mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
Documentation: common clk API
Provide documentation for the common clk structures and APIs. This code can be found in drivers/clk/ and include/linux/clk*.h. Signed-off-by: Mike Turquette <mturquette@linaro.org> Signed-off-by: Mike Turquette <mturquette@ti.com> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Cc: Russell King <linux@arm.linux.org.uk> Cc: Jeremy Kerr <jeremy.kerr@canonical.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergman <arnd.bergmann@linaro.org> Cc: Paul Walmsley <paul@pwsan.com> Cc: Shawn Guo <shawn.guo@freescale.com> Cc: Sascha Hauer <s.hauer@pengutronix.de> Cc: Richard Zhao <richard.zhao@linaro.org> Cc: Saravana Kannan <skannan@codeaurora.org> Cc: Magnus Damm <magnus.damm@gmail.com> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Mark Brown <broonie@opensource.wolfsonmicro.com> Cc: Linus Walleij <linus.walleij@stericsson.com> Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Amit Kucheria <amit.kucheria@linaro.org> Cc: Deepak Saxena <dsaxena@linaro.org> Cc: Grant Likely <grant.likely@secretlab.ca> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
This commit is contained in:
parent
fde7d9049e
commit
69fe8a8e92
233
Documentation/clk.txt
Normal file
233
Documentation/clk.txt
Normal file
@ -0,0 +1,233 @@
|
||||
The Common Clk Framework
|
||||
Mike Turquette <mturquette@ti.com>
|
||||
|
||||
This document endeavours to explain the common clk framework details,
|
||||
and how to port a platform over to this framework. It is not yet a
|
||||
detailed explanation of the clock api in include/linux/clk.h, but
|
||||
perhaps someday it will include that information.
|
||||
|
||||
Part 1 - introduction and interface split
|
||||
|
||||
The common clk framework is an interface to control the clock nodes
|
||||
available on various devices today. This may come in the form of clock
|
||||
gating, rate adjustment, muxing or other operations. This framework is
|
||||
enabled with the CONFIG_COMMON_CLK option.
|
||||
|
||||
The interface itself is divided into two halves, each shielded from the
|
||||
details of its counterpart. First is the common definition of struct
|
||||
clk which unifies the framework-level accounting and infrastructure that
|
||||
has traditionally been duplicated across a variety of platforms. Second
|
||||
is a common implementation of the clk.h api, defined in
|
||||
drivers/clk/clk.c. Finally there is struct clk_ops, whose operations
|
||||
are invoked by the clk api implementation.
|
||||
|
||||
The second half of the interface is comprised of the hardware-specific
|
||||
callbacks registered with struct clk_ops and the corresponding
|
||||
hardware-specific structures needed to model a particular clock. For
|
||||
the remainder of this document any reference to a callback in struct
|
||||
clk_ops, such as .enable or .set_rate, implies the hardware-specific
|
||||
implementation of that code. Likewise, references to struct clk_foo
|
||||
serve as a convenient shorthand for the implementation of the
|
||||
hardware-specific bits for the hypothetical "foo" hardware.
|
||||
|
||||
Tying the two halves of this interface together is struct clk_hw, which
|
||||
is defined in struct clk_foo and pointed to within struct clk. This
|
||||
allows easy for navigation between the two discrete halves of the common
|
||||
clock interface.
|
||||
|
||||
Part 2 - common data structures and api
|
||||
|
||||
Below is the common struct clk definition from
|
||||
include/linux/clk-private.h, modified for brevity:
|
||||
|
||||
struct clk {
|
||||
const char *name;
|
||||
const struct clk_ops *ops;
|
||||
struct clk_hw *hw;
|
||||
char **parent_names;
|
||||
struct clk **parents;
|
||||
struct clk *parent;
|
||||
struct hlist_head children;
|
||||
struct hlist_node child_node;
|
||||
...
|
||||
};
|
||||
|
||||
The members above make up the core of the clk tree topology. The clk
|
||||
api itself defines several driver-facing functions which operate on
|
||||
struct clk. That api is documented in include/linux/clk.h.
|
||||
|
||||
Platforms and devices utilizing the common struct clk use the struct
|
||||
clk_ops pointer in struct clk to perform the hardware-specific parts of
|
||||
the operations defined in clk.h:
|
||||
|
||||
struct clk_ops {
|
||||
int (*prepare)(struct clk_hw *hw);
|
||||
void (*unprepare)(struct clk_hw *hw);
|
||||
int (*enable)(struct clk_hw *hw);
|
||||
void (*disable)(struct clk_hw *hw);
|
||||
int (*is_enabled)(struct clk_hw *hw);
|
||||
unsigned long (*recalc_rate)(struct clk_hw *hw,
|
||||
unsigned long parent_rate);
|
||||
long (*round_rate)(struct clk_hw *hw, unsigned long,
|
||||
unsigned long *);
|
||||
int (*set_parent)(struct clk_hw *hw, u8 index);
|
||||
u8 (*get_parent)(struct clk_hw *hw);
|
||||
int (*set_rate)(struct clk_hw *hw, unsigned long);
|
||||
void (*init)(struct clk_hw *hw);
|
||||
};
|
||||
|
||||
Part 3 - hardware clk implementations
|
||||
|
||||
The strength of the common struct clk comes from its .ops and .hw pointers
|
||||
which abstract the details of struct clk from the hardware-specific bits, and
|
||||
vice versa. To illustrate consider the simple gateable clk implementation in
|
||||
drivers/clk/clk-gate.c:
|
||||
|
||||
struct clk_gate {
|
||||
struct clk_hw hw;
|
||||
void __iomem *reg;
|
||||
u8 bit_idx;
|
||||
...
|
||||
};
|
||||
|
||||
struct clk_gate contains struct clk_hw hw as well as hardware-specific
|
||||
knowledge about which register and bit controls this clk's gating.
|
||||
Nothing about clock topology or accounting, such as enable_count or
|
||||
notifier_count, is needed here. That is all handled by the common
|
||||
framework code and struct clk.
|
||||
|
||||
Let's walk through enabling this clk from driver code:
|
||||
|
||||
struct clk *clk;
|
||||
clk = clk_get(NULL, "my_gateable_clk");
|
||||
|
||||
clk_prepare(clk);
|
||||
clk_enable(clk);
|
||||
|
||||
The call graph for clk_enable is very simple:
|
||||
|
||||
clk_enable(clk);
|
||||
clk->ops->enable(clk->hw);
|
||||
[resolves to...]
|
||||
clk_gate_enable(hw);
|
||||
[resolves struct clk gate with to_clk_gate(hw)]
|
||||
clk_gate_set_bit(gate);
|
||||
|
||||
And the definition of clk_gate_set_bit:
|
||||
|
||||
static void clk_gate_set_bit(struct clk_gate *gate)
|
||||
{
|
||||
u32 reg;
|
||||
|
||||
reg = __raw_readl(gate->reg);
|
||||
reg |= BIT(gate->bit_idx);
|
||||
writel(reg, gate->reg);
|
||||
}
|
||||
|
||||
Note that to_clk_gate is defined as:
|
||||
|
||||
#define to_clk_gate(_hw) container_of(_hw, struct clk_gate, clk)
|
||||
|
||||
This pattern of abstraction is used for every clock hardware
|
||||
representation.
|
||||
|
||||
Part 4 - supporting your own clk hardware
|
||||
|
||||
When implementing support for a new type of clock it only necessary to
|
||||
include the following header:
|
||||
|
||||
#include <linux/clk-provider.h>
|
||||
|
||||
include/linux/clk.h is included within that header and clk-private.h
|
||||
must never be included from the code which implements the operations for
|
||||
a clock. More on that below in Part 5.
|
||||
|
||||
To construct a clk hardware structure for your platform you must define
|
||||
the following:
|
||||
|
||||
struct clk_foo {
|
||||
struct clk_hw hw;
|
||||
... hardware specific data goes here ...
|
||||
};
|
||||
|
||||
To take advantage of your data you'll need to support valid operations
|
||||
for your clk:
|
||||
|
||||
struct clk_ops clk_foo_ops {
|
||||
.enable = &clk_foo_enable;
|
||||
.disable = &clk_foo_disable;
|
||||
};
|
||||
|
||||
Implement the above functions using container_of:
|
||||
|
||||
#define to_clk_foo(_hw) container_of(_hw, struct clk_foo, hw)
|
||||
|
||||
int clk_foo_enable(struct clk_hw *hw)
|
||||
{
|
||||
struct clk_foo *foo;
|
||||
|
||||
foo = to_clk_foo(hw);
|
||||
|
||||
... perform magic on foo ...
|
||||
|
||||
return 0;
|
||||
};
|
||||
|
||||
Below is a matrix detailing which clk_ops are mandatory based upon the
|
||||
hardware capbilities of that clock. A cell marked as "y" means
|
||||
mandatory, a cell marked as "n" implies that either including that
|
||||
callback is invalid or otherwise uneccesary. Empty cells are either
|
||||
optional or must be evaluated on a case-by-case basis.
|
||||
|
||||
clock hardware characteristics
|
||||
-----------------------------------------------------------
|
||||
| gate | change rate | single parent | multiplexer | root |
|
||||
|------|-------------|---------------|-------------|------|
|
||||
.prepare | | | | | |
|
||||
.unprepare | | | | | |
|
||||
| | | | | |
|
||||
.enable | y | | | | |
|
||||
.disable | y | | | | |
|
||||
.is_enabled | y | | | | |
|
||||
| | | | | |
|
||||
.recalc_rate | | y | | | |
|
||||
.round_rate | | y | | | |
|
||||
.set_rate | | y | | | |
|
||||
| | | | | |
|
||||
.set_parent | | | n | y | n |
|
||||
.get_parent | | | n | y | n |
|
||||
| | | | | |
|
||||
.init | | | | | |
|
||||
-----------------------------------------------------------
|
||||
|
||||
Finally, register your clock at run-time with a hardware-specific
|
||||
registration function. This function simply populates struct clk_foo's
|
||||
data and then passes the common struct clk parameters to the framework
|
||||
with a call to:
|
||||
|
||||
clk_register(...)
|
||||
|
||||
See the basic clock types in drivers/clk/clk-*.c for examples.
|
||||
|
||||
Part 5 - static initialization of clock data
|
||||
|
||||
For platforms with many clocks (often numbering into the hundreds) it
|
||||
may be desirable to statically initialize some clock data. This
|
||||
presents a problem since the definition of struct clk should be hidden
|
||||
from everyone except for the clock core in drivers/clk/clk.c.
|
||||
|
||||
To get around this problem struct clk's definition is exposed in
|
||||
include/linux/clk-private.h along with some macros for more easily
|
||||
initializing instances of the basic clock types. These clocks must
|
||||
still be initialized with the common clock framework via a call to
|
||||
__clk_init.
|
||||
|
||||
clk-private.h must NEVER be included by code which implements struct
|
||||
clk_ops callbacks, nor must it be included by any logic which pokes
|
||||
around inside of struct clk at run-time. To do so is a layering
|
||||
violation.
|
||||
|
||||
To better enforce this policy, always follow this simple rule: any
|
||||
statically initialized clock data MUST be defined in a separate file
|
||||
from the logic that implements its ops. Basically separate the logic
|
||||
from the data and all is well.
|
Loading…
Reference in New Issue
Block a user