mirror of
https://github.com/torvalds/linux.git
synced 2024-11-24 05:02:12 +00:00
rcu: Add synchronous grace-period waiting for RCU-tasks
It turns out to be easier to add the synchronous grace-period waiting functions to RCU-tasks than to work around their absense in rcutorture, so this commit adds them. The key point is that the existence of call_rcu_tasks() means that rcutorture needs an rcu_barrier_tasks(). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit is contained in:
parent
bde6c3aa99
commit
53c6d4edf8
@ -216,6 +216,8 @@ void synchronize_sched(void);
|
||||
* memory ordering guarantees.
|
||||
*/
|
||||
void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
|
||||
void synchronize_rcu_tasks(void);
|
||||
void rcu_barrier_tasks(void);
|
||||
|
||||
#ifdef CONFIG_PREEMPT_RCU
|
||||
|
||||
|
@ -381,6 +381,61 @@ void call_rcu_tasks(struct rcu_head *rhp, void (*func)(struct rcu_head *rhp))
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(call_rcu_tasks);
|
||||
|
||||
/**
|
||||
* synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
|
||||
*
|
||||
* Control will return to the caller some time after a full rcu-tasks
|
||||
* grace period has elapsed, in other words after all currently
|
||||
* executing rcu-tasks read-side critical sections have elapsed. These
|
||||
* read-side critical sections are delimited by calls to schedule(),
|
||||
* cond_resched_rcu_qs(), idle execution, userspace execution, calls
|
||||
* to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
|
||||
*
|
||||
* This is a very specialized primitive, intended only for a few uses in
|
||||
* tracing and other situations requiring manipulation of function
|
||||
* preambles and profiling hooks. The synchronize_rcu_tasks() function
|
||||
* is not (yet) intended for heavy use from multiple CPUs.
|
||||
*
|
||||
* Note that this guarantee implies further memory-ordering guarantees.
|
||||
* On systems with more than one CPU, when synchronize_rcu_tasks() returns,
|
||||
* each CPU is guaranteed to have executed a full memory barrier since the
|
||||
* end of its last RCU-tasks read-side critical section whose beginning
|
||||
* preceded the call to synchronize_rcu_tasks(). In addition, each CPU
|
||||
* having an RCU-tasks read-side critical section that extends beyond
|
||||
* the return from synchronize_rcu_tasks() is guaranteed to have executed
|
||||
* a full memory barrier after the beginning of synchronize_rcu_tasks()
|
||||
* and before the beginning of that RCU-tasks read-side critical section.
|
||||
* Note that these guarantees include CPUs that are offline, idle, or
|
||||
* executing in user mode, as well as CPUs that are executing in the kernel.
|
||||
*
|
||||
* Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
|
||||
* to its caller on CPU B, then both CPU A and CPU B are guaranteed
|
||||
* to have executed a full memory barrier during the execution of
|
||||
* synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
|
||||
* (but again only if the system has more than one CPU).
|
||||
*/
|
||||
void synchronize_rcu_tasks(void)
|
||||
{
|
||||
/* Complain if the scheduler has not started. */
|
||||
rcu_lockdep_assert(!rcu_scheduler_active,
|
||||
"synchronize_rcu_tasks called too soon");
|
||||
|
||||
/* Wait for the grace period. */
|
||||
wait_rcu_gp(call_rcu_tasks);
|
||||
}
|
||||
|
||||
/**
|
||||
* rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
|
||||
*
|
||||
* Although the current implementation is guaranteed to wait, it is not
|
||||
* obligated to, for example, if there are no pending callbacks.
|
||||
*/
|
||||
void rcu_barrier_tasks(void)
|
||||
{
|
||||
/* There is only one callback queue, so this is easy. ;-) */
|
||||
synchronize_rcu_tasks();
|
||||
}
|
||||
|
||||
/* See if the current task has stopped holding out, remove from list if so. */
|
||||
static void check_holdout_task(struct task_struct *t)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user