HID: nintendo: add IMU support

This patch adds support for the controller's IMU. The accelerometer and
gyro data are both provided to userspace using a second input device.
The devices can be associated using their uniq value (set to the
controller's MAC address).

A large part of this patch's functionality was provided by Carl Mueller.

The IMU device is blacklisted from the joydev input handler.

Signed-off-by: Daniel J. Ogorchock <djogorchock@gmail.com>
Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
This commit is contained in:
Daniel J. Ogorchock 2021-09-11 13:36:36 -04:00 committed by Jiri Kosina
parent 83d640c4f8
commit 4ff5b10840
2 changed files with 501 additions and 12 deletions

View File

@ -2,7 +2,7 @@
/* /*
* HID driver for Nintendo Switch Joy-Cons and Pro Controllers * HID driver for Nintendo Switch Joy-Cons and Pro Controllers
* *
* Copyright (c) 2019 Daniel J. Ogorchock <djogorchock@gmail.com> * Copyright (c) 2019-2020 Daniel J. Ogorchock <djogorchock@gmail.com>
* *
* The following resources/projects were referenced for this driver: * The following resources/projects were referenced for this driver:
* https://github.com/dekuNukem/Nintendo_Switch_Reverse_Engineering * https://github.com/dekuNukem/Nintendo_Switch_Reverse_Engineering
@ -26,6 +26,7 @@
#include <asm/unaligned.h> #include <asm/unaligned.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/device.h> #include <linux/device.h>
#include <linux/kernel.h>
#include <linux/hid.h> #include <linux/hid.h>
#include <linux/input.h> #include <linux/input.h>
#include <linux/jiffies.h> #include <linux/jiffies.h>
@ -115,6 +116,15 @@ static const u16 JC_CAL_USR_RIGHT_DATA_ADDR = 0x801D;
static const u16 JC_CAL_FCT_DATA_LEFT_ADDR = 0x603d; static const u16 JC_CAL_FCT_DATA_LEFT_ADDR = 0x603d;
static const u16 JC_CAL_FCT_DATA_RIGHT_ADDR = 0x6046; static const u16 JC_CAL_FCT_DATA_RIGHT_ADDR = 0x6046;
/* SPI storage addresses of IMU factory calibration data */
static const u16 JC_IMU_CAL_FCT_DATA_ADDR = 0x6020;
static const u16 JC_IMU_CAL_FCT_DATA_END = 0x6037;
#define JC_IMU_CAL_DATA_SIZE \
(JC_IMU_CAL_FCT_DATA_END - JC_IMU_CAL_FCT_DATA_ADDR + 1)
/* SPI storage addresses of IMU user calibration data */
static const u16 JC_IMU_CAL_USR_MAGIC_ADDR = 0x8026;
static const u16 JC_IMU_CAL_USR_DATA_ADDR = 0x8028;
/* The raw analog joystick values will be mapped in terms of this magnitude */ /* The raw analog joystick values will be mapped in terms of this magnitude */
static const u16 JC_MAX_STICK_MAG = 32767; static const u16 JC_MAX_STICK_MAG = 32767;
static const u16 JC_STICK_FUZZ = 250; static const u16 JC_STICK_FUZZ = 250;
@ -125,6 +135,47 @@ static const u16 JC_MAX_DPAD_MAG = 1;
static const u16 JC_DPAD_FUZZ /*= 0*/; static const u16 JC_DPAD_FUZZ /*= 0*/;
static const u16 JC_DPAD_FLAT /*= 0*/; static const u16 JC_DPAD_FLAT /*= 0*/;
/* Under most circumstances IMU reports are pushed every 15ms; use as default */
static const u16 JC_IMU_DFLT_AVG_DELTA_MS = 15;
/* How many samples to sum before calculating average IMU report delta */
static const u16 JC_IMU_SAMPLES_PER_DELTA_AVG = 300;
/* Controls how many dropped IMU packets at once trigger a warning message */
static const u16 JC_IMU_DROPPED_PKT_WARNING = 3;
/*
* The controller's accelerometer has a sensor resolution of 16bits and is
* configured with a range of +-8000 milliGs. Therefore, the resolution can be
* calculated thus: (2^16-1)/(8000 * 2) = 4.096 digits per milliG
* Resolution per G (rather than per millliG): 4.096 * 1000 = 4096 digits per G
* Alternatively: 1/4096 = .0002441 Gs per digit
*/
static const s32 JC_IMU_MAX_ACCEL_MAG = 32767;
static const u16 JC_IMU_ACCEL_RES_PER_G = 4096;
static const u16 JC_IMU_ACCEL_FUZZ = 10;
static const u16 JC_IMU_ACCEL_FLAT /*= 0*/;
/*
* The controller's gyroscope has a sensor resolution of 16bits and is
* configured with a range of +-2000 degrees/second.
* Digits per dps: (2^16 -1)/(2000*2) = 16.38375
* dps per digit: 16.38375E-1 = .0610
*
* STMicro recommends in the datasheet to add 15% to the dps/digit. This allows
* the full sensitivity range to be saturated without clipping. This yields more
* accurate results, so it's the technique this driver uses.
* dps per digit (corrected): .0610 * 1.15 = .0702
* digits per dps (corrected): .0702E-1 = 14.247
*
* Now, 14.247 truncating to 14 loses a lot of precision, so we rescale the
* min/max range by 1000.
*/
static const s32 JC_IMU_PREC_RANGE_SCALE = 1000;
/* Note: change mag and res_per_dps if prec_range_scale is ever altered */
static const s32 JC_IMU_MAX_GYRO_MAG = 32767000; /* (2^16-1)*1000 */
static const u16 JC_IMU_GYRO_RES_PER_DPS = 14247; /* (14.247*1000) */
static const u16 JC_IMU_GYRO_FUZZ = 10;
static const u16 JC_IMU_GYRO_FLAT /*= 0*/;
/* frequency/amplitude tables for rumble */ /* frequency/amplitude tables for rumble */
struct joycon_rumble_freq_data { struct joycon_rumble_freq_data {
u16 high; u16 high;
@ -259,6 +310,11 @@ struct joycon_stick_cal {
s32 center; s32 center;
}; };
struct joycon_imu_cal {
s16 offset[3];
s16 scale[3];
};
/* /*
* All the controller's button values are stored in a u32. * All the controller's button values are stored in a u32.
* They can be accessed with bitwise ANDs. * They can be accessed with bitwise ANDs.
@ -306,6 +362,15 @@ struct joycon_subcmd_reply {
u8 data[]; /* will be at most 35 bytes */ u8 data[]; /* will be at most 35 bytes */
} __packed; } __packed;
struct joycon_imu_data {
s16 accel_x;
s16 accel_y;
s16 accel_z;
s16 gyro_x;
s16 gyro_y;
s16 gyro_z;
} __packed;
struct joycon_input_report { struct joycon_input_report {
u8 id; u8 id;
u8 timer; u8 timer;
@ -315,11 +380,11 @@ struct joycon_input_report {
u8 right_stick[3]; u8 right_stick[3];
u8 vibrator_report; u8 vibrator_report;
/* union {
* If support for firmware updates, gyroscope data, and/or NFC/IR struct joycon_subcmd_reply subcmd_reply;
* are added in the future, this can be swapped for a union. /* IMU input reports contain 3 samples */
*/ u8 imu_raw_bytes[sizeof(struct joycon_imu_data) * 3];
struct joycon_subcmd_reply reply; };
} __packed; } __packed;
#define JC_MAX_RESP_SIZE (sizeof(struct joycon_input_report) + 35) #define JC_MAX_RESP_SIZE (sizeof(struct joycon_input_report) + 35)
@ -367,6 +432,13 @@ struct joycon_ctlr {
struct joycon_stick_cal right_stick_cal_x; struct joycon_stick_cal right_stick_cal_x;
struct joycon_stick_cal right_stick_cal_y; struct joycon_stick_cal right_stick_cal_y;
struct joycon_imu_cal accel_cal;
struct joycon_imu_cal gyro_cal;
/* prevents needlessly recalculating these divisors every sample */
s32 imu_cal_accel_divisor[3];
s32 imu_cal_gyro_divisor[3];
/* power supply data */ /* power supply data */
struct power_supply *battery; struct power_supply *battery;
struct power_supply_desc battery_desc; struct power_supply_desc battery_desc;
@ -385,6 +457,16 @@ struct joycon_ctlr {
u16 rumble_lh_freq; u16 rumble_lh_freq;
u16 rumble_rl_freq; u16 rumble_rl_freq;
u16 rumble_rh_freq; u16 rumble_rh_freq;
/* imu */
struct input_dev *imu_input;
bool imu_first_packet_received; /* helps in initiating timestamp */
unsigned int imu_timestamp_us; /* timestamp we report to userspace */
unsigned int imu_last_pkt_ms; /* used to calc imu report delta */
/* the following are used to track the average imu report time delta */
unsigned int imu_delta_samples_count;
unsigned int imu_delta_samples_sum;
unsigned int imu_avg_delta_ms;
}; };
/* Helper macros for checking controller type */ /* Helper macros for checking controller type */
@ -569,7 +651,7 @@ static int joycon_request_spi_flash_read(struct joycon_ctlr *ctlr,
} else { } else {
report = (struct joycon_input_report *)ctlr->input_buf; report = (struct joycon_input_report *)ctlr->input_buf;
/* The read data starts at the 6th byte */ /* The read data starts at the 6th byte */
*reply = &report->reply.data[5]; *reply = &report->subcmd_reply.data[5];
} }
return ret; return ret;
} }
@ -729,6 +811,94 @@ static int joycon_request_calibration(struct joycon_ctlr *ctlr)
return 0; return 0;
} }
/*
* These divisors are calculated once rather than for each sample. They are only
* dependent on the IMU calibration values. They are used when processing the
* IMU input reports.
*/
static void joycon_calc_imu_cal_divisors(struct joycon_ctlr *ctlr)
{
int i;
for (i = 0; i < 3; i++) {
ctlr->imu_cal_accel_divisor[i] = ctlr->accel_cal.scale[i] -
ctlr->accel_cal.offset[i];
ctlr->imu_cal_gyro_divisor[i] = ctlr->gyro_cal.scale[i] -
ctlr->gyro_cal.offset[i];
}
}
static const s16 DFLT_ACCEL_OFFSET /*= 0*/;
static const s16 DFLT_ACCEL_SCALE = 16384;
static const s16 DFLT_GYRO_OFFSET /*= 0*/;
static const s16 DFLT_GYRO_SCALE = 13371;
static int joycon_request_imu_calibration(struct joycon_ctlr *ctlr)
{
u16 imu_cal_addr = JC_IMU_CAL_FCT_DATA_ADDR;
u8 *raw_cal;
int ret;
int i;
/* check if user calibration exists */
if (!joycon_check_for_cal_magic(ctlr, JC_IMU_CAL_USR_MAGIC_ADDR)) {
imu_cal_addr = JC_IMU_CAL_USR_DATA_ADDR;
hid_info(ctlr->hdev, "using user cal for IMU\n");
} else {
hid_info(ctlr->hdev, "using factory cal for IMU\n");
}
/* request IMU calibration data */
hid_dbg(ctlr->hdev, "requesting IMU cal data\n");
ret = joycon_request_spi_flash_read(ctlr, imu_cal_addr,
JC_IMU_CAL_DATA_SIZE, &raw_cal);
if (ret) {
hid_warn(ctlr->hdev,
"Failed to read IMU cal, using defaults; ret=%d\n",
ret);
for (i = 0; i < 3; i++) {
ctlr->accel_cal.offset[i] = DFLT_ACCEL_OFFSET;
ctlr->accel_cal.scale[i] = DFLT_ACCEL_SCALE;
ctlr->gyro_cal.offset[i] = DFLT_GYRO_OFFSET;
ctlr->gyro_cal.scale[i] = DFLT_GYRO_SCALE;
}
joycon_calc_imu_cal_divisors(ctlr);
return ret;
}
/* IMU calibration parsing */
for (i = 0; i < 3; i++) {
int j = i * 2;
ctlr->accel_cal.offset[i] = get_unaligned_le16(raw_cal + j);
ctlr->accel_cal.scale[i] = get_unaligned_le16(raw_cal + j + 6);
ctlr->gyro_cal.offset[i] = get_unaligned_le16(raw_cal + j + 12);
ctlr->gyro_cal.scale[i] = get_unaligned_le16(raw_cal + j + 18);
}
joycon_calc_imu_cal_divisors(ctlr);
hid_dbg(ctlr->hdev, "IMU calibration:\n"
"a_o[0]=%d a_o[1]=%d a_o[2]=%d\n"
"a_s[0]=%d a_s[1]=%d a_s[2]=%d\n"
"g_o[0]=%d g_o[1]=%d g_o[2]=%d\n"
"g_s[0]=%d g_s[1]=%d g_s[2]=%d\n",
ctlr->accel_cal.offset[0],
ctlr->accel_cal.offset[1],
ctlr->accel_cal.offset[2],
ctlr->accel_cal.scale[0],
ctlr->accel_cal.scale[1],
ctlr->accel_cal.scale[2],
ctlr->gyro_cal.offset[0],
ctlr->gyro_cal.offset[1],
ctlr->gyro_cal.offset[2],
ctlr->gyro_cal.scale[0],
ctlr->gyro_cal.scale[1],
ctlr->gyro_cal.scale[2]);
return 0;
}
static int joycon_set_report_mode(struct joycon_ctlr *ctlr) static int joycon_set_report_mode(struct joycon_ctlr *ctlr)
{ {
struct joycon_subcmd_request *req; struct joycon_subcmd_request *req;
@ -755,6 +925,19 @@ static int joycon_enable_rumble(struct joycon_ctlr *ctlr)
return joycon_send_subcmd(ctlr, req, 1, HZ/4); return joycon_send_subcmd(ctlr, req, 1, HZ/4);
} }
static int joycon_enable_imu(struct joycon_ctlr *ctlr)
{
struct joycon_subcmd_request *req;
u8 buffer[sizeof(*req) + 1] = { 0 };
req = (struct joycon_subcmd_request *)buffer;
req->subcmd_id = JC_SUBCMD_ENABLE_IMU;
req->data[0] = 0x01; /* note: 0x00 would disable */
hid_dbg(ctlr->hdev, "enabling IMU\n");
return joycon_send_subcmd(ctlr, req, 1, HZ);
}
static s32 joycon_map_stick_val(struct joycon_stick_cal *cal, s32 val) static s32 joycon_map_stick_val(struct joycon_stick_cal *cal, s32 val)
{ {
s32 center = cal->center; s32 center = cal->center;
@ -773,6 +956,224 @@ static s32 joycon_map_stick_val(struct joycon_stick_cal *cal, s32 val)
return new_val; return new_val;
} }
static void joycon_input_report_parse_imu_data(struct joycon_ctlr *ctlr,
struct joycon_input_report *rep,
struct joycon_imu_data *imu_data)
{
u8 *raw = rep->imu_raw_bytes;
int i;
for (i = 0; i < 3; i++) {
struct joycon_imu_data *data = &imu_data[i];
data->accel_x = get_unaligned_le16(raw + 0);
data->accel_y = get_unaligned_le16(raw + 2);
data->accel_z = get_unaligned_le16(raw + 4);
data->gyro_x = get_unaligned_le16(raw + 6);
data->gyro_y = get_unaligned_le16(raw + 8);
data->gyro_z = get_unaligned_le16(raw + 10);
/* point to next imu sample */
raw += sizeof(struct joycon_imu_data);
}
}
static void joycon_parse_imu_report(struct joycon_ctlr *ctlr,
struct joycon_input_report *rep)
{
struct joycon_imu_data imu_data[3] = {0}; /* 3 reports per packet */
struct input_dev *idev = ctlr->imu_input;
unsigned int msecs = jiffies_to_msecs(jiffies);
unsigned int last_msecs = ctlr->imu_last_pkt_ms;
int i;
int value[6];
joycon_input_report_parse_imu_data(ctlr, rep, imu_data);
/*
* There are complexities surrounding how we determine the timestamps we
* associate with the samples we pass to userspace. The IMU input
* reports do not provide us with a good timestamp. There's a quickly
* incrementing 8-bit counter per input report, but it is not very
* useful for this purpose (it is not entirely clear what rate it
* increments at or if it varies based on packet push rate - more on
* the push rate below...).
*
* The reverse engineering work done on the joy-cons and pro controllers
* by the community seems to indicate the following:
* - The controller samples the IMU every 1.35ms. It then does some of
* its own processing, probably averaging the samples out.
* - Each imu input report contains 3 IMU samples, (usually 5ms apart).
* - In the standard reporting mode (which this driver uses exclusively)
* input reports are pushed from the controller as follows:
* * joy-con (bluetooth): every 15 ms
* * joy-cons (in charging grip via USB): every 15 ms
* * pro controller (USB): every 15 ms
* * pro controller (bluetooth): every 8 ms (this is the wildcard)
*
* Further complicating matters is that some bluetooth stacks are known
* to alter the controller's packet rate by hardcoding the bluetooth
* SSR for the switch controllers (android's stack currently sets the
* SSR to 11ms for both the joy-cons and pro controllers).
*
* In my own testing, I've discovered that my pro controller either
* reports IMU sample batches every 11ms or every 15ms. This rate is
* stable after connecting. It isn't 100% clear what determines this
* rate. Importantly, even when sending every 11ms, none of the samples
* are duplicates. This seems to indicate that the time deltas between
* reported samples can vary based on the input report rate.
*
* The solution employed in this driver is to keep track of the average
* time delta between IMU input reports. In testing, this value has
* proven to be stable, staying at 15ms or 11ms, though other hardware
* configurations and bluetooth stacks could potentially see other rates
* (hopefully this will become more clear as more people use the
* driver).
*
* Keeping track of the average report delta allows us to submit our
* timestamps to userspace based on that. Each report contains 3
* samples, so the IMU sampling rate should be avg_time_delta/3. We can
* also use this average to detect events where we have dropped a
* packet. The userspace timestamp for the samples will be adjusted
* accordingly to prevent unwanted behvaior.
*/
if (!ctlr->imu_first_packet_received) {
ctlr->imu_timestamp_us = 0;
ctlr->imu_delta_samples_count = 0;
ctlr->imu_delta_samples_sum = 0;
ctlr->imu_avg_delta_ms = JC_IMU_DFLT_AVG_DELTA_MS;
ctlr->imu_first_packet_received = true;
} else {
unsigned int delta = msecs - last_msecs;
unsigned int dropped_pkts;
unsigned int dropped_threshold;
/* avg imu report delta housekeeping */
ctlr->imu_delta_samples_sum += delta;
ctlr->imu_delta_samples_count++;
if (ctlr->imu_delta_samples_count >=
JC_IMU_SAMPLES_PER_DELTA_AVG) {
ctlr->imu_avg_delta_ms = ctlr->imu_delta_samples_sum /
ctlr->imu_delta_samples_count;
/* don't ever want divide by zero shenanigans */
if (ctlr->imu_avg_delta_ms == 0) {
ctlr->imu_avg_delta_ms = 1;
hid_warn(ctlr->hdev,
"calculated avg imu delta of 0\n");
}
ctlr->imu_delta_samples_count = 0;
ctlr->imu_delta_samples_sum = 0;
}
/* useful for debugging IMU sample rate */
hid_dbg(ctlr->hdev,
"imu_report: ms=%u last_ms=%u delta=%u avg_delta=%u\n",
msecs, last_msecs, delta, ctlr->imu_avg_delta_ms);
/* check if any packets have been dropped */
dropped_threshold = ctlr->imu_avg_delta_ms * 3 / 2;
dropped_pkts = (delta - min(delta, dropped_threshold)) /
ctlr->imu_avg_delta_ms;
ctlr->imu_timestamp_us += 1000 * ctlr->imu_avg_delta_ms;
if (dropped_pkts > JC_IMU_DROPPED_PKT_WARNING) {
hid_warn(ctlr->hdev,
"compensating for %u dropped IMU reports\n",
dropped_pkts);
hid_warn(ctlr->hdev,
"delta=%u avg_delta=%u\n",
delta, ctlr->imu_avg_delta_ms);
}
}
ctlr->imu_last_pkt_ms = msecs;
/* Each IMU input report contains three samples */
for (i = 0; i < 3; i++) {
input_event(idev, EV_MSC, MSC_TIMESTAMP,
ctlr->imu_timestamp_us);
/*
* These calculations (which use the controller's calibration
* settings to improve the final values) are based on those
* found in the community's reverse-engineering repo (linked at
* top of driver). For hid-nintendo, we make sure that the final
* value given to userspace is always in terms of the axis
* resolution we provided.
*
* Currently only the gyro calculations subtract the calibration
* offsets from the raw value itself. In testing, doing the same
* for the accelerometer raw values decreased accuracy.
*
* Note that the gyro values are multiplied by the
* precision-saving scaling factor to prevent large inaccuracies
* due to truncation of the resolution value which would
* otherwise occur. To prevent overflow (without resorting to 64
* bit integer math), the mult_frac macro is used.
*/
value[0] = mult_frac((JC_IMU_PREC_RANGE_SCALE *
(imu_data[i].gyro_x -
ctlr->gyro_cal.offset[0])),
ctlr->gyro_cal.scale[0],
ctlr->imu_cal_gyro_divisor[0]);
value[1] = mult_frac((JC_IMU_PREC_RANGE_SCALE *
(imu_data[i].gyro_y -
ctlr->gyro_cal.offset[1])),
ctlr->gyro_cal.scale[1],
ctlr->imu_cal_gyro_divisor[1]);
value[2] = mult_frac((JC_IMU_PREC_RANGE_SCALE *
(imu_data[i].gyro_z -
ctlr->gyro_cal.offset[2])),
ctlr->gyro_cal.scale[2],
ctlr->imu_cal_gyro_divisor[2]);
value[3] = ((s32)imu_data[i].accel_x *
ctlr->accel_cal.scale[0]) /
ctlr->imu_cal_accel_divisor[0];
value[4] = ((s32)imu_data[i].accel_y *
ctlr->accel_cal.scale[1]) /
ctlr->imu_cal_accel_divisor[1];
value[5] = ((s32)imu_data[i].accel_z *
ctlr->accel_cal.scale[2]) /
ctlr->imu_cal_accel_divisor[2];
hid_dbg(ctlr->hdev, "raw_gyro: g_x=%d g_y=%d g_z=%d\n",
imu_data[i].gyro_x, imu_data[i].gyro_y,
imu_data[i].gyro_z);
hid_dbg(ctlr->hdev, "raw_accel: a_x=%d a_y=%d a_z=%d\n",
imu_data[i].accel_x, imu_data[i].accel_y,
imu_data[i].accel_z);
/*
* The right joy-con has 2 axes negated, Y and Z. This is due to
* the orientation of the IMU in the controller. We negate those
* axes' values in order to be consistent with the left joy-con
* and the pro controller:
* X: positive is pointing toward the triggers
* Y: positive is pointing to the left
* Z: positive is pointing up (out of the buttons/sticks)
* The axes follow the right-hand rule.
*/
if (jc_type_is_joycon(ctlr) && jc_type_has_right(ctlr)) {
int j;
/* negate all but x axis */
for (j = 1; j < 6; ++j) {
if (j == 3)
continue;
value[j] *= -1;
}
}
input_report_abs(idev, ABS_RX, value[0]);
input_report_abs(idev, ABS_RY, value[1]);
input_report_abs(idev, ABS_RZ, value[2]);
input_report_abs(idev, ABS_X, value[3]);
input_report_abs(idev, ABS_Y, value[4]);
input_report_abs(idev, ABS_Z, value[5]);
input_sync(idev);
/* convert to micros and divide by 3 (3 samples per report). */
ctlr->imu_timestamp_us += ctlr->imu_avg_delta_ms * 1000 / 3;
}
}
static void joycon_parse_report(struct joycon_ctlr *ctlr, static void joycon_parse_report(struct joycon_ctlr *ctlr,
struct joycon_input_report *rep) struct joycon_input_report *rep)
{ {
@ -921,6 +1322,10 @@ static void joycon_parse_report(struct joycon_ctlr *ctlr,
spin_unlock_irqrestore(&ctlr->lock, flags); spin_unlock_irqrestore(&ctlr->lock, flags);
wake_up(&ctlr->wait); wake_up(&ctlr->wait);
} }
/* parse IMU data if present */
if (rep->id == JC_INPUT_IMU_DATA)
joycon_parse_imu_report(ctlr, rep);
} }
static void joycon_rumble_worker(struct work_struct *work) static void joycon_rumble_worker(struct work_struct *work)
@ -1104,6 +1509,7 @@ static int joycon_input_create(struct joycon_ctlr *ctlr)
{ {
struct hid_device *hdev; struct hid_device *hdev;
const char *name; const char *name;
const char *imu_name;
int ret; int ret;
int i; int i;
@ -1112,18 +1518,24 @@ static int joycon_input_create(struct joycon_ctlr *ctlr)
switch (hdev->product) { switch (hdev->product) {
case USB_DEVICE_ID_NINTENDO_PROCON: case USB_DEVICE_ID_NINTENDO_PROCON:
name = "Nintendo Switch Pro Controller"; name = "Nintendo Switch Pro Controller";
imu_name = "Nintendo Switch Pro Controller IMU";
break; break;
case USB_DEVICE_ID_NINTENDO_CHRGGRIP: case USB_DEVICE_ID_NINTENDO_CHRGGRIP:
if (jc_type_has_left(ctlr)) if (jc_type_has_left(ctlr)) {
name = "Nintendo Switch Left Joy-Con (Grip)"; name = "Nintendo Switch Left Joy-Con (Grip)";
else imu_name = "Nintendo Switch Left Joy-Con IMU (Grip)";
} else {
name = "Nintendo Switch Right Joy-Con (Grip)"; name = "Nintendo Switch Right Joy-Con (Grip)";
imu_name = "Nintendo Switch Right Joy-Con IMU (Grip)";
}
break; break;
case USB_DEVICE_ID_NINTENDO_JOYCONL: case USB_DEVICE_ID_NINTENDO_JOYCONL:
name = "Nintendo Switch Left Joy-Con"; name = "Nintendo Switch Left Joy-Con";
imu_name = "Nintendo Switch Left Joy-Con IMU";
break; break;
case USB_DEVICE_ID_NINTENDO_JOYCONR: case USB_DEVICE_ID_NINTENDO_JOYCONR:
name = "Nintendo Switch Right Joy-Con"; name = "Nintendo Switch Right Joy-Con";
imu_name = "Nintendo Switch Right Joy-Con IMU";
break; break;
default: /* Should be impossible */ default: /* Should be impossible */
hid_err(hdev, "Invalid hid product\n"); hid_err(hdev, "Invalid hid product\n");
@ -1207,6 +1619,55 @@ static int joycon_input_create(struct joycon_ctlr *ctlr)
if (ret) if (ret)
return ret; return ret;
/* configure the imu input device */
ctlr->imu_input = devm_input_allocate_device(&hdev->dev);
if (!ctlr->imu_input)
return -ENOMEM;
ctlr->imu_input->id.bustype = hdev->bus;
ctlr->imu_input->id.vendor = hdev->vendor;
ctlr->imu_input->id.product = hdev->product;
ctlr->imu_input->id.version = hdev->version;
ctlr->imu_input->uniq = ctlr->mac_addr_str;
ctlr->imu_input->name = imu_name;
input_set_drvdata(ctlr->imu_input, ctlr);
/* configure imu axes */
input_set_abs_params(ctlr->imu_input, ABS_X,
-JC_IMU_MAX_ACCEL_MAG, JC_IMU_MAX_ACCEL_MAG,
JC_IMU_ACCEL_FUZZ, JC_IMU_ACCEL_FLAT);
input_set_abs_params(ctlr->imu_input, ABS_Y,
-JC_IMU_MAX_ACCEL_MAG, JC_IMU_MAX_ACCEL_MAG,
JC_IMU_ACCEL_FUZZ, JC_IMU_ACCEL_FLAT);
input_set_abs_params(ctlr->imu_input, ABS_Z,
-JC_IMU_MAX_ACCEL_MAG, JC_IMU_MAX_ACCEL_MAG,
JC_IMU_ACCEL_FUZZ, JC_IMU_ACCEL_FLAT);
input_abs_set_res(ctlr->imu_input, ABS_X, JC_IMU_ACCEL_RES_PER_G);
input_abs_set_res(ctlr->imu_input, ABS_Y, JC_IMU_ACCEL_RES_PER_G);
input_abs_set_res(ctlr->imu_input, ABS_Z, JC_IMU_ACCEL_RES_PER_G);
input_set_abs_params(ctlr->imu_input, ABS_RX,
-JC_IMU_MAX_GYRO_MAG, JC_IMU_MAX_GYRO_MAG,
JC_IMU_GYRO_FUZZ, JC_IMU_GYRO_FLAT);
input_set_abs_params(ctlr->imu_input, ABS_RY,
-JC_IMU_MAX_GYRO_MAG, JC_IMU_MAX_GYRO_MAG,
JC_IMU_GYRO_FUZZ, JC_IMU_GYRO_FLAT);
input_set_abs_params(ctlr->imu_input, ABS_RZ,
-JC_IMU_MAX_GYRO_MAG, JC_IMU_MAX_GYRO_MAG,
JC_IMU_GYRO_FUZZ, JC_IMU_GYRO_FLAT);
input_abs_set_res(ctlr->imu_input, ABS_RX, JC_IMU_GYRO_RES_PER_DPS);
input_abs_set_res(ctlr->imu_input, ABS_RY, JC_IMU_GYRO_RES_PER_DPS);
input_abs_set_res(ctlr->imu_input, ABS_RZ, JC_IMU_GYRO_RES_PER_DPS);
__set_bit(EV_MSC, ctlr->imu_input->evbit);
__set_bit(MSC_TIMESTAMP, ctlr->imu_input->mscbit);
__set_bit(INPUT_PROP_ACCELEROMETER, ctlr->imu_input->propbit);
ret = input_register_device(ctlr->imu_input);
if (ret)
return ret;
return 0; return 0;
} }
@ -1465,7 +1926,7 @@ static int joycon_read_info(struct joycon_ctlr *ctlr)
report = (struct joycon_input_report *)ctlr->input_buf; report = (struct joycon_input_report *)ctlr->input_buf;
for (i = 4, j = 0; j < 6; i++, j++) for (i = 4, j = 0; j < 6; i++, j++)
ctlr->mac_addr[j] = report->reply.data[i]; ctlr->mac_addr[j] = report->subcmd_reply.data[i];
ctlr->mac_addr_str = devm_kasprintf(&ctlr->hdev->dev, GFP_KERNEL, ctlr->mac_addr_str = devm_kasprintf(&ctlr->hdev->dev, GFP_KERNEL,
"%02X:%02X:%02X:%02X:%02X:%02X", "%02X:%02X:%02X:%02X:%02X:%02X",
@ -1480,7 +1941,7 @@ static int joycon_read_info(struct joycon_ctlr *ctlr)
hid_info(ctlr->hdev, "controller MAC = %s\n", ctlr->mac_addr_str); hid_info(ctlr->hdev, "controller MAC = %s\n", ctlr->mac_addr_str);
/* Retrieve the type so we can distinguish for charging grip */ /* Retrieve the type so we can distinguish for charging grip */
ctlr->ctlr_type = report->reply.data[2]; ctlr->ctlr_type = report->subcmd_reply.data[2];
return 0; return 0;
} }
@ -1521,7 +1982,7 @@ static int joycon_ctlr_handle_event(struct joycon_ctlr *ctlr, u8 *data,
data[0] != JC_INPUT_SUBCMD_REPLY) data[0] != JC_INPUT_SUBCMD_REPLY)
break; break;
report = (struct joycon_input_report *)data; report = (struct joycon_input_report *)data;
if (report->reply.id == ctlr->subcmd_ack_match) if (report->subcmd_reply.id == ctlr->subcmd_ack_match)
match = true; match = true;
break; break;
default: default:
@ -1651,6 +2112,16 @@ static int nintendo_hid_probe(struct hid_device *hdev,
hid_warn(hdev, "Analog stick positions may be inaccurate\n"); hid_warn(hdev, "Analog stick positions may be inaccurate\n");
} }
/* get IMU calibration data, and parse it */
ret = joycon_request_imu_calibration(ctlr);
if (ret) {
/*
* We can function with default calibration, but it may be
* inaccurate. Provide a warning, and continue on.
*/
hid_warn(hdev, "Unable to read IMU calibration data\n");
}
/* Set the reporting mode to 0x30, which is the full report mode */ /* Set the reporting mode to 0x30, which is the full report mode */
ret = joycon_set_report_mode(ctlr); ret = joycon_set_report_mode(ctlr);
if (ret) { if (ret) {
@ -1665,6 +2136,13 @@ static int nintendo_hid_probe(struct hid_device *hdev,
goto err_mutex; goto err_mutex;
} }
/* Enable the IMU */
ret = joycon_enable_imu(ctlr);
if (ret) {
hid_err(hdev, "Failed to enable the IMU; ret=%d\n", ret);
goto err_mutex;
}
ret = joycon_read_info(ctlr); ret = joycon_read_info(ctlr);
if (ret) { if (ret) {
hid_err(hdev, "Failed to retrieve controller info; ret=%d\n", hid_err(hdev, "Failed to retrieve controller info; ret=%d\n",
@ -1757,3 +2235,4 @@ module_hid_driver(nintendo_hid_driver);
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
MODULE_AUTHOR("Daniel J. Ogorchock <djogorchock@gmail.com>"); MODULE_AUTHOR("Daniel J. Ogorchock <djogorchock@gmail.com>");
MODULE_DESCRIPTION("Driver for Nintendo Switch Controllers"); MODULE_DESCRIPTION("Driver for Nintendo Switch Controllers");

View File

@ -758,6 +758,12 @@ static void joydev_cleanup(struct joydev *joydev)
#define USB_VENDOR_ID_THQ 0x20d6 #define USB_VENDOR_ID_THQ 0x20d6
#define USB_DEVICE_ID_THQ_PS3_UDRAW 0xcb17 #define USB_DEVICE_ID_THQ_PS3_UDRAW 0xcb17
#define USB_VENDOR_ID_NINTENDO 0x057e
#define USB_DEVICE_ID_NINTENDO_JOYCONL 0x2006
#define USB_DEVICE_ID_NINTENDO_JOYCONR 0x2007
#define USB_DEVICE_ID_NINTENDO_PROCON 0x2009
#define USB_DEVICE_ID_NINTENDO_CHRGGRIP 0x200E
#define ACCEL_DEV(vnd, prd) \ #define ACCEL_DEV(vnd, prd) \
{ \ { \
.flags = INPUT_DEVICE_ID_MATCH_VENDOR | \ .flags = INPUT_DEVICE_ID_MATCH_VENDOR | \
@ -789,6 +795,10 @@ static const struct input_device_id joydev_blacklist[] = {
ACCEL_DEV(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2), ACCEL_DEV(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2),
ACCEL_DEV(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE), ACCEL_DEV(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE),
ACCEL_DEV(USB_VENDOR_ID_THQ, USB_DEVICE_ID_THQ_PS3_UDRAW), ACCEL_DEV(USB_VENDOR_ID_THQ, USB_DEVICE_ID_THQ_PS3_UDRAW),
ACCEL_DEV(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_PROCON),
ACCEL_DEV(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_CHRGGRIP),
ACCEL_DEV(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_JOYCONL),
ACCEL_DEV(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_JOYCONR),
{ /* sentinel */ } { /* sentinel */ }
}; };