mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 06:31:52 +00:00
KVM: selftests: Add a test for KVM_RUN+rseq to detect task migration bugs
Add a test to verify an rseq's CPU ID is updated correctly if the task is
migrated while the kernel is handling KVM_RUN. This is a regression test
for a bug introduced by commit 72c3c0fe54
("x86/kvm: Use generic xfer
to guest work function"), where TIF_NOTIFY_RESUME would be cleared by KVM
without updating rseq, leading to a stale CPU ID and other badness.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Message-Id: <20210901203030.1292304-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
parent
de5f4213da
commit
61e52f1630
1
tools/testing/selftests/kvm/.gitignore
vendored
1
tools/testing/selftests/kvm/.gitignore
vendored
@ -48,6 +48,7 @@
|
||||
/kvm_page_table_test
|
||||
/memslot_modification_stress_test
|
||||
/memslot_perf_test
|
||||
/rseq_test
|
||||
/set_memory_region_test
|
||||
/steal_time
|
||||
/kvm_binary_stats_test
|
||||
|
@ -80,6 +80,7 @@ TEST_GEN_PROGS_x86_64 += kvm_create_max_vcpus
|
||||
TEST_GEN_PROGS_x86_64 += kvm_page_table_test
|
||||
TEST_GEN_PROGS_x86_64 += memslot_modification_stress_test
|
||||
TEST_GEN_PROGS_x86_64 += memslot_perf_test
|
||||
TEST_GEN_PROGS_x86_64 += rseq_test
|
||||
TEST_GEN_PROGS_x86_64 += set_memory_region_test
|
||||
TEST_GEN_PROGS_x86_64 += steal_time
|
||||
TEST_GEN_PROGS_x86_64 += kvm_binary_stats_test
|
||||
@ -93,6 +94,7 @@ TEST_GEN_PROGS_aarch64 += dirty_log_test
|
||||
TEST_GEN_PROGS_aarch64 += dirty_log_perf_test
|
||||
TEST_GEN_PROGS_aarch64 += kvm_create_max_vcpus
|
||||
TEST_GEN_PROGS_aarch64 += kvm_page_table_test
|
||||
TEST_GEN_PROGS_aarch64 += rseq_test
|
||||
TEST_GEN_PROGS_aarch64 += set_memory_region_test
|
||||
TEST_GEN_PROGS_aarch64 += steal_time
|
||||
TEST_GEN_PROGS_aarch64 += kvm_binary_stats_test
|
||||
@ -104,6 +106,7 @@ TEST_GEN_PROGS_s390x += demand_paging_test
|
||||
TEST_GEN_PROGS_s390x += dirty_log_test
|
||||
TEST_GEN_PROGS_s390x += kvm_create_max_vcpus
|
||||
TEST_GEN_PROGS_s390x += kvm_page_table_test
|
||||
TEST_GEN_PROGS_s390x += rseq_test
|
||||
TEST_GEN_PROGS_s390x += set_memory_region_test
|
||||
TEST_GEN_PROGS_s390x += kvm_binary_stats_test
|
||||
|
||||
|
236
tools/testing/selftests/kvm/rseq_test.c
Normal file
236
tools/testing/selftests/kvm/rseq_test.c
Normal file
@ -0,0 +1,236 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
#define _GNU_SOURCE /* for program_invocation_short_name */
|
||||
#include <errno.h>
|
||||
#include <fcntl.h>
|
||||
#include <pthread.h>
|
||||
#include <sched.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <signal.h>
|
||||
#include <syscall.h>
|
||||
#include <sys/ioctl.h>
|
||||
#include <asm/barrier.h>
|
||||
#include <linux/atomic.h>
|
||||
#include <linux/rseq.h>
|
||||
#include <linux/unistd.h>
|
||||
|
||||
#include "kvm_util.h"
|
||||
#include "processor.h"
|
||||
#include "test_util.h"
|
||||
|
||||
#define VCPU_ID 0
|
||||
|
||||
static __thread volatile struct rseq __rseq = {
|
||||
.cpu_id = RSEQ_CPU_ID_UNINITIALIZED,
|
||||
};
|
||||
|
||||
/*
|
||||
* Use an arbitrary, bogus signature for configuring rseq, this test does not
|
||||
* actually enter an rseq critical section.
|
||||
*/
|
||||
#define RSEQ_SIG 0xdeadbeef
|
||||
|
||||
/*
|
||||
* Any bug related to task migration is likely to be timing-dependent; perform
|
||||
* a large number of migrations to reduce the odds of a false negative.
|
||||
*/
|
||||
#define NR_TASK_MIGRATIONS 100000
|
||||
|
||||
static pthread_t migration_thread;
|
||||
static cpu_set_t possible_mask;
|
||||
static bool done;
|
||||
|
||||
static atomic_t seq_cnt;
|
||||
|
||||
static void guest_code(void)
|
||||
{
|
||||
for (;;)
|
||||
GUEST_SYNC(0);
|
||||
}
|
||||
|
||||
static void sys_rseq(int flags)
|
||||
{
|
||||
int r;
|
||||
|
||||
r = syscall(__NR_rseq, &__rseq, sizeof(__rseq), flags, RSEQ_SIG);
|
||||
TEST_ASSERT(!r, "rseq failed, errno = %d (%s)", errno, strerror(errno));
|
||||
}
|
||||
|
||||
static void *migration_worker(void *ign)
|
||||
{
|
||||
cpu_set_t allowed_mask;
|
||||
int r, i, nr_cpus, cpu;
|
||||
|
||||
CPU_ZERO(&allowed_mask);
|
||||
|
||||
nr_cpus = CPU_COUNT(&possible_mask);
|
||||
|
||||
for (i = 0; i < NR_TASK_MIGRATIONS; i++) {
|
||||
cpu = i % nr_cpus;
|
||||
if (!CPU_ISSET(cpu, &possible_mask))
|
||||
continue;
|
||||
|
||||
CPU_SET(cpu, &allowed_mask);
|
||||
|
||||
/*
|
||||
* Bump the sequence count twice to allow the reader to detect
|
||||
* that a migration may have occurred in between rseq and sched
|
||||
* CPU ID reads. An odd sequence count indicates a migration
|
||||
* is in-progress, while a completely different count indicates
|
||||
* a migration occurred since the count was last read.
|
||||
*/
|
||||
atomic_inc(&seq_cnt);
|
||||
|
||||
/*
|
||||
* Ensure the odd count is visible while sched_getcpu() isn't
|
||||
* stable, i.e. while changing affinity is in-progress.
|
||||
*/
|
||||
smp_wmb();
|
||||
r = sched_setaffinity(0, sizeof(allowed_mask), &allowed_mask);
|
||||
TEST_ASSERT(!r, "sched_setaffinity failed, errno = %d (%s)",
|
||||
errno, strerror(errno));
|
||||
smp_wmb();
|
||||
atomic_inc(&seq_cnt);
|
||||
|
||||
CPU_CLR(cpu, &allowed_mask);
|
||||
|
||||
/*
|
||||
* Wait 1-10us before proceeding to the next iteration and more
|
||||
* specifically, before bumping seq_cnt again. A delay is
|
||||
* needed on three fronts:
|
||||
*
|
||||
* 1. To allow sched_setaffinity() to prompt migration before
|
||||
* ioctl(KVM_RUN) enters the guest so that TIF_NOTIFY_RESUME
|
||||
* (or TIF_NEED_RESCHED, which indirectly leads to handling
|
||||
* NOTIFY_RESUME) is handled in KVM context.
|
||||
*
|
||||
* If NOTIFY_RESUME/NEED_RESCHED is set after KVM enters
|
||||
* the guest, the guest will trigger a IO/MMIO exit all the
|
||||
* way to userspace and the TIF flags will be handled by
|
||||
* the generic "exit to userspace" logic, not by KVM. The
|
||||
* exit to userspace is necessary to give the test a chance
|
||||
* to check the rseq CPU ID (see #2).
|
||||
*
|
||||
* Alternatively, guest_code() could include an instruction
|
||||
* to trigger an exit that is handled by KVM, but any such
|
||||
* exit requires architecture specific code.
|
||||
*
|
||||
* 2. To let ioctl(KVM_RUN) make its way back to the test
|
||||
* before the next round of migration. The test's check on
|
||||
* the rseq CPU ID must wait for migration to complete in
|
||||
* order to avoid false positive, thus any kernel rseq bug
|
||||
* will be missed if the next migration starts before the
|
||||
* check completes.
|
||||
*
|
||||
* 3. To ensure the read-side makes efficient forward progress,
|
||||
* e.g. if sched_getcpu() involves a syscall. Stalling the
|
||||
* read-side means the test will spend more time waiting for
|
||||
* sched_getcpu() to stabilize and less time trying to hit
|
||||
* the timing-dependent bug.
|
||||
*
|
||||
* Because any bug in this area is likely to be timing-dependent,
|
||||
* run with a range of delays at 1us intervals from 1us to 10us
|
||||
* as a best effort to avoid tuning the test to the point where
|
||||
* it can hit _only_ the original bug and not detect future
|
||||
* regressions.
|
||||
*
|
||||
* The original bug can reproduce with a delay up to ~500us on
|
||||
* x86-64, but starts to require more iterations to reproduce
|
||||
* as the delay creeps above ~10us, and the average runtime of
|
||||
* each iteration obviously increases as well. Cap the delay
|
||||
* at 10us to keep test runtime reasonable while minimizing
|
||||
* potential coverage loss.
|
||||
*
|
||||
* The lower bound for reproducing the bug is likely below 1us,
|
||||
* e.g. failures occur on x86-64 with nanosleep(0), but at that
|
||||
* point the overhead of the syscall likely dominates the delay.
|
||||
* Use usleep() for simplicity and to avoid unnecessary kernel
|
||||
* dependencies.
|
||||
*/
|
||||
usleep((i % 10) + 1);
|
||||
}
|
||||
done = true;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
int r, i, snapshot;
|
||||
struct kvm_vm *vm;
|
||||
u32 cpu, rseq_cpu;
|
||||
|
||||
/* Tell stdout not to buffer its content */
|
||||
setbuf(stdout, NULL);
|
||||
|
||||
r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask);
|
||||
TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)", errno,
|
||||
strerror(errno));
|
||||
|
||||
if (CPU_COUNT(&possible_mask) < 2) {
|
||||
print_skip("Only one CPU, task migration not possible\n");
|
||||
exit(KSFT_SKIP);
|
||||
}
|
||||
|
||||
sys_rseq(0);
|
||||
|
||||
/*
|
||||
* Create and run a dummy VM that immediately exits to userspace via
|
||||
* GUEST_SYNC, while concurrently migrating the process by setting its
|
||||
* CPU affinity.
|
||||
*/
|
||||
vm = vm_create_default(VCPU_ID, 0, guest_code);
|
||||
|
||||
pthread_create(&migration_thread, NULL, migration_worker, 0);
|
||||
|
||||
for (i = 0; !done; i++) {
|
||||
vcpu_run(vm, VCPU_ID);
|
||||
TEST_ASSERT(get_ucall(vm, VCPU_ID, NULL) == UCALL_SYNC,
|
||||
"Guest failed?");
|
||||
|
||||
/*
|
||||
* Verify rseq's CPU matches sched's CPU. Ensure migration
|
||||
* doesn't occur between sched_getcpu() and reading the rseq
|
||||
* cpu_id by rereading both if the sequence count changes, or
|
||||
* if the count is odd (migration in-progress).
|
||||
*/
|
||||
do {
|
||||
/*
|
||||
* Drop bit 0 to force a mismatch if the count is odd,
|
||||
* i.e. if a migration is in-progress.
|
||||
*/
|
||||
snapshot = atomic_read(&seq_cnt) & ~1;
|
||||
|
||||
/*
|
||||
* Ensure reading sched_getcpu() and rseq.cpu_id
|
||||
* complete in a single "no migration" window, i.e. are
|
||||
* not reordered across the seq_cnt reads.
|
||||
*/
|
||||
smp_rmb();
|
||||
cpu = sched_getcpu();
|
||||
rseq_cpu = READ_ONCE(__rseq.cpu_id);
|
||||
smp_rmb();
|
||||
} while (snapshot != atomic_read(&seq_cnt));
|
||||
|
||||
TEST_ASSERT(rseq_cpu == cpu,
|
||||
"rseq CPU = %d, sched CPU = %d\n", rseq_cpu, cpu);
|
||||
}
|
||||
|
||||
/*
|
||||
* Sanity check that the test was able to enter the guest a reasonable
|
||||
* number of times, e.g. didn't get stalled too often/long waiting for
|
||||
* sched_getcpu() to stabilize. A 2:1 migration:KVM_RUN ratio is a
|
||||
* fairly conservative ratio on x86-64, which can do _more_ KVM_RUNs
|
||||
* than migrations given the 1us+ delay in the migration task.
|
||||
*/
|
||||
TEST_ASSERT(i > (NR_TASK_MIGRATIONS / 2),
|
||||
"Only performed %d KVM_RUNs, task stalled too much?\n", i);
|
||||
|
||||
pthread_join(migration_thread, NULL);
|
||||
|
||||
kvm_vm_free(vm);
|
||||
|
||||
sys_rseq(RSEQ_FLAG_UNREGISTER);
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user