cxl/port: Add a driver for 'struct cxl_port' objects

The need for a CXL port driver and a dedicated cxl_bus_type is driven by
a need to simultaneously support 2 independent physical memory decode
domains (cache coherent CXL.mem and uncached PCI.mmio) that also
intersect at a single PCIe device node. A CXL Port is a device that
advertises a  CXL Component Register block with an "HDM Decoder
Capability Structure".

>From Documentation/driver-api/cxl/memory-devices.rst:

    Similar to how a RAID driver takes disk objects and assembles them into
    a new logical device, the CXL subsystem is tasked to take PCIe and ACPI
    objects and assemble them into a CXL.mem decode topology. The need for
    runtime configuration of the CXL.mem topology is also similar to RAID in
    that different environments with the same hardware configuration may
    decide to assemble the topology in contrasting ways. One may choose
    performance (RAID0) striping memory across multiple Host Bridges and
    endpoints while another may opt for fault tolerance and disable any
    striping in the CXL.mem topology.

The port driver identifies whether an endpoint Memory Expander is
connected to a CXL topology. If an active (bound to the 'cxl_port'
driver) CXL Port is not found at every PCIe Switch Upstream port and an
active "root" CXL Port then the device is just a plain PCIe endpoint
only capable of participating in PCI.mmio and DMA cycles, not CXL.mem
coherent interleave sets.

The 'cxl_port' driver lets the CXL subsystem leverage driver-core
infrastructure for setup and teardown of register resources and
communicating device activation status to userspace. The cxl_bus_type
can rendezvous the async arrival of platform level CXL resources (via
the 'cxl_acpi' driver) with the asynchronous enumeration of Memory
Expander endpoints, while also implementing a hierarchical locking model
independent of the associated 'struct pci_dev' locking model. The
locking for dport and decoder enumeration is now handled in the core
rather than callers.

For now the port driver only enumerates and registers CXL resources
(downstream port metadata and decoder resources) later it will be used
to take action on its decoders in response to CXL.mem region
provisioning requests.

Note1: cxlpci.h has long depended on pci.h, but port.c was the first to
not include pci.h. Carry that dependency in cxlpci.h.

Note2: cxl port enumeration and probing complicates CXL subsystem init
to the point that it helps to have centralized debug logging of probe
events in cxl_bus_probe().

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Co-developed-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/164374948116.464348.1772618057599155408.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This commit is contained in:
Ben Widawsky 2022-02-01 13:07:51 -08:00 committed by Dan Williams
parent 83fbdbe4c1
commit 54cdbf845c
11 changed files with 415 additions and 31 deletions

View File

@ -14,6 +14,303 @@ that optionally define a device's contribution to an interleaved address
range across multiple devices underneath a host-bridge or interleaved range across multiple devices underneath a host-bridge or interleaved
across host-bridges. across host-bridges.
CXL Bus: Theory of Operation
============================
Similar to how a RAID driver takes disk objects and assembles them into a new
logical device, the CXL subsystem is tasked to take PCIe and ACPI objects and
assemble them into a CXL.mem decode topology. The need for runtime configuration
of the CXL.mem topology is also similar to RAID in that different environments
with the same hardware configuration may decide to assemble the topology in
contrasting ways. One may choose performance (RAID0) striping memory across
multiple Host Bridges and endpoints while another may opt for fault tolerance
and disable any striping in the CXL.mem topology.
Platform firmware enumerates a menu of interleave options at the "CXL root port"
(Linux term for the top of the CXL decode topology). From there, PCIe topology
dictates which endpoints can participate in which Host Bridge decode regimes.
Each PCIe Switch in the path between the root and an endpoint introduces a point
at which the interleave can be split. For example platform firmware may say at a
given range only decodes to 1 one Host Bridge, but that Host Bridge may in turn
interleave cycles across multiple Root Ports. An intervening Switch between a
port and an endpoint may interleave cycles across multiple Downstream Switch
Ports, etc.
Here is a sample listing of a CXL topology defined by 'cxl_test'. The 'cxl_test'
module generates an emulated CXL topology of 2 Host Bridges each with 2 Root
Ports. Each of those Root Ports are connected to 2-way switches with endpoints
connected to those downstream ports for a total of 8 endpoints::
# cxl list -BEMPu -b cxl_test
{
"bus":"root3",
"provider":"cxl_test",
"ports:root3":[
{
"port":"port5",
"host":"cxl_host_bridge.1",
"ports:port5":[
{
"port":"port8",
"host":"cxl_switch_uport.1",
"endpoints:port8":[
{
"endpoint":"endpoint9",
"host":"mem2",
"memdev":{
"memdev":"mem2",
"pmem_size":"256.00 MiB (268.44 MB)",
"ram_size":"256.00 MiB (268.44 MB)",
"serial":"0x1",
"numa_node":1,
"host":"cxl_mem.1"
}
},
{
"endpoint":"endpoint15",
"host":"mem6",
"memdev":{
"memdev":"mem6",
"pmem_size":"256.00 MiB (268.44 MB)",
"ram_size":"256.00 MiB (268.44 MB)",
"serial":"0x5",
"numa_node":1,
"host":"cxl_mem.5"
}
}
]
},
{
"port":"port12",
"host":"cxl_switch_uport.3",
"endpoints:port12":[
{
"endpoint":"endpoint17",
"host":"mem8",
"memdev":{
"memdev":"mem8",
"pmem_size":"256.00 MiB (268.44 MB)",
"ram_size":"256.00 MiB (268.44 MB)",
"serial":"0x7",
"numa_node":1,
"host":"cxl_mem.7"
}
},
{
"endpoint":"endpoint13",
"host":"mem4",
"memdev":{
"memdev":"mem4",
"pmem_size":"256.00 MiB (268.44 MB)",
"ram_size":"256.00 MiB (268.44 MB)",
"serial":"0x3",
"numa_node":1,
"host":"cxl_mem.3"
}
}
]
}
]
},
{
"port":"port4",
"host":"cxl_host_bridge.0",
"ports:port4":[
{
"port":"port6",
"host":"cxl_switch_uport.0",
"endpoints:port6":[
{
"endpoint":"endpoint7",
"host":"mem1",
"memdev":{
"memdev":"mem1",
"pmem_size":"256.00 MiB (268.44 MB)",
"ram_size":"256.00 MiB (268.44 MB)",
"serial":"0",
"numa_node":0,
"host":"cxl_mem.0"
}
},
{
"endpoint":"endpoint14",
"host":"mem5",
"memdev":{
"memdev":"mem5",
"pmem_size":"256.00 MiB (268.44 MB)",
"ram_size":"256.00 MiB (268.44 MB)",
"serial":"0x4",
"numa_node":0,
"host":"cxl_mem.4"
}
}
]
},
{
"port":"port10",
"host":"cxl_switch_uport.2",
"endpoints:port10":[
{
"endpoint":"endpoint16",
"host":"mem7",
"memdev":{
"memdev":"mem7",
"pmem_size":"256.00 MiB (268.44 MB)",
"ram_size":"256.00 MiB (268.44 MB)",
"serial":"0x6",
"numa_node":0,
"host":"cxl_mem.6"
}
},
{
"endpoint":"endpoint11",
"host":"mem3",
"memdev":{
"memdev":"mem3",
"pmem_size":"256.00 MiB (268.44 MB)",
"ram_size":"256.00 MiB (268.44 MB)",
"serial":"0x2",
"numa_node":0,
"host":"cxl_mem.2"
}
}
]
}
]
}
]
}
In that listing each "root", "port", and "endpoint" object correspond a kernel
'struct cxl_port' object. A 'cxl_port' is a device that can decode CXL.mem to
its descendants. So "root" claims non-PCIe enumerable platform decode ranges and
decodes them to "ports", "ports" decode to "endpoints", and "endpoints"
represent the decode from SPA (System Physical Address) to DPA (Device Physical
Address).
Continuing the RAID analogy, disks have both topology metadata and on device
metadata that determine RAID set assembly. CXL Port topology and CXL Port link
status is metadata for CXL.mem set assembly. The CXL Port topology is enumerated
by the arrival of a CXL.mem device. I.e. unless and until the PCIe core attaches
the cxl_pci driver to a CXL Memory Expander there is no role for CXL Port
objects. Conversely for hot-unplug / removal scenarios, there is no need for
the Linux PCI core to tear down switch-level CXL resources because the endpoint
->remove() event cleans up the port data that was established to support that
Memory Expander.
The port metadata and potential decode schemes that a give memory device may
participate can be determined via a command like::
# cxl list -BDMu -d root -m mem3
{
"bus":"root3",
"provider":"cxl_test",
"decoders:root3":[
{
"decoder":"decoder3.1",
"resource":"0x8030000000",
"size":"512.00 MiB (536.87 MB)",
"volatile_capable":true,
"nr_targets":2
},
{
"decoder":"decoder3.3",
"resource":"0x8060000000",
"size":"512.00 MiB (536.87 MB)",
"pmem_capable":true,
"nr_targets":2
},
{
"decoder":"decoder3.0",
"resource":"0x8020000000",
"size":"256.00 MiB (268.44 MB)",
"volatile_capable":true,
"nr_targets":1
},
{
"decoder":"decoder3.2",
"resource":"0x8050000000",
"size":"256.00 MiB (268.44 MB)",
"pmem_capable":true,
"nr_targets":1
}
],
"memdevs:root3":[
{
"memdev":"mem3",
"pmem_size":"256.00 MiB (268.44 MB)",
"ram_size":"256.00 MiB (268.44 MB)",
"serial":"0x2",
"numa_node":0,
"host":"cxl_mem.2"
}
]
}
...which queries the CXL topology to ask "given CXL Memory Expander with a kernel
device name of 'mem3' which platform level decode ranges may this device
participate". A given expander can participate in multiple CXL.mem interleave
sets simultaneously depending on how many decoder resource it has. In this
example mem3 can participate in one or more of a PMEM interleave that spans to
Host Bridges, a PMEM interleave that targets a single Host Bridge, a Volatile
memory interleave that spans 2 Host Bridges, and a Volatile memory interleave
that only targets a single Host Bridge.
Conversely the memory devices that can participate in a given platform level
decode scheme can be determined via a command like the following::
# cxl list -MDu -d 3.2
[
{
"memdevs":[
{
"memdev":"mem1",
"pmem_size":"256.00 MiB (268.44 MB)",
"ram_size":"256.00 MiB (268.44 MB)",
"serial":"0",
"numa_node":0,
"host":"cxl_mem.0"
},
{
"memdev":"mem5",
"pmem_size":"256.00 MiB (268.44 MB)",
"ram_size":"256.00 MiB (268.44 MB)",
"serial":"0x4",
"numa_node":0,
"host":"cxl_mem.4"
},
{
"memdev":"mem7",
"pmem_size":"256.00 MiB (268.44 MB)",
"ram_size":"256.00 MiB (268.44 MB)",
"serial":"0x6",
"numa_node":0,
"host":"cxl_mem.6"
},
{
"memdev":"mem3",
"pmem_size":"256.00 MiB (268.44 MB)",
"ram_size":"256.00 MiB (268.44 MB)",
"serial":"0x2",
"numa_node":0,
"host":"cxl_mem.2"
}
]
},
{
"root decoders":[
{
"decoder":"decoder3.2",
"resource":"0x8050000000",
"size":"256.00 MiB (268.44 MB)",
"pmem_capable":true,
"nr_targets":1
}
]
}
]
...where the naming scheme for decoders is "decoder<port_id>.<instance_id>".
Driver Infrastructure Driver Infrastructure
===================== =====================
@ -28,6 +325,11 @@ CXL Memory Device
.. kernel-doc:: drivers/cxl/pci.c .. kernel-doc:: drivers/cxl/pci.c
:internal: :internal:
CXL Port
--------
.. kernel-doc:: drivers/cxl/port.c
:doc: cxl port
CXL Core CXL Core
-------- --------
.. kernel-doc:: drivers/cxl/cxl.h .. kernel-doc:: drivers/cxl/cxl.h

View File

@ -77,4 +77,9 @@ config CXL_PMEM
provisioning the persistent memory capacity of CXL memory expanders. provisioning the persistent memory capacity of CXL memory expanders.
If unsure say 'm'. If unsure say 'm'.
config CXL_PORT
default CXL_BUS
tristate
endif endif

View File

@ -3,7 +3,9 @@ obj-$(CONFIG_CXL_BUS) += core/
obj-$(CONFIG_CXL_PCI) += cxl_pci.o obj-$(CONFIG_CXL_PCI) += cxl_pci.o
obj-$(CONFIG_CXL_ACPI) += cxl_acpi.o obj-$(CONFIG_CXL_ACPI) += cxl_acpi.o
obj-$(CONFIG_CXL_PMEM) += cxl_pmem.o obj-$(CONFIG_CXL_PMEM) += cxl_pmem.o
obj-$(CONFIG_CXL_PORT) += cxl_port.o
cxl_pci-y := pci.o cxl_pci-y := pci.o
cxl_acpi-y := acpi.o cxl_acpi-y := acpi.o
cxl_pmem-y := pmem.o cxl_pmem-y := pmem.o
cxl_port-y := port.o

View File

@ -169,7 +169,6 @@ static int add_host_bridge_uport(struct device *match, void *arg)
struct acpi_device *bridge = to_cxl_host_bridge(host, match); struct acpi_device *bridge = to_cxl_host_bridge(host, match);
struct acpi_pci_root *pci_root; struct acpi_pci_root *pci_root;
struct cxl_dport *dport; struct cxl_dport *dport;
struct cxl_hdm *cxlhdm;
struct cxl_port *port; struct cxl_port *port;
int rc; int rc;
@ -197,28 +196,7 @@ static int add_host_bridge_uport(struct device *match, void *arg)
return PTR_ERR(port); return PTR_ERR(port);
dev_dbg(host, "%s: add: %s\n", dev_name(match), dev_name(&port->dev)); dev_dbg(host, "%s: add: %s\n", dev_name(match), dev_name(&port->dev));
rc = devm_cxl_port_enumerate_dports(host, port); return 0;
if (rc < 0)
return rc;
cxl_device_lock(&port->dev);
if (rc == 1) {
rc = devm_cxl_add_passthrough_decoder(host, port);
goto out;
}
cxlhdm = devm_cxl_setup_hdm(host, port);
if (IS_ERR(cxlhdm)) {
rc = PTR_ERR(cxlhdm);
goto out;
}
rc = devm_cxl_enumerate_decoders(host, cxlhdm);
if (rc)
dev_err(&port->dev, "Couldn't enumerate decoders (%d)\n", rc);
out:
cxl_device_unlock(&port->dev);
return rc;
} }
struct cxl_chbs_context { struct cxl_chbs_context {
@ -278,9 +256,7 @@ static int add_host_bridge_dport(struct device *match, void *arg)
return 0; return 0;
} }
cxl_device_lock(&root_port->dev);
dport = devm_cxl_add_dport(host, root_port, match, uid, ctx.chbcr); dport = devm_cxl_add_dport(host, root_port, match, uid, ctx.chbcr);
cxl_device_unlock(&root_port->dev);
if (IS_ERR(dport)) { if (IS_ERR(dport)) {
dev_err(host, "failed to add downstream port: %s\n", dev_err(host, "failed to add downstream port: %s\n",
dev_name(match)); dev_name(match));

View File

@ -47,10 +47,8 @@ static int match_add_dports(struct pci_dev *pdev, void *data)
dev_dbg(&port->dev, "failed to find component registers\n"); dev_dbg(&port->dev, "failed to find component registers\n");
port_num = FIELD_GET(PCI_EXP_LNKCAP_PN, lnkcap); port_num = FIELD_GET(PCI_EXP_LNKCAP_PN, lnkcap);
cxl_device_lock(&port->dev);
dport = devm_cxl_add_dport(ctx->host, port, &pdev->dev, port_num, dport = devm_cxl_add_dport(ctx->host, port, &pdev->dev, port_num,
cxl_regmap_to_base(pdev, &map)); cxl_regmap_to_base(pdev, &map));
cxl_device_unlock(&port->dev);
if (IS_ERR(dport)) { if (IS_ERR(dport)) {
ctx->error = PTR_ERR(dport); ctx->error = PTR_ERR(dport);
return PTR_ERR(dport); return PTR_ERR(dport);

View File

@ -40,6 +40,11 @@ static int cxl_device_id(struct device *dev)
return CXL_DEVICE_NVDIMM_BRIDGE; return CXL_DEVICE_NVDIMM_BRIDGE;
if (dev->type == &cxl_nvdimm_type) if (dev->type == &cxl_nvdimm_type)
return CXL_DEVICE_NVDIMM; return CXL_DEVICE_NVDIMM;
if (is_cxl_port(dev)) {
if (is_cxl_root(to_cxl_port(dev)))
return CXL_DEVICE_ROOT;
return CXL_DEVICE_PORT;
}
return 0; return 0;
} }
@ -298,6 +303,9 @@ static void unregister_port(void *_port)
{ {
struct cxl_port *port = _port; struct cxl_port *port = _port;
if (!is_cxl_root(port))
device_lock_assert(port->dev.parent);
device_unregister(&port->dev); device_unregister(&port->dev);
} }
@ -526,15 +534,34 @@ static int add_dport(struct cxl_port *port, struct cxl_dport *new)
return dup ? -EEXIST : 0; return dup ? -EEXIST : 0;
} }
/*
* Since root-level CXL dports cannot be enumerated by PCI they are not
* enumerated by the common port driver that acquires the port lock over
* dport add/remove. Instead, root dports are manually added by a
* platform driver and cond_cxl_root_lock() is used to take the missing
* port lock in that case.
*/
static void cond_cxl_root_lock(struct cxl_port *port)
{
if (is_cxl_root(port))
cxl_device_lock(&port->dev);
}
static void cond_cxl_root_unlock(struct cxl_port *port)
{
if (is_cxl_root(port))
cxl_device_unlock(&port->dev);
}
static void cxl_dport_remove(void *data) static void cxl_dport_remove(void *data)
{ {
struct cxl_dport *dport = data; struct cxl_dport *dport = data;
struct cxl_port *port = dport->port; struct cxl_port *port = dport->port;
put_device(dport->dport); put_device(dport->dport);
cxl_device_lock(&port->dev); cond_cxl_root_lock(port);
list_del(&dport->list); list_del(&dport->list);
cxl_device_unlock(&port->dev); cond_cxl_root_unlock(port);
} }
static void cxl_dport_unlink(void *data) static void cxl_dport_unlink(void *data)
@ -587,7 +614,9 @@ struct cxl_dport *devm_cxl_add_dport(struct device *host, struct cxl_port *port,
dport->component_reg_phys = component_reg_phys; dport->component_reg_phys = component_reg_phys;
dport->port = port; dport->port = port;
cond_cxl_root_lock(port);
rc = add_dport(port, dport); rc = add_dport(port, dport);
cond_cxl_root_unlock(port);
if (rc) if (rc)
return ERR_PTR(rc); return ERR_PTR(rc);
@ -895,6 +924,7 @@ static int cxl_bus_probe(struct device *dev)
rc = to_cxl_drv(dev->driver)->probe(dev); rc = to_cxl_drv(dev->driver)->probe(dev);
cxl_nested_unlock(dev); cxl_nested_unlock(dev);
dev_dbg(dev, "probe: %d\n", rc);
return rc; return rc;
} }

View File

@ -163,6 +163,8 @@ int cxl_map_device_regs(struct pci_dev *pdev,
enum cxl_regloc_type; enum cxl_regloc_type;
int cxl_find_regblock(struct pci_dev *pdev, enum cxl_regloc_type type, int cxl_find_regblock(struct pci_dev *pdev, enum cxl_regloc_type type,
struct cxl_register_map *map); struct cxl_register_map *map);
void __iomem *devm_cxl_iomap_block(struct device *dev, resource_size_t addr,
resource_size_t length);
#define CXL_RESOURCE_NONE ((resource_size_t) -1) #define CXL_RESOURCE_NONE ((resource_size_t) -1)
#define CXL_TARGET_STRLEN 20 #define CXL_TARGET_STRLEN 20
@ -354,6 +356,8 @@ void cxl_driver_unregister(struct cxl_driver *cxl_drv);
#define CXL_DEVICE_NVDIMM_BRIDGE 1 #define CXL_DEVICE_NVDIMM_BRIDGE 1
#define CXL_DEVICE_NVDIMM 2 #define CXL_DEVICE_NVDIMM 2
#define CXL_DEVICE_PORT 3
#define CXL_DEVICE_ROOT 4
#define MODULE_ALIAS_CXL(type) MODULE_ALIAS("cxl:t" __stringify(type) "*") #define MODULE_ALIAS_CXL(type) MODULE_ALIAS("cxl:t" __stringify(type) "*")
#define CXL_MODALIAS_FMT "cxl:t%d" #define CXL_MODALIAS_FMT "cxl:t%d"

View File

@ -2,6 +2,7 @@
/* Copyright(c) 2020 Intel Corporation. All rights reserved. */ /* Copyright(c) 2020 Intel Corporation. All rights reserved. */
#ifndef __CXL_PCI_H__ #ifndef __CXL_PCI_H__
#define __CXL_PCI_H__ #define __CXL_PCI_H__
#include <linux/pci.h>
#include "cxl.h" #include "cxl.h"
#define CXL_MEMORY_PROGIF 0x10 #define CXL_MEMORY_PROGIF 0x10

63
drivers/cxl/port.c Normal file
View File

@ -0,0 +1,63 @@
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2022 Intel Corporation. All rights reserved. */
#include <linux/device.h>
#include <linux/module.h>
#include <linux/slab.h>
#include "cxlmem.h"
#include "cxlpci.h"
/**
* DOC: cxl port
*
* The port driver enumerates dport via PCI and scans for HDM
* (Host-managed-Device-Memory) decoder resources via the
* @component_reg_phys value passed in by the agent that registered the
* port. All descendant ports of a CXL root port (described by platform
* firmware) are managed in this drivers context. Each driver instance
* is responsible for tearing down the driver context of immediate
* descendant ports. The locking for this is validated by
* CONFIG_PROVE_CXL_LOCKING.
*
* The primary service this driver provides is presenting APIs to other
* drivers to utilize the decoders, and indicating to userspace (via bind
* status) the connectivity of the CXL.mem protocol throughout the
* PCIe topology.
*/
static int cxl_port_probe(struct device *dev)
{
struct cxl_port *port = to_cxl_port(dev);
struct cxl_hdm *cxlhdm;
int rc;
rc = devm_cxl_port_enumerate_dports(dev, port);
if (rc < 0)
return rc;
if (rc == 1)
return devm_cxl_add_passthrough_decoder(dev, port);
cxlhdm = devm_cxl_setup_hdm(dev, port);
if (IS_ERR(cxlhdm))
return PTR_ERR(cxlhdm);
rc = devm_cxl_enumerate_decoders(dev, cxlhdm);
if (rc) {
dev_err(dev, "Couldn't enumerate decoders (%d)\n", rc);
return rc;
}
return 0;
}
static struct cxl_driver cxl_port_driver = {
.name = "cxl_port",
.probe = cxl_port_probe,
.id = CXL_DEVICE_PORT,
};
module_cxl_driver(cxl_port_driver);
MODULE_LICENSE("GPL v2");
MODULE_IMPORT_NS(CXL);
MODULE_ALIAS_CXL(CXL_DEVICE_PORT);

View File

@ -26,6 +26,11 @@ obj-m += cxl_pmem.o
cxl_pmem-y := $(CXL_SRC)/pmem.o cxl_pmem-y := $(CXL_SRC)/pmem.o
cxl_pmem-y += config_check.o cxl_pmem-y += config_check.o
obj-m += cxl_port.o
cxl_port-y := $(CXL_SRC)/port.o
cxl_port-y += config_check.o
obj-m += cxl_core.o obj-m += cxl_core.o
cxl_core-y := $(CXL_CORE_SRC)/port.o cxl_core-y := $(CXL_CORE_SRC)/port.o

View File

@ -437,10 +437,8 @@ static int mock_cxl_port_enumerate_dports(struct device *host,
if (pdev->dev.parent != port->uport) if (pdev->dev.parent != port->uport)
continue; continue;
cxl_device_lock(&port->dev);
dport = devm_cxl_add_dport(host, port, &pdev->dev, pdev->id, dport = devm_cxl_add_dport(host, port, &pdev->dev, pdev->id,
CXL_RESOURCE_NONE); CXL_RESOURCE_NONE);
cxl_device_unlock(&port->dev);
if (IS_ERR(dport)) { if (IS_ERR(dport)) {
dev_err(dev, "failed to add dport: %s (%ld)\n", dev_err(dev, "failed to add dport: %s (%ld)\n",