V4L/DVB (4451): MT2060: IF1 Offset from EEPROM, several updates

- AGC gain set to 3
- The tuning sequence has been changed to match the DibCom driver ( from I2C
  spy captures )
- For LITE-ON adapters : The IF1 frequency is now tuned according to the
  calibration values stored in EEPROM.

Signed-off-by: Patrick Boettcher <pb@linuxtv.org>
Signed-off-by: Olivier DANET <odanet@caramail.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
This commit is contained in:
Patrick Boettcher 2006-04-17 13:22:15 -03:00 committed by Mauro Carvalho Chehab
parent d7357a53ef
commit 4de2730a1d
4 changed files with 472 additions and 2 deletions

View File

@ -234,12 +234,31 @@ EXPORT_SYMBOL(dibusb_dib3000mc_frontend_attach);
int dibusb_dib3000mc_tuner_attach (struct dvb_usb_device *d)
{
int ret;
u8 a,b;
u16 if1=1220;
if (d->tuner_pass_ctrl) {
struct dibusb_state *st = d->priv;
d->tuner_pass_ctrl(d->fe, 1, stk3000p_mt2060_config.i2c_address);
/* check for mt2060 */
if ((ret = mt2060_attach(&st->mt2060,&stk3000p_mt2060_config, &d->i2c_adap)) != 0) {
// First IF calibration for Liteon Sticks
if (d->udev->descriptor.idVendor == USB_VID_LITEON &&
d->udev->descriptor.idProduct == USB_PID_LITEON_DVB_T_WARM) {
dibusb_read_eeprom_byte(d,0x7E,&a);
dibusb_read_eeprom_byte(d,0x7F,&b);
if (a == 0xFF && b == 0xFF) {
if1 = 1220;
} else
if (a == 0x00) {
if1 = 1220+b;
} else
if (a == 0x80) {
if1 = 1220-b;
} else {
warn("LITE-ON DVB-T Tuner : Strange IF1 calibration :%2X %2X\n",(int)a,(int)b);
if1 = 1220;
}
}
if ((ret = mt2060_attach(&st->mt2060,&stk3000p_mt2060_config, &d->i2c_adap,if1)) != 0) {
/* not found - use panasonic pll parameters */
d->pll_addr = 0x60;
d->pll_desc = &dvb_pll_env57h1xd5;

View File

@ -0,0 +1,312 @@
/*
* Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
*
* Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
*/
/* See mt2060_priv.h for details */
/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include "mt2060.h"
#include "mt2060_priv.h"
static int debug=0;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
#define dprintk(args...) do { if (debug) printk(KERN_DEBUG "MT2060: " args); printk("\n"); } while (0)
// Reads a single register
static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val)
{
struct i2c_msg msg[2] = {
{ .addr = state->config->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
{ .addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
};
if (i2c_transfer(state->i2c, msg, 2) != 2) {
printk(KERN_WARNING "mt2060 I2C read failed\n");
return -EREMOTEIO;
}
return 0;
}
// Writes a single register
static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val)
{
u8 buf[2];
struct i2c_msg msg = {
.addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 2
};
buf[0]=reg;
buf[1]=val;
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "mt2060 I2C write failed\n");
return -EREMOTEIO;
}
return 0;
}
// Writes a set of consecutive registers
static int mt2060_writeregs(struct mt2060_state *state,u8 *buf, u8 len)
{
struct i2c_msg msg = {
.addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = len
};
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
return -EREMOTEIO;
}
return 0;
}
// Initialisation sequences
// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
static u8 mt2060_config1[] = {
REG_LO1C1,
0x3F, 0x74, 0x00, 0x08, 0x93
};
// FMCG=2, GP2=0, GP1=0
static u8 mt2060_config2[] = {
REG_MISC_CTRL,
0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
};
// VGAG=3, V1CSE=1
static u8 mt2060_config3[] = {
REG_VGAG,
0x33
};
int mt2060_init(struct mt2060_state *state)
{
if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
return -EREMOTEIO;
if (mt2060_writeregs(state,mt2060_config3,sizeof(mt2060_config3)))
return -EREMOTEIO;
return 0;
}
EXPORT_SYMBOL(mt2060_init);
#ifdef MT2060_SPURCHECK
/* The function below calculates the frequency offset between the output frequency if2
and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
{
int I,J;
int dia,diamin,diff;
diamin=1000000;
for (I = 1; I < 10; I++) {
J = ((2*I*lo1)/lo2+1)/2;
diff = I*(int)lo1-J*(int)lo2;
if (diff < 0) diff=-diff;
dia = (diff-(int)if2);
if (dia < 0) dia=-dia;
if (diamin > dia) diamin=dia;
}
return diamin;
}
#define BANDWIDTH 4000 // kHz
/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
{
u32 Spur,Sp1,Sp2;
int I,J;
I=0;
J=1000;
Spur=mt2060_spurcalc(lo1,lo2,if2);
if (Spur < BANDWIDTH) {
/* Potential spurs detected */
dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
(int)lo1,(int)lo2);
I=1000;
Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
if (Sp1 < Sp2) {
J=-J; I=-I; Spur=Sp2;
} else
Spur=Sp1;
while (Spur < BANDWIDTH) {
I += J;
Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
}
dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
(int)(lo1+I),(int)(lo2+I));
}
return I;
}
#endif
#define IF2 36150 // IF2 frequency = 36.150 MHz
#define FREF 16000 // Quartz oscillator 16 MHz
int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
{
int ret=0;
int i=0;
u32 freq;
u8 lnaband;
u32 f_lo1,f_lo2;
u32 div1,num1,div2,num2;
u8 b[8];
u32 if1;
if1 = state->if1_freq;
b[0] = REG_LO1B1;
b[1] = 0xFF;
mt2060_writeregs(state,b,2);
freq = fep->frequency / 1000; // Hz -> kHz
f_lo1 = freq + if1 * 1000;
f_lo1 = (f_lo1/250)*250;
f_lo2 = f_lo1 - freq - IF2;
f_lo2 = (f_lo2/50)*50;
#ifdef MT2060_SPURCHECK
// LO-related spurs detection and correction
num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
f_lo1 += num1;
f_lo2 += num1;
#endif
//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
div1 = f_lo1 / FREF;
num1 = (64 * (f_lo1 % FREF) )/FREF;
// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
div2 = f_lo2 / FREF;
num2 = (16384 * (f_lo2 % FREF) /FREF +1)/2;
if (freq <= 95000) lnaband = 0xB0; else
if (freq <= 180000) lnaband = 0xA0; else
if (freq <= 260000) lnaband = 0x90; else
if (freq <= 335000) lnaband = 0x80; else
if (freq <= 425000) lnaband = 0x70; else
if (freq <= 480000) lnaband = 0x60; else
if (freq <= 570000) lnaband = 0x50; else
if (freq <= 645000) lnaband = 0x40; else
if (freq <= 730000) lnaband = 0x30; else
if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
b[0] = REG_LO1C1;
b[1] = lnaband | ((num1 >>2) & 0x0F);
b[2] = div1;
b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
b[4] = num2 >> 4;
b[5] = ((num2 >>12) & 1) | (div2 << 1);
dprintk("IF1: %dMHz",(int)if1);
dprintk("PLL freq: %d f_lo1: %d f_lo2: %d (kHz)",(int)freq,(int)f_lo1,(int)f_lo2);
dprintk("PLL div1: %d num1: %d div2: %d num2: %d",(int)div1,(int)num1,(int)div2,(int)num2);
dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
mt2060_writeregs(state,b,6);
//Waits for pll lock or timeout
i=0;
do {
mt2060_readreg(state,REG_LO_STATUS,b);
if ((b[0] & 0x88)==0x88) break;
msleep(4);
i++;
} while (i<10);
return ret;
}
EXPORT_SYMBOL(mt2060_set);
/* from usbsnoop.log */
static void mt2060_calibrate(struct mt2060_state *state)
{
u8 b = 0;
int i = 0;
if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
return;
if (mt2060_writeregs(state,mt2060_config2,sizeof(mt2060_config2)))
return;
do {
b |= (1 << 6); // FM1SS;
mt2060_writereg(state, REG_LO2C1,b);
msleep(20);
if (i == 0) {
b |= (1 << 7); // FM1CA;
mt2060_writereg(state, REG_LO2C1,b);
b &= ~(1 << 7); // FM1CA;
msleep(20);
}
b &= ~(1 << 6); // FM1SS
mt2060_writereg(state, REG_LO2C1,b);
msleep(20);
i++;
} while (i < 9);
i = 0;
while (i++ < 10 && mt2060_readreg(state, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
msleep(20);
if (i < 10) {
mt2060_readreg(state, REG_FM_FREQ, &state->fmfreq); // now find out, what is fmreq used for :)
dprintk("calibration was successful: %d",state->fmfreq);
} else
dprintk("FMCAL timed out");
}
/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1)
{
u8 id = 0;
memset(state,0,sizeof(struct mt2060_state));
state->config = config;
state->i2c = i2c;
state->if1_freq = if1;
if (mt2060_readreg(state,REG_PART_REV,&id) != 0)
return -ENODEV;
if (id != PART_REV)
return -ENODEV;
printk(KERN_INFO "MT2060: successfully identified\n");
mt2060_calibrate(state);
return 0;
}
EXPORT_SYMBOL(mt2060_attach);
MODULE_AUTHOR("Olivier DANET");
MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
MODULE_LICENSE("GPL");

View File

@ -0,0 +1,44 @@
/*
* Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
*
* Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
*/
#ifndef MT2060_H
#define MT2060_H
#include <linux/i2c.h>
#include <linux/dvb/frontend.h>
struct mt2060_config {
u8 i2c_address;
/* Shall we add settings for the discrete outputs ? */
};
struct mt2060_state {
struct mt2060_config *config;
struct i2c_adapter *i2c;
u16 if1_freq;
u8 fmfreq;
};
extern int mt2060_init(struct mt2060_state *state);
extern int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep);
extern int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1);
#endif

View File

@ -0,0 +1,95 @@
/*
* Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
*
* Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
*/
#ifndef MT2060_PRIV_H
#define MT2060_PRIV_H
// Uncomment the #define below to enable spurs checking. The results where quite unconvincing.
// #define MT2060_SPURCHECK
/* This driver is based on the information available in the datasheet of the
"Comtech SDVBT-3K6M" tuner ( K1000737843.pdf ) which features the MT2060 register map :
I2C Address : 0x60
Reg.No | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 | ( defaults )
--------------------------------------------------------------------------------
00 | [ PART ] | [ REV ] | R = 0x63
01 | [ LNABAND ] | [ NUM1(5:2) ] | RW = 0x3F
02 | [ DIV1 ] | RW = 0x74
03 | FM1CA | FM1SS | [ NUM1(1:0) ] | [ NUM2(3:0) ] | RW = 0x00
04 | NUM2(11:4) ] | RW = 0x08
05 | [ DIV2 ] |NUM2(12)| RW = 0x93
06 | L1LK | [ TAD1 ] | L2LK | [ TAD2 ] | R
07 | [ FMF ] | R
08 | ? | FMCAL | ? | ? | ? | ? | ? | TEMP | R
09 | 0 | 0 | [ FMGC ] | 0 | GP02 | GP01 | 0 | RW = 0x20
0A | ??
0B | 0 | 0 | 1 | 1 | 0 | 0 | [ VGAG ] | RW = 0x30
0C | V1CSE | 1 | 1 | 1 | 1 | 1 | 1 | 1 | RW = 0xFF
0D | 1 | 0 | [ V1CS ] | RW = 0xB0
0E | ??
0F | ??
10 | ??
11 | [ LOTO ] | 0 | 0 | 1 | 0 | RW = 0x42
PART : Part code : 6 for MT2060
REV : Revision code : 3 for current revision
LNABAND : Input frequency range : ( See code for details )
NUM1 / DIV1 / NUM2 / DIV2 : Frequencies programming ( See code for details )
FM1CA : Calibration Start Bit
FM1SS : Calibration Single Step bit
L1LK : LO1 Lock Detect
TAD1 : Tune Line ADC ( ? )
L2LK : LO2 Lock Detect
TAD2 : Tune Line ADC ( ? )
FMF : Estimated first IF Center frequency Offset ( ? )
FM1CAL : Calibration done bit
TEMP : On chip temperature sensor
FMCG : Mixer 1 Cap Gain ( ? )
GP01 / GP02 : Programmable digital outputs. Unconnected pins ?
V1CSE : LO1 VCO Automatic Capacitor Select Enable ( ? )
V1CS : LO1 Capacitor Selection Value ( ? )
LOTO : LO Timeout ( ? )
VGAG : Tuner Output gain
*/
#define I2C_ADDRESS 0x60
#define REG_PART_REV 0
#define REG_LO1C1 1
#define REG_LO1C2 2
#define REG_LO2C1 3
#define REG_LO2C2 4
#define REG_LO2C3 5
#define REG_LO_STATUS 6
#define REG_FM_FREQ 7
#define REG_MISC_STAT 8
#define REG_MISC_CTRL 9
#define REG_RESERVED_A 0x0A
#define REG_VGAG 0x0B
#define REG_LO1B1 0x0C
#define REG_LO1B2 0x0D
#define REG_LOTO 0x11
#define PART_REV 0x63 // The current driver works only with PART=6 and REV=3 chips
#endif