hwmon: (asus_wmi_sensors) Support X370 Asus WMI.

Provides a Linux kernel module "asus_wmi_sensors" that provides sensor
readouts via ASUS' WMI interface present in the UEFI of
X370/X470/B450/X399 Ryzen motherboards.

Supported motherboards:
* ROG CROSSHAIR VI HERO,
* PRIME X399-A,
* PRIME X470-PRO,
* ROG CROSSHAIR VI EXTREME,
* ROG CROSSHAIR VI HERO (WI-FI AC),
* ROG CROSSHAIR VII HERO,
* ROG CROSSHAIR VII HERO (WI-FI),
* ROG STRIX B450-E GAMING,
* ROG STRIX B450-F GAMING,
* ROG STRIX B450-I GAMING,
* ROG STRIX X399-E GAMING,
* ROG STRIX X470-F GAMING,
* ROG STRIX X470-I GAMING,
* ROG ZENITH EXTREME,
* ROG ZENITH EXTREME ALPHA.

Co-developed-by: Ed Brindley <kernel@maidavale.org>
Signed-off-by: Ed Brindley <kernel@maidavale.org>
Signed-off-by: Denis Pauk <pauk.denis@gmail.com>
[groeck: Squashed:
 "hwmon: Fix warnings in asus_wmi_sensors.rst documetation."]
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
This commit is contained in:
Denis Pauk 2021-11-16 22:57:44 +02:00 committed by Guenter Roeck
parent b87611d437
commit 548820e21c
6 changed files with 763 additions and 0 deletions

View File

@ -0,0 +1,78 @@
.. SPDX-License-Identifier: GPL-2.0-or-later
Kernel driver asus_wmi_sensors
=================================
Supported boards:
* PRIME X399-A,
* PRIME X470-PRO,
* ROG CROSSHAIR VI EXTREME,
* ROG CROSSHAIR VI HERO,
* ROG CROSSHAIR VI HERO (WI-FI AC),
* ROG CROSSHAIR VII HERO,
* ROG CROSSHAIR VII HERO (WI-FI),
* ROG STRIX B450-E GAMING,
* ROG STRIX B450-F GAMING,
* ROG STRIX B450-I GAMING,
* ROG STRIX X399-E GAMING,
* ROG STRIX X470-F GAMING,
* ROG STRIX X470-I GAMING,
* ROG ZENITH EXTREME,
* ROG ZENITH EXTREME ALPHA.
Authors:
- Ed Brindley <kernel@maidavale.org>
Description:
------------
ASUS mainboards publish hardware monitoring information via WMI interface.
ASUS WMI interface provides a methods to get list of sensors and values of
such, which is utilized by this driver to publish those sensor readings to the
HWMON system.
The driver is aware of and reads the following sensors:
* CPU Core Voltage,
* CPU SOC Voltage,
* DRAM Voltage,
* VDDP Voltage,
* 1.8V PLL Voltage,
* +12V Voltage,
* +5V Voltage,
* 3VSB Voltage,
* VBAT Voltage,
* AVCC3 Voltage,
* SB 1.05V Voltage,
* CPU Core Voltage,
* CPU SOC Voltage,
* DRAM Voltage,
* CPU Fan RPM,
* Chassis Fan 1 RPM,
* Chassis Fan 2 RPM,
* Chassis Fan 3 RPM,
* HAMP Fan RPM,
* Water Pump RPM,
* CPU OPT RPM,
* Water Flow RPM,
* AIO Pump RPM,
* CPU Temperature,
* CPU Socket Temperature,
* Motherboard Temperature,
* Chipset Temperature,
* Tsensor 1 Temperature,
* CPU VRM Temperature,
* Water In,
* Water Out,
* CPU VRM Output Current.
Known Issues:
* The WMI implementation in some of Asus' BIOSes is buggy. This can result in
fans stopping, fans getting stuck at max speed, or temperature readouts
getting stuck. This is not an issue with the driver, but the BIOS. The Prime
X470 Pro seems particularly bad for this. The more frequently the WMI
interface is polled the greater the potential for this to happen. Until you
have subjected your computer to an extended soak test while polling the
sensors frequently, don't leave you computer unattended. Upgrading to new
BIOS version with method version greater than or equal to two should
rectify the issue.
* A few boards report 12v voltages to be ~10v.

View File

@ -44,6 +44,7 @@ Hardware Monitoring Kernel Drivers
asc7621
aspeed-pwm-tacho
asus_wmi_ec_sensors
asus_wmi_sensors
bcm54140
bel-pfe
bpa-rs600

View File

@ -2998,6 +2998,13 @@ W: http://acpi4asus.sf.net
F: drivers/platform/x86/asus*.c
F: drivers/platform/x86/eeepc*.c
ASUS WMI HARDWARE MONITOR DRIVER
M: Ed Brindley <kernel@maidavale.org>
M: Denis Pauk <pauk.denis@gmail.com>
L: linux-hwmon@vger.kernel.org
S: Maintained
F: drivers/hwmon/asus_wmi_sensors.c
ASUS WMI EC HARDWARE MONITOR DRIVER
M: Eugene Shalygin <eugene.shalygin@gmail.com>
M: Denis Pauk <pauk.denis@gmail.com>

View File

@ -2228,6 +2228,18 @@ config SENSORS_ATK0110
This driver can also be built as a module. If so, the module
will be called asus_atk0110.
config SENSORS_ASUS_WMI
tristate "ASUS WMI X370/X470/B450/X399"
depends on ACPI_WMI
help
If you say yes here you get support for the ACPI hardware monitoring
interface found in X370/X470/B450/X399 ASUS motherboards. This driver
will provide readings of fans, voltages and temperatures through the system
firmware.
This driver can also be built as a module. If so, the module
will be called asus_wmi_sensors.
config SENSORS_ASUS_WMI_EC
tristate "ASUS WMI B550/X570"
depends on ACPI_WMI

View File

@ -9,6 +9,7 @@ obj-$(CONFIG_HWMON_VID) += hwmon-vid.o
# APCI drivers
obj-$(CONFIG_SENSORS_ACPI_POWER) += acpi_power_meter.o
obj-$(CONFIG_SENSORS_ATK0110) += asus_atk0110.o
obj-$(CONFIG_SENSORS_ASUS_WMI) += asus_wmi_sensors.o
obj-$(CONFIG_SENSORS_ASUS_WMI_EC) += asus_wmi_ec_sensors.o
# Native drivers

View File

@ -0,0 +1,664 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* HWMON driver for ASUS motherboards that provides sensor readouts via WMI
* interface present in the UEFI of the X370/X470/B450/X399 Ryzen motherboards.
*
* Copyright (C) 2018-2019 Ed Brindley <kernel@maidavale.org>
*
* WMI interface provides:
* - CPU Core Voltage,
* - CPU SOC Voltage,
* - DRAM Voltage,
* - VDDP Voltage,
* - 1.8V PLL Voltage,
* - +12V Voltage,
* - +5V Voltage,
* - 3VSB Voltage,
* - VBAT Voltage,
* - AVCC3 Voltage,
* - SB 1.05V Voltage,
* - CPU Core Voltage,
* - CPU SOC Voltage,
* - DRAM Voltage,
* - CPU Fan RPM,
* - Chassis Fan 1 RPM,
* - Chassis Fan 2 RPM,
* - Chassis Fan 3 RPM,
* - HAMP Fan RPM,
* - Water Pump RPM,
* - CPU OPT RPM,
* - Water Flow RPM,
* - AIO Pump RPM,
* - CPU Temperature,
* - CPU Socket Temperature,
* - Motherboard Temperature,
* - Chipset Temperature,
* - Tsensor 1 Temperature,
* - CPU VRM Temperature,
* - Water In,
* - Water Out,
* - CPU VRM Output Current.
*/
#include <linux/acpi.h>
#include <linux/dmi.h>
#include <linux/hwmon.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/units.h>
#include <linux/wmi.h>
#define ASUSWMI_MONITORING_GUID "466747A0-70EC-11DE-8A39-0800200C9A66"
#define ASUSWMI_METHODID_GET_VALUE 0x52574543 /* RWEC */
#define ASUSWMI_METHODID_UPDATE_BUFFER 0x51574543 /* QWEC */
#define ASUSWMI_METHODID_GET_INFO 0x50574543 /* PWEC */
#define ASUSWMI_METHODID_GET_NUMBER 0x50574572 /* PWEr */
#define ASUSWMI_METHODID_GET_VERSION 0x50574574 /* PWEt */
#define ASUS_WMI_MAX_STR_SIZE 32
#define DMI_EXACT_MATCH_ASUS_BOARD_NAME(name) { \
.matches = { \
DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC."), \
DMI_EXACT_MATCH(DMI_BOARD_NAME, name), \
}, \
}
static const struct dmi_system_id asus_wmi_dmi_table[] = {
DMI_EXACT_MATCH_ASUS_BOARD_NAME("PRIME X399-A"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("PRIME X470-PRO"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG CROSSHAIR VI EXTREME"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG CROSSHAIR VI HERO"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG CROSSHAIR VI HERO (WI-FI AC)"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG CROSSHAIR VII HERO"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG CROSSHAIR VII HERO (WI-FI)"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG STRIX B450-E GAMING"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG STRIX B450-F GAMING"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG STRIX B450-I GAMING"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG STRIX X399-E GAMING"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG STRIX X470-F GAMING"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG STRIX X470-I GAMING"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG ZENITH EXTREME"),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG ZENITH EXTREME ALPHA"),
{}
};
MODULE_DEVICE_TABLE(dmi, asus_wmi_dmi_table);
enum asus_wmi_sensor_class {
VOLTAGE = 0x0,
TEMPERATURE_C = 0x1,
FAN_RPM = 0x2,
CURRENT = 0x3,
WATER_FLOW = 0x4,
};
enum asus_wmi_location {
CPU = 0x0,
CPU_SOC = 0x1,
DRAM = 0x2,
MOTHERBOARD = 0x3,
CHIPSET = 0x4,
AUX = 0x5,
VRM = 0x6,
COOLER = 0x7
};
enum asus_wmi_type {
SIGNED_INT = 0x0,
UNSIGNED_INT = 0x1,
SCALED = 0x3,
};
enum asus_wmi_source {
SIO = 0x1,
EC = 0x2
};
static enum hwmon_sensor_types asus_data_types[] = {
[VOLTAGE] = hwmon_in,
[TEMPERATURE_C] = hwmon_temp,
[FAN_RPM] = hwmon_fan,
[CURRENT] = hwmon_curr,
[WATER_FLOW] = hwmon_fan,
};
static u32 hwmon_attributes[] = {
[hwmon_chip] = HWMON_C_REGISTER_TZ,
[hwmon_temp] = HWMON_T_INPUT | HWMON_T_LABEL,
[hwmon_in] = HWMON_I_INPUT | HWMON_I_LABEL,
[hwmon_curr] = HWMON_C_INPUT | HWMON_C_LABEL,
[hwmon_fan] = HWMON_F_INPUT | HWMON_F_LABEL,
};
/**
* struct asus_wmi_sensor_info - sensor info.
* @id: sensor id.
* @data_type: sensor class e.g. voltage, temp etc.
* @location: sensor location.
* @name: sensor name.
* @source: sensor source.
* @type: sensor type signed, unsigned etc.
* @cached_value: cached sensor value.
*/
struct asus_wmi_sensor_info {
u32 id;
int data_type;
int location;
char name[ASUS_WMI_MAX_STR_SIZE];
int source;
int type;
long cached_value;
};
struct asus_wmi_wmi_info {
unsigned long source_last_updated[3]; /* in jiffies */
int sensor_count;
const struct asus_wmi_sensor_info **info[hwmon_max];
struct asus_wmi_sensor_info **info_by_id;
};
struct asus_wmi_sensors {
struct asus_wmi_wmi_info wmi;
/* lock access to internal cache */
struct mutex lock;
};
/*
* Universal method for calling WMI method
*/
static int asus_wmi_call_method(u32 method_id, u32 *args, struct acpi_buffer *output)
{
struct acpi_buffer input = {(acpi_size) sizeof(*args), args };
acpi_status status;
status = wmi_evaluate_method(ASUSWMI_MONITORING_GUID, 0,
method_id, &input, output);
if (ACPI_FAILURE(status))
return -EIO;
return 0;
}
/*
* Gets the version of the ASUS sensors interface implemented
*/
static int asus_wmi_get_version(u32 *version)
{
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
u32 args[] = {0, 0, 0};
union acpi_object *obj;
int err;
err = asus_wmi_call_method(ASUSWMI_METHODID_GET_VERSION, args, &output);
if (err)
return err;
obj = output.pointer;
if (!obj)
return -EIO;
if (obj->type != ACPI_TYPE_INTEGER) {
err = -EIO;
goto out_free_obj;
}
err = 0;
*version = obj->integer.value;
out_free_obj:
ACPI_FREE(obj);
return err;
}
/*
* Gets the number of sensor items
*/
static int asus_wmi_get_item_count(u32 *count)
{
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
u32 args[] = {0, 0, 0};
union acpi_object *obj;
int err;
err = asus_wmi_call_method(ASUSWMI_METHODID_GET_NUMBER, args, &output);
if (err)
return err;
obj = output.pointer;
if (!obj)
return -EIO;
if (obj->type != ACPI_TYPE_INTEGER) {
err = -EIO;
goto out_free_obj;
}
err = 0;
*count = obj->integer.value;
out_free_obj:
ACPI_FREE(obj);
return err;
}
static int asus_wmi_hwmon_add_chan_info(struct hwmon_channel_info *asus_wmi_hwmon_chan,
struct device *dev, int num,
enum hwmon_sensor_types type, u32 config)
{
u32 *cfg;
cfg = devm_kcalloc(dev, num + 1, sizeof(*cfg), GFP_KERNEL);
if (!cfg)
return -ENOMEM;
asus_wmi_hwmon_chan->type = type;
asus_wmi_hwmon_chan->config = cfg;
memset32(cfg, config, num);
return 0;
}
/*
* For a given sensor item returns details e.g. type (voltage/temperature/fan speed etc), bank etc
*/
static int asus_wmi_sensor_info(int index, struct asus_wmi_sensor_info *s)
{
union acpi_object name_obj, data_type_obj, location_obj, source_obj, type_obj;
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
u32 args[] = {index, 0};
union acpi_object *obj;
int err;
err = asus_wmi_call_method(ASUSWMI_METHODID_GET_INFO, args, &output);
if (err)
return err;
s->id = index;
obj = output.pointer;
if (!obj)
return -EIO;
if (obj->type != ACPI_TYPE_PACKAGE) {
err = -EIO;
goto out_free_obj;
}
if (obj->package.count != 5) {
err = -EIO;
goto out_free_obj;
}
name_obj = obj->package.elements[0];
if (name_obj.type != ACPI_TYPE_STRING) {
err = -EIO;
goto out_free_obj;
}
strncpy(s->name, name_obj.string.pointer, sizeof(s->name) - 1);
data_type_obj = obj->package.elements[1];
if (data_type_obj.type != ACPI_TYPE_INTEGER) {
err = -EIO;
goto out_free_obj;
}
s->data_type = data_type_obj.integer.value;
location_obj = obj->package.elements[2];
if (location_obj.type != ACPI_TYPE_INTEGER) {
err = -EIO;
goto out_free_obj;
}
s->location = location_obj.integer.value;
source_obj = obj->package.elements[3];
if (source_obj.type != ACPI_TYPE_INTEGER) {
err = -EIO;
goto out_free_obj;
}
s->source = source_obj.integer.value;
type_obj = obj->package.elements[4];
if (type_obj.type != ACPI_TYPE_INTEGER) {
err = -EIO;
goto out_free_obj;
}
err = 0;
s->type = type_obj.integer.value;
out_free_obj:
ACPI_FREE(obj);
return err;
}
static int asus_wmi_update_buffer(int source)
{
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
u32 args[] = {source, 0};
return asus_wmi_call_method(ASUSWMI_METHODID_UPDATE_BUFFER, args, &output);
}
static int asus_wmi_get_sensor_value(u8 index, long *value)
{
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
u32 args[] = {index, 0};
union acpi_object *obj;
int err;
err = asus_wmi_call_method(ASUSWMI_METHODID_GET_VALUE, args, &output);
if (err)
return err;
obj = output.pointer;
if (!obj)
return -EIO;
if (obj->type != ACPI_TYPE_INTEGER) {
err = -EIO;
goto out_free_obj;
}
err = 0;
*value = obj->integer.value;
out_free_obj:
ACPI_FREE(obj);
return err;
}
static int asus_wmi_update_values_for_source(u8 source, struct asus_wmi_sensors *sensor_data)
{
struct asus_wmi_sensor_info *sensor;
long value = 0;
int ret;
int i;
for (i = 0; i < sensor_data->wmi.sensor_count; i++) {
sensor = sensor_data->wmi.info_by_id[i];
if (sensor && sensor->source == source) {
ret = asus_wmi_get_sensor_value(sensor->id, &value);
if (ret)
return ret;
sensor->cached_value = value;
}
}
return 0;
}
static int asus_wmi_scale_sensor_value(u32 value, int data_type)
{
/* FAN_RPM and WATER_FLOW don't need scaling */
switch (data_type) {
case VOLTAGE:
/* value in microVolts */
return DIV_ROUND_CLOSEST(value, KILO);
case TEMPERATURE_C:
/* value in Celsius */
return value * MILLIDEGREE_PER_DEGREE;
case CURRENT:
/* value in Amperes */
return value * MILLI;
}
return value;
}
static int asus_wmi_get_cached_value_or_update(const struct asus_wmi_sensor_info *sensor,
struct asus_wmi_sensors *sensor_data,
u32 *value)
{
int ret = 0;
mutex_lock(&sensor_data->lock);
if (time_after(jiffies, sensor_data->wmi.source_last_updated[sensor->source] + HZ)) {
ret = asus_wmi_update_buffer(sensor->source);
if (ret)
goto unlock;
ret = asus_wmi_update_values_for_source(sensor->source, sensor_data);
if (ret)
goto unlock;
sensor_data->wmi.source_last_updated[sensor->source] = jiffies;
}
*value = sensor->cached_value;
unlock:
mutex_unlock(&sensor_data->lock);
return ret;
}
/* Now follow the functions that implement the hwmon interface */
static int asus_wmi_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
const struct asus_wmi_sensor_info *sensor;
u32 value = 0;
int ret;
struct asus_wmi_sensors *sensor_data = dev_get_drvdata(dev);
sensor = *(sensor_data->wmi.info[type] + channel);
ret = asus_wmi_get_cached_value_or_update(sensor, sensor_data, &value);
if (ret)
return ret;
*val = asus_wmi_scale_sensor_value(value, sensor->data_type);
return ret;
}
static int asus_wmi_hwmon_read_string(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int channel, const char **str)
{
struct asus_wmi_sensors *sensor_data = dev_get_drvdata(dev);
const struct asus_wmi_sensor_info *sensor;
sensor = *(sensor_data->wmi.info[type] + channel);
*str = sensor->name;
return 0;
}
static umode_t asus_wmi_hwmon_is_visible(const void *drvdata,
enum hwmon_sensor_types type, u32 attr,
int channel)
{
const struct asus_wmi_sensors *sensor_data = drvdata;
const struct asus_wmi_sensor_info *sensor;
sensor = *(sensor_data->wmi.info[type] + channel);
if (sensor)
return 0444;
return 0;
}
static const struct hwmon_ops asus_wmi_hwmon_ops = {
.is_visible = asus_wmi_hwmon_is_visible,
.read = asus_wmi_hwmon_read,
.read_string = asus_wmi_hwmon_read_string,
};
static struct hwmon_chip_info asus_wmi_chip_info = {
.ops = &asus_wmi_hwmon_ops,
.info = NULL,
};
static int asus_wmi_configure_sensor_setup(struct device *dev,
struct asus_wmi_sensors *sensor_data)
{
const struct hwmon_channel_info **ptr_asus_wmi_ci;
struct hwmon_channel_info *asus_wmi_hwmon_chan;
int nr_count[hwmon_max] = {}, nr_types = 0;
struct asus_wmi_sensor_info *temp_sensor;
const struct hwmon_chip_info *chip_info;
enum hwmon_sensor_types type;
struct device *hwdev;
int i, idx;
int err;
temp_sensor = devm_kcalloc(dev, 1, sizeof(*temp_sensor), GFP_KERNEL);
if (!temp_sensor)
return -ENOMEM;
for (i = 0; i < sensor_data->wmi.sensor_count; i++) {
err = asus_wmi_sensor_info(i, temp_sensor);
if (err)
return err;
switch (temp_sensor->data_type) {
case TEMPERATURE_C:
case VOLTAGE:
case CURRENT:
case FAN_RPM:
case WATER_FLOW:
type = asus_data_types[temp_sensor->data_type];
if (!nr_count[type])
nr_types++;
nr_count[type]++;
break;
}
}
if (nr_count[hwmon_temp])
nr_count[hwmon_chip]++, nr_types++;
asus_wmi_hwmon_chan = devm_kcalloc(dev, nr_types,
sizeof(*asus_wmi_hwmon_chan),
GFP_KERNEL);
if (!asus_wmi_hwmon_chan)
return -ENOMEM;
ptr_asus_wmi_ci = devm_kcalloc(dev, nr_types + 1,
sizeof(*ptr_asus_wmi_ci), GFP_KERNEL);
if (!ptr_asus_wmi_ci)
return -ENOMEM;
asus_wmi_chip_info.info = ptr_asus_wmi_ci;
chip_info = &asus_wmi_chip_info;
sensor_data->wmi.info_by_id = devm_kcalloc(dev, sensor_data->wmi.sensor_count,
sizeof(*sensor_data->wmi.info_by_id),
GFP_KERNEL);
if (!sensor_data->wmi.info_by_id)
return -ENOMEM;
for (type = 0; type < hwmon_max; type++) {
if (!nr_count[type])
continue;
err = asus_wmi_hwmon_add_chan_info(asus_wmi_hwmon_chan, dev,
nr_count[type], type,
hwmon_attributes[type]);
if (err)
return err;
*ptr_asus_wmi_ci++ = asus_wmi_hwmon_chan++;
sensor_data->wmi.info[type] = devm_kcalloc(dev,
nr_count[type],
sizeof(*sensor_data->wmi.info),
GFP_KERNEL);
if (!sensor_data->wmi.info[type])
return -ENOMEM;
}
for (i = sensor_data->wmi.sensor_count - 1; i >= 0; i--) {
temp_sensor = devm_kzalloc(dev, sizeof(*temp_sensor), GFP_KERNEL);
if (!temp_sensor)
return -ENOMEM;
err = asus_wmi_sensor_info(i, temp_sensor);
if (err)
continue;
switch (temp_sensor->data_type) {
case TEMPERATURE_C:
case VOLTAGE:
case CURRENT:
case FAN_RPM:
case WATER_FLOW:
type = asus_data_types[temp_sensor->data_type];
idx = --nr_count[type];
*(sensor_data->wmi.info[type] + idx) = temp_sensor;
sensor_data->wmi.info_by_id[i] = temp_sensor;
break;
}
}
dev_dbg(dev, "board has %d sensors",
sensor_data->wmi.sensor_count);
hwdev = devm_hwmon_device_register_with_info(dev, "asus_wmi_sensors",
sensor_data, chip_info, NULL);
return PTR_ERR_OR_ZERO(hwdev);
}
static int asus_wmi_probe(struct wmi_device *wdev, const void *context)
{
struct asus_wmi_sensors *sensor_data;
struct device *dev = &wdev->dev;
u32 version = 0;
if (!dmi_check_system(asus_wmi_dmi_table))
return -ENODEV;
sensor_data = devm_kzalloc(dev, sizeof(*sensor_data), GFP_KERNEL);
if (!sensor_data)
return -ENOMEM;
if (asus_wmi_get_version(&version))
return -ENODEV;
if (asus_wmi_get_item_count(&sensor_data->wmi.sensor_count))
return -ENODEV;
if (sensor_data->wmi.sensor_count <= 0 || version < 2) {
dev_info(dev, "version: %u with %d sensors is unsupported\n",
version, sensor_data->wmi.sensor_count);
return -ENODEV;
}
mutex_init(&sensor_data->lock);
dev_set_drvdata(dev, sensor_data);
return asus_wmi_configure_sensor_setup(dev, sensor_data);
}
static const struct wmi_device_id asus_wmi_id_table[] = {
{ ASUSWMI_MONITORING_GUID, NULL },
{ }
};
static struct wmi_driver asus_sensors_wmi_driver = {
.driver = {
.name = "asus_wmi_sensors",
},
.id_table = asus_wmi_id_table,
.probe = asus_wmi_probe,
};
module_wmi_driver(asus_sensors_wmi_driver);
MODULE_AUTHOR("Ed Brindley <kernel@maidavale.org>");
MODULE_DESCRIPTION("Asus WMI Sensors Driver");
MODULE_LICENSE("GPL");