hwmon: lochnagar: Add Lochnagar 2 hardware monitoring driver

Lochnagar is an evaluation and development board for Cirrus
Logic Smart CODEC and Amp devices. It allows the connection of
most Cirrus Logic devices on mini-cards, as well as allowing
connection of various application processor systems to provide a
full evaluation platform.

This driver adds support for the hardware monitoring features of
the Lochnagar 2 to the hwmon API. Monitoring is provided for
the board voltages, currents and temperature supported by the
board controller chip.

Signed-off-by: Lucas Tanure <tanureal@opensource.cirrus.com>
Signed-off-by: Charles Keepax <ckeepax@opensource.cirrus.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
This commit is contained in:
Lucas Tanure 2019-03-28 13:09:37 +00:00 committed by Guenter Roeck
parent 5ad4d7ca21
commit 4cdb562147
5 changed files with 506 additions and 0 deletions

View File

@ -0,0 +1,80 @@
Kernel Driver Lochnagar
========================
Supported systems:
* Cirrus Logic : Lochnagar 2
Author: Lucas A. Tanure Alves
Description
-----------
Lochnagar 2 features built-in Current Monitor circuitry that allows for the
measurement of both voltage and current on up to eight of the supply voltage
rails provided to the minicards. The Current Monitor does not require any
hardware modifications or external circuitry to operate.
The current and voltage measurements are obtained through the standard register
map interface to the Lochnagar board controller, and can therefore be monitored
by software.
Sysfs attributes
----------------
temp1_input The Lochnagar board temperature (milliCelsius)
in0_input Measured voltage for DBVDD1 (milliVolts)
in0_label "DBVDD1"
curr1_input Measured current for DBVDD1 (milliAmps)
curr1_label "DBVDD1"
power1_average Measured average power for DBVDD1 (microWatts)
power1_average_interval Power averaging time input valid from 1 to 1708mS
power1_label "DBVDD1"
in1_input Measured voltage for 1V8 DSP (milliVolts)
in1_label "1V8 DSP"
curr2_input Measured current for 1V8 DSP (milliAmps)
curr2_label "1V8 DSP"
power2_average Measured average power for 1V8 DSP (microWatts)
power2_average_interval Power averaging time input valid from 1 to 1708mS
power2_label "1V8 DSP"
in2_input Measured voltage for 1V8 CDC (milliVolts)
in2_label "1V8 CDC"
curr3_input Measured current for 1V8 CDC (milliAmps)
curr3_label "1V8 CDC"
power3_average Measured average power for 1V8 CDC (microWatts)
power3_average_interval Power averaging time input valid from 1 to 1708mS
power3_label "1V8 CDC"
in3_input Measured voltage for VDDCORE DSP (milliVolts)
in3_label "VDDCORE DSP"
curr4_input Measured current for VDDCORE DSP (milliAmps)
curr4_label "VDDCORE DSP"
power4_average Measured average power for VDDCORE DSP (microWatts)
power4_average_interval Power averaging time input valid from 1 to 1708mS
power4_label "VDDCORE DSP"
in4_input Measured voltage for AVDD 1V8 (milliVolts)
in4_label "AVDD 1V8"
curr5_input Measured current for AVDD 1V8 (milliAmps)
curr5_label "AVDD 1V8"
power5_average Measured average power for AVDD 1V8 (microWatts)
power5_average_interval Power averaging time input valid from 1 to 1708mS
power5_label "AVDD 1V8"
curr6_input Measured current for SYSVDD (milliAmps)
curr6_label "SYSVDD"
power6_average Measured average power for SYSVDD (microWatts)
power6_average_interval Power averaging time input valid from 1 to 1708mS
power6_label "SYSVDD"
in6_input Measured voltage for VDDCORE CDC (milliVolts)
in6_label "VDDCORE CDC"
curr7_input Measured current for VDDCORE CDC (milliAmps)
curr7_label "VDDCORE CDC"
power7_average Measured average power for VDDCORE CDC (microWatts)
power7_average_interval Power averaging time input valid from 1 to 1708mS
power7_label "VDDCORE CDC"
in7_input Measured voltage for MICVDD (milliVolts)
in7_label "MICVDD"
curr8_input Measured current for MICVDD (milliAmps)
curr8_label "MICVDD"
power8_average Measured average power for MICVDD (microWatts)
power8_average_interval Power averaging time input valid from 1 to 1708mS
power8_label "MICVDD"
Note: It is not possible to measure voltage on the SYSVDD rail.

View File

@ -3797,6 +3797,7 @@ M: Richard Fitzgerald <rf@opensource.cirrus.com>
L: patches@opensource.cirrus.com
S: Supported
F: drivers/clk/clk-lochnagar.c
F: drivers/hwmon/lochnagar-hwmon.c
F: drivers/mfd/lochnagar-i2c.c
F: drivers/pinctrl/cirrus/pinctrl-lochnagar.c
F: drivers/regulator/lochnagar-regulator.c
@ -3805,8 +3806,10 @@ F: include/dt-bindings/pinctrl/lochnagar.h
F: include/linux/mfd/lochnagar*
F: Documentation/devicetree/bindings/mfd/cirrus,lochnagar.txt
F: Documentation/devicetree/bindings/clock/cirrus,lochnagar.txt
F: Documentation/devicetree/bindings/hwmon/cirrus,lochnagar.txt
F: Documentation/devicetree/bindings/pinctrl/cirrus,lochnagar.txt
F: Documentation/devicetree/bindings/regulator/cirrus,lochnagar.txt
F: Documentation/hwmon/lochnagar
CISCO FCOE HBA DRIVER
M: Satish Kharat <satishkh@cisco.com>

View File

@ -705,6 +705,16 @@ config SENSORS_LINEAGE
This driver can also be built as a module. If so, the module
will be called lineage-pem.
config SENSORS_LOCHNAGAR
tristate "Lochnagar Hardware Monitor"
depends on MFD_LOCHNAGAR
help
If you say yes here you get support for Lochnagar 2 temperature,
voltage and current sensors abilities.
This driver can also be built as a module. If so, the module
will be called lochnagar-hwmon.
config SENSORS_LTC2945
tristate "Linear Technology LTC2945"
depends on I2C

View File

@ -89,6 +89,7 @@ obj-$(CONFIG_SENSORS_JZ4740) += jz4740-hwmon.o
obj-$(CONFIG_SENSORS_K8TEMP) += k8temp.o
obj-$(CONFIG_SENSORS_K10TEMP) += k10temp.o
obj-$(CONFIG_SENSORS_LINEAGE) += lineage-pem.o
obj-$(CONFIG_SENSORS_LOCHNAGAR) += lochnagar-hwmon.o
obj-$(CONFIG_SENSORS_LM63) += lm63.o
obj-$(CONFIG_SENSORS_LM70) += lm70.o
obj-$(CONFIG_SENSORS_LM73) += lm73.o

View File

@ -0,0 +1,412 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Lochnagar hardware monitoring features
*
* Copyright (c) 2016-2019 Cirrus Logic, Inc. and
* Cirrus Logic International Semiconductor Ltd.
*
* Author: Lucas Tanure <tanureal@opensource.cirrus.com>
*/
#include <linux/delay.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/i2c.h>
#include <linux/math64.h>
#include <linux/mfd/lochnagar.h>
#include <linux/mfd/lochnagar2_regs.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#define LN2_MAX_NSAMPLE 1023
#define LN2_SAMPLE_US 1670
#define LN2_CURR_UNITS 1000
#define LN2_VOLT_UNITS 1000
#define LN2_TEMP_UNITS 1000
#define LN2_PWR_UNITS 1000000
static const char * const lochnagar_chan_names[] = {
"DBVDD1",
"1V8 DSP",
"1V8 CDC",
"VDDCORE DSP",
"AVDD 1V8",
"SYSVDD",
"VDDCORE CDC",
"MICVDD",
};
struct lochnagar_hwmon {
struct regmap *regmap;
long power_nsamples[ARRAY_SIZE(lochnagar_chan_names)];
/* Lock to ensure only a single sensor is read at a time */
struct mutex sensor_lock;
};
enum lochnagar_measure_mode {
LN2_CURR = 0,
LN2_VOLT,
LN2_TEMP,
};
/**
* float_to_long - Convert ieee754 reading from hardware to an integer
*
* @data: Value read from the hardware
* @precision: Units to multiply up to eg. 1000 = milli, 1000000 = micro
*
* Return: Converted integer reading
*
* Depending on the measurement type the hardware returns an ieee754
* floating point value in either volts, amps or celsius. This function
* will convert that into an integer in a smaller unit such as micro-amps
* or milli-celsius. The hardware does not return NaN, so consideration of
* that is not required.
*/
static long float_to_long(u32 data, u32 precision)
{
u64 man = data & 0x007FFFFF;
int exp = ((data & 0x7F800000) >> 23) - 127 - 23;
bool negative = data & 0x80000000;
long result;
man = (man + (1 << 23)) * precision;
if (fls64(man) + exp > (int)sizeof(long) * 8 - 1)
result = LONG_MAX;
else if (exp < 0)
result = (man + (1ull << (-exp - 1))) >> -exp;
else
result = man << exp;
return negative ? -result : result;
}
static int do_measurement(struct regmap *regmap, int chan,
enum lochnagar_measure_mode mode, int nsamples)
{
unsigned int val;
int ret;
chan = 1 << (chan + LOCHNAGAR2_IMON_MEASURED_CHANNELS_SHIFT);
ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL1,
LOCHNAGAR2_IMON_ENA_MASK | chan | mode);
if (ret < 0)
return ret;
ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL2, nsamples);
if (ret < 0)
return ret;
ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL3,
LOCHNAGAR2_IMON_CONFIGURE_MASK);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(regmap, LOCHNAGAR2_IMON_CTRL3, val,
val & LOCHNAGAR2_IMON_DONE_MASK,
1000, 10000);
if (ret < 0)
return ret;
ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL3,
LOCHNAGAR2_IMON_MEASURE_MASK);
if (ret < 0)
return ret;
/*
* Actual measurement time is ~1.67mS per sample, approximate this
* with a 1.5mS per sample msleep and then poll for success up to
* ~0.17mS * 1023 (LN2_MAX_NSAMPLES). Normally for smaller values
* of nsamples the poll will complete on the first loop due to
* other latency in the system.
*/
msleep((nsamples * 3) / 2);
ret = regmap_read_poll_timeout(regmap, LOCHNAGAR2_IMON_CTRL3, val,
val & LOCHNAGAR2_IMON_DONE_MASK,
5000, 200000);
if (ret < 0)
return ret;
return regmap_write(regmap, LOCHNAGAR2_IMON_CTRL3, 0);
}
static int request_data(struct regmap *regmap, int chan, u32 *data)
{
unsigned int val;
int ret;
ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL4,
LOCHNAGAR2_IMON_DATA_REQ_MASK |
chan << LOCHNAGAR2_IMON_CH_SEL_SHIFT);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(regmap, LOCHNAGAR2_IMON_CTRL4, val,
val & LOCHNAGAR2_IMON_DATA_RDY_MASK,
1000, 10000);
if (ret < 0)
return ret;
ret = regmap_read(regmap, LOCHNAGAR2_IMON_DATA1, &val);
if (ret < 0)
return ret;
*data = val << 16;
ret = regmap_read(regmap, LOCHNAGAR2_IMON_DATA2, &val);
if (ret < 0)
return ret;
*data |= val;
return regmap_write(regmap, LOCHNAGAR2_IMON_CTRL4, 0);
}
static int read_sensor(struct device *dev, int chan,
enum lochnagar_measure_mode mode, int nsamples,
unsigned int precision, long *val)
{
struct lochnagar_hwmon *priv = dev_get_drvdata(dev);
struct regmap *regmap = priv->regmap;
u32 data;
int ret;
mutex_lock(&priv->sensor_lock);
ret = do_measurement(regmap, chan, mode, nsamples);
if (ret < 0) {
dev_err(dev, "Failed to perform measurement: %d\n", ret);
goto error;
}
ret = request_data(regmap, chan, &data);
if (ret < 0) {
dev_err(dev, "Failed to read measurement: %d\n", ret);
goto error;
}
*val = float_to_long(data, precision);
error:
mutex_unlock(&priv->sensor_lock);
return ret;
}
static int read_power(struct device *dev, int chan, long *val)
{
struct lochnagar_hwmon *priv = dev_get_drvdata(dev);
int nsamples = priv->power_nsamples[chan];
u64 power;
int ret;
if (!strcmp("SYSVDD", lochnagar_chan_names[chan])) {
power = 5 * LN2_PWR_UNITS;
} else {
ret = read_sensor(dev, chan, LN2_VOLT, 1, LN2_PWR_UNITS, val);
if (ret < 0)
return ret;
power = abs(*val);
}
ret = read_sensor(dev, chan, LN2_CURR, nsamples, LN2_PWR_UNITS, val);
if (ret < 0)
return ret;
power *= abs(*val);
power = DIV_ROUND_CLOSEST_ULL(power, LN2_PWR_UNITS);
if (power > LONG_MAX)
*val = LONG_MAX;
else
*val = power;
return 0;
}
static umode_t lochnagar_is_visible(const void *drvdata,
enum hwmon_sensor_types type,
u32 attr, int chan)
{
switch (type) {
case hwmon_in:
if (!strcmp("SYSVDD", lochnagar_chan_names[chan]))
return 0;
break;
case hwmon_power:
if (attr == hwmon_power_average_interval)
return 0644;
break;
default:
break;
}
return 0444;
}
static int lochnagar_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int chan, long *val)
{
struct lochnagar_hwmon *priv = dev_get_drvdata(dev);
int interval;
switch (type) {
case hwmon_in:
return read_sensor(dev, chan, LN2_VOLT, 1, LN2_VOLT_UNITS, val);
case hwmon_curr:
return read_sensor(dev, chan, LN2_CURR, 1, LN2_CURR_UNITS, val);
case hwmon_temp:
return read_sensor(dev, chan, LN2_TEMP, 1, LN2_TEMP_UNITS, val);
case hwmon_power:
switch (attr) {
case hwmon_power_average:
return read_power(dev, chan, val);
case hwmon_power_average_interval:
interval = priv->power_nsamples[chan] * LN2_SAMPLE_US;
*val = DIV_ROUND_CLOSEST(interval, 1000);
return 0;
default:
return -EOPNOTSUPP;
}
default:
return -EOPNOTSUPP;
}
}
static int lochnagar_read_string(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int chan, const char **str)
{
switch (type) {
case hwmon_in:
case hwmon_curr:
case hwmon_power:
*str = lochnagar_chan_names[chan];
return 0;
default:
return -EOPNOTSUPP;
}
}
static int lochnagar_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int chan, long val)
{
struct lochnagar_hwmon *priv = dev_get_drvdata(dev);
if (type != hwmon_power || attr != hwmon_power_average_interval)
return -EOPNOTSUPP;
val = clamp_t(long, val, 1, (LN2_MAX_NSAMPLE * LN2_SAMPLE_US) / 1000);
val = DIV_ROUND_CLOSEST(val * 1000, LN2_SAMPLE_US);
priv->power_nsamples[chan] = val;
return 0;
}
static const struct hwmon_ops lochnagar_ops = {
.is_visible = lochnagar_is_visible,
.read = lochnagar_read,
.read_string = lochnagar_read_string,
.write = lochnagar_write,
};
static const struct hwmon_channel_info *lochnagar_info[] = {
HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL),
HWMON_CHANNEL_INFO(curr, HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL),
HWMON_CHANNEL_INFO(power, HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
HWMON_P_LABEL,
HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
HWMON_P_LABEL,
HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
HWMON_P_LABEL,
HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
HWMON_P_LABEL,
HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
HWMON_P_LABEL,
HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
HWMON_P_LABEL,
HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
HWMON_P_LABEL,
HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
HWMON_P_LABEL),
NULL
};
static const struct hwmon_chip_info lochnagar_chip_info = {
.ops = &lochnagar_ops,
.info = lochnagar_info,
};
static const struct of_device_id lochnagar_of_match[] = {
{ .compatible = "cirrus,lochnagar2-hwmon" },
{}
};
MODULE_DEVICE_TABLE(of, lochnagar_of_match);
static int lochnagar_hwmon_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device *hwmon_dev;
struct lochnagar_hwmon *priv;
int i;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
mutex_init(&priv->sensor_lock);
priv->regmap = dev_get_regmap(dev->parent, NULL);
if (!priv->regmap) {
dev_err(dev, "No register map found\n");
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(priv->power_nsamples); i++)
priv->power_nsamples[i] = 96;
hwmon_dev = devm_hwmon_device_register_with_info(dev, "Lochnagar", priv,
&lochnagar_chip_info,
NULL);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static struct platform_driver lochnagar_hwmon_driver = {
.driver = {
.name = "lochnagar-hwmon",
.of_match_table = lochnagar_of_match,
},
.probe = lochnagar_hwmon_probe,
};
module_platform_driver(lochnagar_hwmon_driver);
MODULE_AUTHOR("Lucas Tanure <tanureal@opensource.cirrus.com>");
MODULE_DESCRIPTION("Lochnagar hardware monitoring features");
MODULE_LICENSE("GPL");