||||
static inline int alloc_debug_processing(struct kmem_cache *s,
|
||||
struct slab *slab, void *object) { return 0; }
|
||||
struct slab *slab, void *object, int orig_size) { return 0; }
|
||||
|
||||
static inline void free_debug_processing(
|
||||
struct kmem_cache *s, struct slab *slab,
|
||||
@ -2013,7 +2068,7 @@ static inline void remove_partial(struct kmem_cache_node *n,
|
||||
* it to full list if it was the last free object.
|
||||
*/
|
||||
static void *alloc_single_from_partial(struct kmem_cache *s,
|
||||
struct kmem_cache_node *n, struct slab *slab)
|
||||
struct kmem_cache_node *n, struct slab *slab, int orig_size)
|
||||
{
|
||||
void *object;
|
||||
|
||||
@ -2023,7 +2078,7 @@ static void *alloc_single_from_partial(struct kmem_cache *s,
|
||||
slab->freelist = get_freepointer(s, object);
|
||||
slab->inuse++;
|
||||
|
||||
if (!alloc_debug_processing(s, slab, object)) {
|
||||
if (!alloc_debug_processing(s, slab, object, orig_size)) {
|
||||
remove_partial(n, slab);
|
||||
return NULL;
|
||||
}
|
||||
@ -2042,7 +2097,7 @@ static void *alloc_single_from_partial(struct kmem_cache *s,
|
||||
* and put the slab to the partial (or full) list.
|
||||
*/
|
||||
static void *alloc_single_from_new_slab(struct kmem_cache *s,
|
||||
struct slab *slab)
|
||||
struct slab *slab, int orig_size)
|
||||
{
|
||||
int nid = slab_nid(slab);
|
||||
struct kmem_cache_node *n = get_node(s, nid);
|
||||
@ -2054,7 +2109,7 @@ static void *alloc_single_from_new_slab(struct kmem_cache *s,
|
||||
slab->freelist = get_freepointer(s, object);
|
||||
slab->inuse = 1;
|
||||
|
||||
if (!alloc_debug_processing(s, slab, object))
|
||||
if (!alloc_debug_processing(s, slab, object, orig_size))
|
||||
/*
|
||||
* It's not really expected that this would fail on a
|
||||
* freshly allocated slab, but a concurrent memory
|
||||
@ -2132,7 +2187,7 @@ static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
|
||||
* Try to allocate a partial slab from a specific node.
|
||||
*/
|
||||
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
|
||||
struct slab **ret_slab, gfp_t gfpflags)
|
||||
struct partial_context *pc)
|
||||
{
|
||||
struct slab *slab, *slab2;
|
||||
void *object = NULL;
|
||||
@ -2152,11 +2207,12 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
|
||||
list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
|
||||
void *t;
|
||||
|
||||
if (!pfmemalloc_match(slab, gfpflags))
|
||||
if (!pfmemalloc_match(slab, pc->flags))
|
||||
continue;
|
||||
|
||||
if (kmem_cache_debug(s)) {
|
||||
object = alloc_single_from_partial(s, n, slab);
|
||||
object = alloc_single_from_partial(s, n, slab,
|
||||
pc->orig_size);
|
||||
if (object)
|
||||
break;
|
||||
continue;
|
||||
@ -2167,7 +2223,7 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
|
||||
break;
|
||||
|
||||
if (!object) {
|
||||
*ret_slab = slab;
|
||||
*pc->slab = slab;
|
||||
stat(s, ALLOC_FROM_PARTIAL);
|
||||
object = t;
|
||||
} else {
|
||||
@ -2191,14 +2247,13 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
|
||||
/*
|
||||
* Get a slab from somewhere. Search in increasing NUMA distances.
|
||||
*/
|
||||
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
|
||||
struct slab **ret_slab)
|
||||
static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
|
||||
{
|
||||
#ifdef CONFIG_NUMA
|
||||
struct zonelist *zonelist;
|
||||
struct zoneref *z;
|
||||
struct zone *zone;
|
||||
enum zone_type highest_zoneidx = gfp_zone(flags);
|
||||
enum zone_type highest_zoneidx = gfp_zone(pc->flags);
|
||||
void *object;
|
||||
unsigned int cpuset_mems_cookie;
|
||||
|
||||
@ -2226,15 +2281,15 @@ static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
|
||||
|
||||
do {
|
||||
cpuset_mems_cookie = read_mems_allowed_begin();
|
||||
zonelist = node_zonelist(mempolicy_slab_node(), flags);
|
||||
zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
|
||||
for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
|
||||
struct kmem_cache_node *n;
|
||||
|
||||
n = get_node(s, zone_to_nid(zone));
|
||||
|
||||
if (n && cpuset_zone_allowed(zone, flags) &&
|
||||
if (n && cpuset_zone_allowed(zone, pc->flags) &&
|
||||
n->nr_partial > s->min_partial) {
|
||||
object = get_partial_node(s, n, ret_slab, flags);
|
||||
object = get_partial_node(s, n, pc);
|
||||
if (object) {
|
||||
/*
|
||||
* Don't check read_mems_allowed_retry()
|
||||
@ -2255,8 +2310,7 @@ static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
|
||||
/*
|
||||
* Get a partial slab, lock it and return it.
|
||||
*/
|
||||
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
|
||||
struct slab **ret_slab)
|
||||
static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
|
||||
{
|
||||
void *object;
|
||||
int searchnode = node;
|
||||
@ -2264,11 +2318,11 @@ static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
|
||||
if (node == NUMA_NO_NODE)
|
||||
searchnode = numa_mem_id();
|
||||
|
||||
object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
|
||||
object = get_partial_node(s, get_node(s, searchnode), pc);
|
||||
if (object || node != NUMA_NO_NODE)
|
||||
return object;
|
||||
|
||||
return get_any_partial(s, flags, ret_slab);
|
||||
return get_any_partial(s, pc);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PREEMPTION
|
||||
@ -2989,11 +3043,12 @@ static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
|
||||
* already disabled (which is the case for bulk allocation).
|
||||
*/
|
||||
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
||||
unsigned long addr, struct kmem_cache_cpu *c)
|
||||
unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
|
||||
{
|
||||
void *freelist;
|
||||
struct slab *slab;
|
||||
unsigned long flags;
|
||||
struct partial_context pc;
|
||||
|
||||
stat(s, ALLOC_SLOWPATH);
|
||||
|
||||
@ -3107,7 +3162,10 @@ new_slab:
|
||||
|
||||
new_objects:
|
||||
|
||||
freelist = get_partial(s, gfpflags, node, &slab);
|
||||
pc.flags = gfpflags;
|
||||
pc.slab = &slab;
|
||||
pc.orig_size = orig_size;
|
||||
freelist = get_partial(s, node, &pc);
|
||||
if (freelist)
|
||||
goto check_new_slab;
|
||||
|
||||
@ -3123,7 +3181,7 @@ new_objects:
|
||||
stat(s, ALLOC_SLAB);
|
||||
|
||||
if (kmem_cache_debug(s)) {
|
||||
freelist = alloc_single_from_new_slab(s, slab);
|
||||
freelist = alloc_single_from_new_slab(s, slab, orig_size);
|
||||
|
||||
if (unlikely(!freelist))
|
||||
goto new_objects;
|
||||
@ -3155,6 +3213,7 @@ check_new_slab:
|
||||
*/
|
||||
if (s->flags & SLAB_STORE_USER)
|
||||
set_track(s, freelist, TRACK_ALLOC, addr);
|
||||
|
||||
return freelist;
|
||||
}
|
||||
|
||||
@ -3197,7 +3256,7 @@ retry_load_slab:
|
||||
* pointer.
|
||||
*/
|
||||
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
||||
unsigned long addr, struct kmem_cache_cpu *c)
|
||||
unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
|
||||
{
|
||||
void *p;
|
||||
|
||||
@ -3210,7 +3269,7 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
||||
c = slub_get_cpu_ptr(s->cpu_slab);
|
||||
#endif
|
||||
|
||||
p = ___slab_alloc(s, gfpflags, node, addr, c);
|
||||
p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
|
||||
#ifdef CONFIG_PREEMPT_COUNT
|
||||
slub_put_cpu_ptr(s->cpu_slab);
|
||||
#endif
|
||||
@ -3295,7 +3354,7 @@ redo:
|
||||
|
||||
if (!USE_LOCKLESS_FAST_PATH() ||
|
||||
unlikely(!object || !slab || !node_match(slab, node))) {
|
||||
object = __slab_alloc(s, gfpflags, node, addr, c);
|
||||
object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
|
||||
} else {
|
||||
void *next_object = get_freepointer_safe(s, object);
|
||||
|
||||
@ -3793,7 +3852,7 @@ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
|
||||
* of re-populating per CPU c->freelist
|
||||
*/
|
||||
p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
|
||||
_RET_IP_, c);
|
||||
_RET_IP_, c, s->object_size);
|
||||
if (unlikely(!p[i]))
|
||||
goto error;
|
||||
|
||||
@ -4196,12 +4255,17 @@ static int calculate_sizes(struct kmem_cache *s)
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SLUB_DEBUG
|
||||
if (flags & SLAB_STORE_USER)
|
||||
if (flags & SLAB_STORE_USER) {
|
||||
/*
|
||||
* Need to store information about allocs and frees after
|
||||
* the object.
|
||||
*/
|
||||
size += 2 * sizeof(struct track);
|
||||
|
||||
/* Save the original kmalloc request size */
|
||||
if (flags & SLAB_KMALLOC)
|
||||
size += sizeof(unsigned int);
|
||||
}
|
||||
#endif
|
||||
|
||||
kasan_cache_create(s, &size, &s->flags);
|
||||
@ -5146,6 +5210,7 @@ struct location {
|
||||
depot_stack_handle_t handle;
|
||||
unsigned long count;
|
||||
unsigned long addr;
|
||||
unsigned long waste;
|
||||
long long sum_time;
|
||||
long min_time;
|
||||
long max_time;
|
||||
@ -5192,13 +5257,15 @@ static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
|
||||
}
|
||||
|
||||
static int add_location(struct loc_track *t, struct kmem_cache *s,
|
||||
const struct track *track)
|
||||
const struct track *track,
|
||||
unsigned int orig_size)
|
||||
{
|
||||
long start, end, pos;
|
||||
struct location *l;
|
||||
unsigned long caddr, chandle;
|
||||
unsigned long caddr, chandle, cwaste;
|
||||
unsigned long age = jiffies - track->when;
|
||||
depot_stack_handle_t handle = 0;
|
||||
unsigned int waste = s->object_size - orig_size;
|
||||
|
||||
#ifdef CONFIG_STACKDEPOT
|
||||
handle = READ_ONCE(track->handle);
|
||||
@ -5216,11 +5283,13 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
|
||||
if (pos == end)
|
||||
break;
|
||||
|
||||
caddr = t->loc[pos].addr;
|
||||
chandle = t->loc[pos].handle;
|
||||
if ((track->addr == caddr) && (handle == chandle)) {
|
||||
l = &t->loc[pos];
|
||||
caddr = l->addr;
|
||||
chandle = l->handle;
|
||||
cwaste = l->waste;
|
||||
if ((track->addr == caddr) && (handle == chandle) &&
|
||||
(waste == cwaste)) {
|
||||
|
||||
l = &t->loc[pos];
|
||||
l->count++;
|
||||
if (track->when) {
|
||||
l->sum_time += age;
|
||||
@ -5245,6 +5314,9 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
|
||||
end = pos;
|
||||
else if (track->addr == caddr && handle < chandle)
|
||||
end = pos;
|
||||
else if (track->addr == caddr && handle == chandle &&
|
||||
waste < cwaste)
|
||||
end = pos;
|
||||
else
|
||||
start = pos;
|
||||
}
|
||||
@ -5268,6 +5340,7 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
|
||||
l->min_pid = track->pid;
|
||||
l->max_pid = track->pid;
|
||||
l->handle = handle;
|
||||
l->waste = waste;
|
||||
cpumask_clear(to_cpumask(l->cpus));
|
||||
cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
|
||||
nodes_clear(l->nodes);
|
||||
@ -5280,13 +5353,16 @@ static void process_slab(struct loc_track *t, struct kmem_cache *s,
|
||||
unsigned long *obj_map)
|
||||
{
|
||||
void *addr = slab_address(slab);
|
||||
bool is_alloc = (alloc == TRACK_ALLOC);
|
||||
void *p;
|
||||
|
||||
__fill_map(obj_map, s, slab);
|
||||
|
||||
for_each_object(p, s, addr, slab->objects)
|
||||
if (!test_bit(__obj_to_index(s, addr, p), obj_map))
|
||||
add_location(t, s, get_track(s, p, alloc));
|
||||
add_location(t, s, get_track(s, p, alloc),
|
||||
is_alloc ? get_orig_size(s, p) :
|
||||
s->object_size);
|
||||
}
|
||||
#endif /* CONFIG_DEBUG_FS */
|
||||
#endif /* CONFIG_SLUB_DEBUG */
|
||||
@ -6156,6 +6232,10 @@ static int slab_debugfs_show(struct seq_file *seq, void *v)
|
||||
else
|
||||
seq_puts(seq, "<not-available>");
|
||||
|
||||
if (l->waste)
|
||||
seq_printf(seq, " waste=%lu/%lu",
|
||||
l->count * l->waste, l->waste);
|
||||
|
||||
if (l->sum_time != l->min_time) {
|
||||
seq_printf(seq, " age=%ld/%llu/%ld",
|
||||
l->min_time, div_u64(l->sum_time, l->count),
|
||||
|
Loading…
Reference in New Issue
Block a user