mirror of
https://github.com/torvalds/linux.git
synced 2024-11-21 19:41:42 +00:00
xfs: repair free space btrees
Rebuild the free space btrees from the gaps in the rmap btree. Refer to the case study in Documentation/filesystems/xfs-online-fsck-design.rst for more details. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
This commit is contained in:
parent
8bd0bf570b
commit
4bdfd7d157
@ -182,6 +182,7 @@ xfs-$(CONFIG_XFS_QUOTA) += scrub/quota.o
|
||||
ifeq ($(CONFIG_XFS_ONLINE_REPAIR),y)
|
||||
xfs-y += $(addprefix scrub/, \
|
||||
agheader_repair.o \
|
||||
alloc_repair.o \
|
||||
newbt.o \
|
||||
reap.o \
|
||||
repair.o \
|
||||
|
@ -80,6 +80,15 @@ struct xfs_perag {
|
||||
*/
|
||||
uint16_t pag_checked;
|
||||
uint16_t pag_sick;
|
||||
|
||||
#ifdef CONFIG_XFS_ONLINE_REPAIR
|
||||
/*
|
||||
* Alternate btree heights so that online repair won't trip the write
|
||||
* verifiers while rebuilding the AG btrees.
|
||||
*/
|
||||
uint8_t pagf_repair_levels[XFS_BTNUM_AGF];
|
||||
#endif
|
||||
|
||||
spinlock_t pag_state_lock;
|
||||
|
||||
spinlock_t pagb_lock; /* lock for pagb_tree */
|
||||
|
@ -411,6 +411,8 @@ xfs_ag_resv_free_extent(
|
||||
fallthrough;
|
||||
case XFS_AG_RESV_NONE:
|
||||
xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, (int64_t)len);
|
||||
fallthrough;
|
||||
case XFS_AG_RESV_IGNORE:
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -246,11 +246,9 @@ xfs_alloc_btrec_to_irec(
|
||||
/* Simple checks for free space records. */
|
||||
xfs_failaddr_t
|
||||
xfs_alloc_check_irec(
|
||||
struct xfs_btree_cur *cur,
|
||||
const struct xfs_alloc_rec_incore *irec)
|
||||
struct xfs_perag *pag,
|
||||
const struct xfs_alloc_rec_incore *irec)
|
||||
{
|
||||
struct xfs_perag *pag = cur->bc_ag.pag;
|
||||
|
||||
if (irec->ar_blockcount == 0)
|
||||
return __this_address;
|
||||
|
||||
@ -299,7 +297,7 @@ xfs_alloc_get_rec(
|
||||
return error;
|
||||
|
||||
xfs_alloc_btrec_to_irec(rec, &irec);
|
||||
fa = xfs_alloc_check_irec(cur, &irec);
|
||||
fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
|
||||
if (fa)
|
||||
return xfs_alloc_complain_bad_rec(cur, fa, &irec);
|
||||
|
||||
@ -3944,7 +3942,7 @@ xfs_alloc_query_range_helper(
|
||||
xfs_failaddr_t fa;
|
||||
|
||||
xfs_alloc_btrec_to_irec(rec, &irec);
|
||||
fa = xfs_alloc_check_irec(cur, &irec);
|
||||
fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
|
||||
if (fa)
|
||||
return xfs_alloc_complain_bad_rec(cur, fa, &irec);
|
||||
|
||||
|
@ -185,7 +185,7 @@ xfs_alloc_get_rec(
|
||||
union xfs_btree_rec;
|
||||
void xfs_alloc_btrec_to_irec(const union xfs_btree_rec *rec,
|
||||
struct xfs_alloc_rec_incore *irec);
|
||||
xfs_failaddr_t xfs_alloc_check_irec(struct xfs_btree_cur *cur,
|
||||
xfs_failaddr_t xfs_alloc_check_irec(struct xfs_perag *pag,
|
||||
const struct xfs_alloc_rec_incore *irec);
|
||||
|
||||
int xfs_read_agf(struct xfs_perag *pag, struct xfs_trans *tp, int flags,
|
||||
|
@ -323,7 +323,18 @@ xfs_allocbt_verify(
|
||||
if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
|
||||
btnum = XFS_BTNUM_CNTi;
|
||||
if (pag && xfs_perag_initialised_agf(pag)) {
|
||||
if (level >= pag->pagf_levels[btnum])
|
||||
unsigned int maxlevel = pag->pagf_levels[btnum];
|
||||
|
||||
#ifdef CONFIG_XFS_ONLINE_REPAIR
|
||||
/*
|
||||
* Online repair could be rewriting the free space btrees, so
|
||||
* we'll validate against the larger of either tree while this
|
||||
* is going on.
|
||||
*/
|
||||
maxlevel = max_t(unsigned int, maxlevel,
|
||||
pag->pagf_repair_levels[btnum]);
|
||||
#endif
|
||||
if (level >= maxlevel)
|
||||
return __this_address;
|
||||
} else if (level >= mp->m_alloc_maxlevels)
|
||||
return __this_address;
|
||||
|
@ -208,6 +208,13 @@ enum xfs_ag_resv_type {
|
||||
XFS_AG_RESV_AGFL,
|
||||
XFS_AG_RESV_METADATA,
|
||||
XFS_AG_RESV_RMAPBT,
|
||||
|
||||
/*
|
||||
* Don't increase fdblocks when freeing extent. This is a pony for
|
||||
* the bnobt repair functions to re-free the free space without
|
||||
* altering fdblocks. If you think you need this you're wrong.
|
||||
*/
|
||||
XFS_AG_RESV_IGNORE,
|
||||
};
|
||||
|
||||
/* Results of scanning a btree keyspace to check occupancy. */
|
||||
|
@ -9,13 +9,16 @@
|
||||
#include "xfs_format.h"
|
||||
#include "xfs_trans_resv.h"
|
||||
#include "xfs_mount.h"
|
||||
#include "xfs_log_format.h"
|
||||
#include "xfs_trans.h"
|
||||
#include "xfs_btree.h"
|
||||
#include "xfs_alloc.h"
|
||||
#include "xfs_rmap.h"
|
||||
#include "xfs_ag.h"
|
||||
#include "scrub/scrub.h"
|
||||
#include "scrub/common.h"
|
||||
#include "scrub/btree.h"
|
||||
#include "xfs_ag.h"
|
||||
#include "scrub/repair.h"
|
||||
|
||||
/*
|
||||
* Set us up to scrub free space btrees.
|
||||
@ -24,10 +27,19 @@ int
|
||||
xchk_setup_ag_allocbt(
|
||||
struct xfs_scrub *sc)
|
||||
{
|
||||
int error;
|
||||
|
||||
if (xchk_need_intent_drain(sc))
|
||||
xchk_fsgates_enable(sc, XCHK_FSGATES_DRAIN);
|
||||
|
||||
return xchk_setup_ag_btree(sc, false);
|
||||
error = xchk_setup_ag_btree(sc, false);
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
if (xchk_could_repair(sc))
|
||||
return xrep_setup_ag_allocbt(sc);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Free space btree scrubber. */
|
||||
@ -127,7 +139,7 @@ xchk_allocbt_rec(
|
||||
struct xchk_alloc *ca = bs->private;
|
||||
|
||||
xfs_alloc_btrec_to_irec(rec, &irec);
|
||||
if (xfs_alloc_check_irec(bs->cur, &irec) != NULL) {
|
||||
if (xfs_alloc_check_irec(bs->cur->bc_ag.pag, &irec) != NULL) {
|
||||
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
||||
return 0;
|
||||
}
|
||||
|
934
fs/xfs/scrub/alloc_repair.c
Normal file
934
fs/xfs/scrub/alloc_repair.c
Normal file
@ -0,0 +1,934 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
* Copyright (C) 2018-2023 Oracle. All Rights Reserved.
|
||||
* Author: Darrick J. Wong <djwong@kernel.org>
|
||||
*/
|
||||
#include "xfs.h"
|
||||
#include "xfs_fs.h"
|
||||
#include "xfs_shared.h"
|
||||
#include "xfs_format.h"
|
||||
#include "xfs_trans_resv.h"
|
||||
#include "xfs_mount.h"
|
||||
#include "xfs_defer.h"
|
||||
#include "xfs_btree.h"
|
||||
#include "xfs_btree_staging.h"
|
||||
#include "xfs_bit.h"
|
||||
#include "xfs_log_format.h"
|
||||
#include "xfs_trans.h"
|
||||
#include "xfs_sb.h"
|
||||
#include "xfs_alloc.h"
|
||||
#include "xfs_alloc_btree.h"
|
||||
#include "xfs_rmap.h"
|
||||
#include "xfs_rmap_btree.h"
|
||||
#include "xfs_inode.h"
|
||||
#include "xfs_refcount.h"
|
||||
#include "xfs_extent_busy.h"
|
||||
#include "xfs_health.h"
|
||||
#include "xfs_bmap.h"
|
||||
#include "xfs_ialloc.h"
|
||||
#include "xfs_ag.h"
|
||||
#include "scrub/xfs_scrub.h"
|
||||
#include "scrub/scrub.h"
|
||||
#include "scrub/common.h"
|
||||
#include "scrub/btree.h"
|
||||
#include "scrub/trace.h"
|
||||
#include "scrub/repair.h"
|
||||
#include "scrub/bitmap.h"
|
||||
#include "scrub/agb_bitmap.h"
|
||||
#include "scrub/xfile.h"
|
||||
#include "scrub/xfarray.h"
|
||||
#include "scrub/newbt.h"
|
||||
#include "scrub/reap.h"
|
||||
|
||||
/*
|
||||
* Free Space Btree Repair
|
||||
* =======================
|
||||
*
|
||||
* The reverse mappings are supposed to record all space usage for the entire
|
||||
* AG. Therefore, we can recreate the free extent records in an AG by looking
|
||||
* for gaps in the physical extents recorded in the rmapbt. These records are
|
||||
* staged in @free_records. Identifying the gaps is more difficult on a
|
||||
* reflink filesystem because rmap records are allowed to overlap.
|
||||
*
|
||||
* Because the final step of building a new index is to free the space used by
|
||||
* the old index, repair needs to find that space. Unfortunately, all
|
||||
* structures that live in the free space (bnobt, cntbt, rmapbt, agfl) share
|
||||
* the same rmapbt owner code (OWN_AG), so this is not straightforward.
|
||||
*
|
||||
* The scan of the reverse mapping information records the space used by OWN_AG
|
||||
* in @old_allocbt_blocks, which (at this stage) is somewhat misnamed. While
|
||||
* walking the rmapbt records, we create a second bitmap @not_allocbt_blocks to
|
||||
* record all visited rmap btree blocks and all blocks owned by the AGFL.
|
||||
*
|
||||
* After that is where the definitions of old_allocbt_blocks shifts. This
|
||||
* expression identifies possible former bnobt/cntbt blocks:
|
||||
*
|
||||
* (OWN_AG blocks) & ~(rmapbt blocks | agfl blocks);
|
||||
*
|
||||
* Substituting from above definitions, that becomes:
|
||||
*
|
||||
* old_allocbt_blocks & ~not_allocbt_blocks
|
||||
*
|
||||
* The OWN_AG bitmap itself isn't needed after this point, so what we really do
|
||||
* instead is:
|
||||
*
|
||||
* old_allocbt_blocks &= ~not_allocbt_blocks;
|
||||
*
|
||||
* After this point, @old_allocbt_blocks is a bitmap of alleged former
|
||||
* bnobt/cntbt blocks. The xagb_bitmap_disunion operation modifies its first
|
||||
* parameter in place to avoid copying records around.
|
||||
*
|
||||
* Next, some of the space described by @free_records are diverted to the newbt
|
||||
* reservation and used to format new btree blocks. The remaining records are
|
||||
* written to the new btree indices. We reconstruct both bnobt and cntbt at
|
||||
* the same time since we've already done all the work.
|
||||
*
|
||||
* We use the prefix 'xrep_abt' here because we regenerate both free space
|
||||
* allocation btrees at the same time.
|
||||
*/
|
||||
|
||||
struct xrep_abt {
|
||||
/* Blocks owned by the rmapbt or the agfl. */
|
||||
struct xagb_bitmap not_allocbt_blocks;
|
||||
|
||||
/* All OWN_AG blocks. */
|
||||
struct xagb_bitmap old_allocbt_blocks;
|
||||
|
||||
/*
|
||||
* New bnobt information. All btree block reservations are added to
|
||||
* the reservation list in new_bnobt.
|
||||
*/
|
||||
struct xrep_newbt new_bnobt;
|
||||
|
||||
/* new cntbt information */
|
||||
struct xrep_newbt new_cntbt;
|
||||
|
||||
/* Free space extents. */
|
||||
struct xfarray *free_records;
|
||||
|
||||
struct xfs_scrub *sc;
|
||||
|
||||
/* Number of non-null records in @free_records. */
|
||||
uint64_t nr_real_records;
|
||||
|
||||
/* get_records()'s position in the free space record array. */
|
||||
xfarray_idx_t array_cur;
|
||||
|
||||
/*
|
||||
* Next block we anticipate seeing in the rmap records. If the next
|
||||
* rmap record is greater than next_agbno, we have found unused space.
|
||||
*/
|
||||
xfs_agblock_t next_agbno;
|
||||
|
||||
/* Number of free blocks in this AG. */
|
||||
xfs_agblock_t nr_blocks;
|
||||
|
||||
/* Longest free extent we found in the AG. */
|
||||
xfs_agblock_t longest;
|
||||
};
|
||||
|
||||
/* Set up to repair AG free space btrees. */
|
||||
int
|
||||
xrep_setup_ag_allocbt(
|
||||
struct xfs_scrub *sc)
|
||||
{
|
||||
unsigned int busy_gen;
|
||||
|
||||
/*
|
||||
* Make sure the busy extent list is clear because we can't put extents
|
||||
* on there twice.
|
||||
*/
|
||||
busy_gen = READ_ONCE(sc->sa.pag->pagb_gen);
|
||||
if (xfs_extent_busy_list_empty(sc->sa.pag))
|
||||
return 0;
|
||||
|
||||
return xfs_extent_busy_flush(sc->tp, sc->sa.pag, busy_gen, 0);
|
||||
}
|
||||
|
||||
/* Check for any obvious conflicts in the free extent. */
|
||||
STATIC int
|
||||
xrep_abt_check_free_ext(
|
||||
struct xfs_scrub *sc,
|
||||
const struct xfs_alloc_rec_incore *rec)
|
||||
{
|
||||
enum xbtree_recpacking outcome;
|
||||
int error;
|
||||
|
||||
if (xfs_alloc_check_irec(sc->sa.pag, rec) != NULL)
|
||||
return -EFSCORRUPTED;
|
||||
|
||||
/* Must not be an inode chunk. */
|
||||
error = xfs_ialloc_has_inodes_at_extent(sc->sa.ino_cur,
|
||||
rec->ar_startblock, rec->ar_blockcount, &outcome);
|
||||
if (error)
|
||||
return error;
|
||||
if (outcome != XBTREE_RECPACKING_EMPTY)
|
||||
return -EFSCORRUPTED;
|
||||
|
||||
/* Must not be shared or CoW staging. */
|
||||
if (sc->sa.refc_cur) {
|
||||
error = xfs_refcount_has_records(sc->sa.refc_cur,
|
||||
XFS_REFC_DOMAIN_SHARED, rec->ar_startblock,
|
||||
rec->ar_blockcount, &outcome);
|
||||
if (error)
|
||||
return error;
|
||||
if (outcome != XBTREE_RECPACKING_EMPTY)
|
||||
return -EFSCORRUPTED;
|
||||
|
||||
error = xfs_refcount_has_records(sc->sa.refc_cur,
|
||||
XFS_REFC_DOMAIN_COW, rec->ar_startblock,
|
||||
rec->ar_blockcount, &outcome);
|
||||
if (error)
|
||||
return error;
|
||||
if (outcome != XBTREE_RECPACKING_EMPTY)
|
||||
return -EFSCORRUPTED;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Stash a free space record for all the space since the last bno we found
|
||||
* all the way up to @end.
|
||||
*/
|
||||
static int
|
||||
xrep_abt_stash(
|
||||
struct xrep_abt *ra,
|
||||
xfs_agblock_t end)
|
||||
{
|
||||
struct xfs_alloc_rec_incore arec = {
|
||||
.ar_startblock = ra->next_agbno,
|
||||
.ar_blockcount = end - ra->next_agbno,
|
||||
};
|
||||
struct xfs_scrub *sc = ra->sc;
|
||||
int error = 0;
|
||||
|
||||
if (xchk_should_terminate(sc, &error))
|
||||
return error;
|
||||
|
||||
error = xrep_abt_check_free_ext(ra->sc, &arec);
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
trace_xrep_abt_found(sc->mp, sc->sa.pag->pag_agno, &arec);
|
||||
|
||||
error = xfarray_append(ra->free_records, &arec);
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
ra->nr_blocks += arec.ar_blockcount;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Record extents that aren't in use from gaps in the rmap records. */
|
||||
STATIC int
|
||||
xrep_abt_walk_rmap(
|
||||
struct xfs_btree_cur *cur,
|
||||
const struct xfs_rmap_irec *rec,
|
||||
void *priv)
|
||||
{
|
||||
struct xrep_abt *ra = priv;
|
||||
int error;
|
||||
|
||||
/* Record all the OWN_AG blocks... */
|
||||
if (rec->rm_owner == XFS_RMAP_OWN_AG) {
|
||||
error = xagb_bitmap_set(&ra->old_allocbt_blocks,
|
||||
rec->rm_startblock, rec->rm_blockcount);
|
||||
if (error)
|
||||
return error;
|
||||
}
|
||||
|
||||
/* ...and all the rmapbt blocks... */
|
||||
error = xagb_bitmap_set_btcur_path(&ra->not_allocbt_blocks, cur);
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
/* ...and all the free space. */
|
||||
if (rec->rm_startblock > ra->next_agbno) {
|
||||
error = xrep_abt_stash(ra, rec->rm_startblock);
|
||||
if (error)
|
||||
return error;
|
||||
}
|
||||
|
||||
/*
|
||||
* rmap records can overlap on reflink filesystems, so project
|
||||
* next_agbno as far out into the AG space as we currently know about.
|
||||
*/
|
||||
ra->next_agbno = max_t(xfs_agblock_t, ra->next_agbno,
|
||||
rec->rm_startblock + rec->rm_blockcount);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Collect an AGFL block for the not-to-release list. */
|
||||
static int
|
||||
xrep_abt_walk_agfl(
|
||||
struct xfs_mount *mp,
|
||||
xfs_agblock_t agbno,
|
||||
void *priv)
|
||||
{
|
||||
struct xrep_abt *ra = priv;
|
||||
|
||||
return xagb_bitmap_set(&ra->not_allocbt_blocks, agbno, 1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Compare two free space extents by block number. We want to sort in order of
|
||||
* increasing block number.
|
||||
*/
|
||||
static int
|
||||
xrep_bnobt_extent_cmp(
|
||||
const void *a,
|
||||
const void *b)
|
||||
{
|
||||
const struct xfs_alloc_rec_incore *ap = a;
|
||||
const struct xfs_alloc_rec_incore *bp = b;
|
||||
|
||||
if (ap->ar_startblock > bp->ar_startblock)
|
||||
return 1;
|
||||
else if (ap->ar_startblock < bp->ar_startblock)
|
||||
return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Re-sort the free extents by block number so that we can put the records into
|
||||
* the bnobt in the correct order. Make sure the records do not overlap in
|
||||
* physical space.
|
||||
*/
|
||||
STATIC int
|
||||
xrep_bnobt_sort_records(
|
||||
struct xrep_abt *ra)
|
||||
{
|
||||
struct xfs_alloc_rec_incore arec;
|
||||
xfarray_idx_t cur = XFARRAY_CURSOR_INIT;
|
||||
xfs_agblock_t next_agbno = 0;
|
||||
int error;
|
||||
|
||||
error = xfarray_sort(ra->free_records, xrep_bnobt_extent_cmp, 0);
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
while ((error = xfarray_iter(ra->free_records, &cur, &arec)) == 1) {
|
||||
if (arec.ar_startblock < next_agbno)
|
||||
return -EFSCORRUPTED;
|
||||
|
||||
next_agbno = arec.ar_startblock + arec.ar_blockcount;
|
||||
}
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
/*
|
||||
* Compare two free space extents by length and then block number. We want
|
||||
* to sort first in order of increasing length and then in order of increasing
|
||||
* block number.
|
||||
*/
|
||||
static int
|
||||
xrep_cntbt_extent_cmp(
|
||||
const void *a,
|
||||
const void *b)
|
||||
{
|
||||
const struct xfs_alloc_rec_incore *ap = a;
|
||||
const struct xfs_alloc_rec_incore *bp = b;
|
||||
|
||||
if (ap->ar_blockcount > bp->ar_blockcount)
|
||||
return 1;
|
||||
else if (ap->ar_blockcount < bp->ar_blockcount)
|
||||
return -1;
|
||||
return xrep_bnobt_extent_cmp(a, b);
|
||||
}
|
||||
|
||||
/*
|
||||
* Sort the free extents by length so so that we can put the records into the
|
||||
* cntbt in the correct order. Don't let userspace kill us if we're resorting
|
||||
* after allocating btree blocks.
|
||||
*/
|
||||
STATIC int
|
||||
xrep_cntbt_sort_records(
|
||||
struct xrep_abt *ra,
|
||||
bool is_resort)
|
||||
{
|
||||
return xfarray_sort(ra->free_records, xrep_cntbt_extent_cmp,
|
||||
is_resort ? 0 : XFARRAY_SORT_KILLABLE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Iterate all reverse mappings to find (1) the gaps between rmap records (all
|
||||
* unowned space), (2) the OWN_AG extents (which encompass the free space
|
||||
* btrees, the rmapbt, and the agfl), (3) the rmapbt blocks, and (4) the AGFL
|
||||
* blocks. The free space is (1) + (2) - (3) - (4).
|
||||
*/
|
||||
STATIC int
|
||||
xrep_abt_find_freespace(
|
||||
struct xrep_abt *ra)
|
||||
{
|
||||
struct xfs_scrub *sc = ra->sc;
|
||||
struct xfs_mount *mp = sc->mp;
|
||||
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
|
||||
struct xfs_buf *agfl_bp;
|
||||
xfs_agblock_t agend;
|
||||
int error;
|
||||
|
||||
xagb_bitmap_init(&ra->not_allocbt_blocks);
|
||||
|
||||
xrep_ag_btcur_init(sc, &sc->sa);
|
||||
|
||||
/*
|
||||
* Iterate all the reverse mappings to find gaps in the physical
|
||||
* mappings, all the OWN_AG blocks, and all the rmapbt extents.
|
||||
*/
|
||||
error = xfs_rmap_query_all(sc->sa.rmap_cur, xrep_abt_walk_rmap, ra);
|
||||
if (error)
|
||||
goto err;
|
||||
|
||||
/* Insert a record for space between the last rmap and EOAG. */
|
||||
agend = be32_to_cpu(agf->agf_length);
|
||||
if (ra->next_agbno < agend) {
|
||||
error = xrep_abt_stash(ra, agend);
|
||||
if (error)
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* Collect all the AGFL blocks. */
|
||||
error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
|
||||
if (error)
|
||||
goto err;
|
||||
|
||||
error = xfs_agfl_walk(mp, agf, agfl_bp, xrep_abt_walk_agfl, ra);
|
||||
if (error)
|
||||
goto err_agfl;
|
||||
|
||||
/* Compute the old bnobt/cntbt blocks. */
|
||||
error = xagb_bitmap_disunion(&ra->old_allocbt_blocks,
|
||||
&ra->not_allocbt_blocks);
|
||||
if (error)
|
||||
goto err_agfl;
|
||||
|
||||
ra->nr_real_records = xfarray_length(ra->free_records);
|
||||
err_agfl:
|
||||
xfs_trans_brelse(sc->tp, agfl_bp);
|
||||
err:
|
||||
xchk_ag_btcur_free(&sc->sa);
|
||||
xagb_bitmap_destroy(&ra->not_allocbt_blocks);
|
||||
return error;
|
||||
}
|
||||
|
||||
/*
|
||||
* We're going to use the observed free space records to reserve blocks for the
|
||||
* new free space btrees, so we play an iterative game where we try to converge
|
||||
* on the number of blocks we need:
|
||||
*
|
||||
* 1. Estimate how many blocks we'll need to store the records.
|
||||
* 2. If the first free record has more blocks than we need, we're done.
|
||||
* We will have to re-sort the records prior to building the cntbt.
|
||||
* 3. If that record has exactly the number of blocks we need, null out the
|
||||
* record. We're done.
|
||||
* 4. Otherwise, we still need more blocks. Null out the record, subtract its
|
||||
* length from the number of blocks we need, and go back to step 1.
|
||||
*
|
||||
* Fortunately, we don't have to do any transaction work to play this game, so
|
||||
* we don't have to tear down the staging cursors.
|
||||
*/
|
||||
STATIC int
|
||||
xrep_abt_reserve_space(
|
||||
struct xrep_abt *ra,
|
||||
struct xfs_btree_cur *bno_cur,
|
||||
struct xfs_btree_cur *cnt_cur,
|
||||
bool *needs_resort)
|
||||
{
|
||||
struct xfs_scrub *sc = ra->sc;
|
||||
xfarray_idx_t record_nr;
|
||||
unsigned int allocated = 0;
|
||||
int error = 0;
|
||||
|
||||
record_nr = xfarray_length(ra->free_records) - 1;
|
||||
do {
|
||||
struct xfs_alloc_rec_incore arec;
|
||||
uint64_t required;
|
||||
unsigned int desired;
|
||||
unsigned int len;
|
||||
|
||||
/* Compute how many blocks we'll need. */
|
||||
error = xfs_btree_bload_compute_geometry(cnt_cur,
|
||||
&ra->new_cntbt.bload, ra->nr_real_records);
|
||||
if (error)
|
||||
break;
|
||||
|
||||
error = xfs_btree_bload_compute_geometry(bno_cur,
|
||||
&ra->new_bnobt.bload, ra->nr_real_records);
|
||||
if (error)
|
||||
break;
|
||||
|
||||
/* How many btree blocks do we need to store all records? */
|
||||
required = ra->new_bnobt.bload.nr_blocks +
|
||||
ra->new_cntbt.bload.nr_blocks;
|
||||
ASSERT(required < INT_MAX);
|
||||
|
||||
/* If we've reserved enough blocks, we're done. */
|
||||
if (allocated >= required)
|
||||
break;
|
||||
|
||||
desired = required - allocated;
|
||||
|
||||
/* We need space but there's none left; bye! */
|
||||
if (ra->nr_real_records == 0) {
|
||||
error = -ENOSPC;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Grab the first record from the list. */
|
||||
error = xfarray_load(ra->free_records, record_nr, &arec);
|
||||
if (error)
|
||||
break;
|
||||
|
||||
ASSERT(arec.ar_blockcount <= UINT_MAX);
|
||||
len = min_t(unsigned int, arec.ar_blockcount, desired);
|
||||
|
||||
trace_xrep_newbt_alloc_ag_blocks(sc->mp, sc->sa.pag->pag_agno,
|
||||
arec.ar_startblock, len, XFS_RMAP_OWN_AG);
|
||||
|
||||
error = xrep_newbt_add_extent(&ra->new_bnobt, sc->sa.pag,
|
||||
arec.ar_startblock, len);
|
||||
if (error)
|
||||
break;
|
||||
allocated += len;
|
||||
ra->nr_blocks -= len;
|
||||
|
||||
if (arec.ar_blockcount > desired) {
|
||||
/*
|
||||
* Record has more space than we need. The number of
|
||||
* free records doesn't change, so shrink the free
|
||||
* record, inform the caller that the records are no
|
||||
* longer sorted by length, and exit.
|
||||
*/
|
||||
arec.ar_startblock += desired;
|
||||
arec.ar_blockcount -= desired;
|
||||
error = xfarray_store(ra->free_records, record_nr,
|
||||
&arec);
|
||||
if (error)
|
||||
break;
|
||||
|
||||
*needs_resort = true;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* We're going to use up the entire record, so unset it and
|
||||
* move on to the next one. This changes the number of free
|
||||
* records (but doesn't break the sorting order), so we must
|
||||
* go around the loop once more to re-run _bload_init.
|
||||
*/
|
||||
error = xfarray_unset(ra->free_records, record_nr);
|
||||
if (error)
|
||||
break;
|
||||
ra->nr_real_records--;
|
||||
record_nr--;
|
||||
} while (1);
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
STATIC int
|
||||
xrep_abt_dispose_one(
|
||||
struct xrep_abt *ra,
|
||||
struct xrep_newbt_resv *resv)
|
||||
{
|
||||
struct xfs_scrub *sc = ra->sc;
|
||||
struct xfs_perag *pag = sc->sa.pag;
|
||||
xfs_agblock_t free_agbno = resv->agbno + resv->used;
|
||||
xfs_extlen_t free_aglen = resv->len - resv->used;
|
||||
int error;
|
||||
|
||||
ASSERT(pag == resv->pag);
|
||||
|
||||
/* Add a deferred rmap for each extent we used. */
|
||||
if (resv->used > 0)
|
||||
xfs_rmap_alloc_extent(sc->tp, pag->pag_agno, resv->agbno,
|
||||
resv->used, XFS_RMAP_OWN_AG);
|
||||
|
||||
/*
|
||||
* For each reserved btree block we didn't use, add it to the free
|
||||
* space btree. We didn't touch fdblocks when we reserved them, so
|
||||
* we don't touch it now.
|
||||
*/
|
||||
if (free_aglen == 0)
|
||||
return 0;
|
||||
|
||||
trace_xrep_newbt_free_blocks(sc->mp, resv->pag->pag_agno, free_agbno,
|
||||
free_aglen, ra->new_bnobt.oinfo.oi_owner);
|
||||
|
||||
error = __xfs_free_extent(sc->tp, resv->pag, free_agbno, free_aglen,
|
||||
&ra->new_bnobt.oinfo, XFS_AG_RESV_IGNORE, true);
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
return xrep_defer_finish(sc);
|
||||
}
|
||||
|
||||
/*
|
||||
* Deal with all the space we reserved. Blocks that were allocated for the
|
||||
* free space btrees need to have a (deferred) rmap added for the OWN_AG
|
||||
* allocation, and blocks that didn't get used can be freed via the usual
|
||||
* (deferred) means.
|
||||
*/
|
||||
STATIC void
|
||||
xrep_abt_dispose_reservations(
|
||||
struct xrep_abt *ra,
|
||||
int error)
|
||||
{
|
||||
struct xrep_newbt_resv *resv, *n;
|
||||
|
||||
if (error)
|
||||
goto junkit;
|
||||
|
||||
list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) {
|
||||
error = xrep_abt_dispose_one(ra, resv);
|
||||
if (error)
|
||||
goto junkit;
|
||||
}
|
||||
|
||||
junkit:
|
||||
list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) {
|
||||
xfs_perag_put(resv->pag);
|
||||
list_del(&resv->list);
|
||||
kfree(resv);
|
||||
}
|
||||
|
||||
xrep_newbt_cancel(&ra->new_bnobt);
|
||||
xrep_newbt_cancel(&ra->new_cntbt);
|
||||
}
|
||||
|
||||
/* Retrieve free space data for bulk load. */
|
||||
STATIC int
|
||||
xrep_abt_get_records(
|
||||
struct xfs_btree_cur *cur,
|
||||
unsigned int idx,
|
||||
struct xfs_btree_block *block,
|
||||
unsigned int nr_wanted,
|
||||
void *priv)
|
||||
{
|
||||
struct xfs_alloc_rec_incore *arec = &cur->bc_rec.a;
|
||||
struct xrep_abt *ra = priv;
|
||||
union xfs_btree_rec *block_rec;
|
||||
unsigned int loaded;
|
||||
int error;
|
||||
|
||||
for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
|
||||
error = xfarray_load_next(ra->free_records, &ra->array_cur,
|
||||
arec);
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
ra->longest = max(ra->longest, arec->ar_blockcount);
|
||||
|
||||
block_rec = xfs_btree_rec_addr(cur, idx, block);
|
||||
cur->bc_ops->init_rec_from_cur(cur, block_rec);
|
||||
}
|
||||
|
||||
return loaded;
|
||||
}
|
||||
|
||||
/* Feed one of the new btree blocks to the bulk loader. */
|
||||
STATIC int
|
||||
xrep_abt_claim_block(
|
||||
struct xfs_btree_cur *cur,
|
||||
union xfs_btree_ptr *ptr,
|
||||
void *priv)
|
||||
{
|
||||
struct xrep_abt *ra = priv;
|
||||
|
||||
return xrep_newbt_claim_block(cur, &ra->new_bnobt, ptr);
|
||||
}
|
||||
|
||||
/*
|
||||
* Reset the AGF counters to reflect the free space btrees that we just
|
||||
* rebuilt, then reinitialize the per-AG data.
|
||||
*/
|
||||
STATIC int
|
||||
xrep_abt_reset_counters(
|
||||
struct xrep_abt *ra)
|
||||
{
|
||||
struct xfs_scrub *sc = ra->sc;
|
||||
struct xfs_perag *pag = sc->sa.pag;
|
||||
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
|
||||
unsigned int freesp_btreeblks = 0;
|
||||
|
||||
/*
|
||||
* Compute the contribution to agf_btreeblks for the new free space
|
||||
* btrees. This is the computed btree size minus anything we didn't
|
||||
* use.
|
||||
*/
|
||||
freesp_btreeblks += ra->new_bnobt.bload.nr_blocks - 1;
|
||||
freesp_btreeblks += ra->new_cntbt.bload.nr_blocks - 1;
|
||||
|
||||
freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_bnobt);
|
||||
freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_cntbt);
|
||||
|
||||
/*
|
||||
* The AGF header contains extra information related to the free space
|
||||
* btrees, so we must update those fields here.
|
||||
*/
|
||||
agf->agf_btreeblks = cpu_to_be32(freesp_btreeblks +
|
||||
(be32_to_cpu(agf->agf_rmap_blocks) - 1));
|
||||
agf->agf_freeblks = cpu_to_be32(ra->nr_blocks);
|
||||
agf->agf_longest = cpu_to_be32(ra->longest);
|
||||
xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS |
|
||||
XFS_AGF_LONGEST |
|
||||
XFS_AGF_FREEBLKS);
|
||||
|
||||
/*
|
||||
* After we commit the new btree to disk, it is possible that the
|
||||
* process to reap the old btree blocks will race with the AIL trying
|
||||
* to checkpoint the old btree blocks into the filesystem. If the new
|
||||
* tree is shorter than the old one, the allocbt write verifier will
|
||||
* fail and the AIL will shut down the filesystem.
|
||||
*
|
||||
* To avoid this, save the old incore btree height values as the alt
|
||||
* height values before re-initializing the perag info from the updated
|
||||
* AGF to capture all the new values.
|
||||
*/
|
||||
pag->pagf_repair_levels[XFS_BTNUM_BNOi] = pag->pagf_levels[XFS_BTNUM_BNOi];
|
||||
pag->pagf_repair_levels[XFS_BTNUM_CNTi] = pag->pagf_levels[XFS_BTNUM_CNTi];
|
||||
|
||||
/* Reinitialize with the values we just logged. */
|
||||
return xrep_reinit_pagf(sc);
|
||||
}
|
||||
|
||||
/*
|
||||
* Use the collected free space information to stage new free space btrees.
|
||||
* If this is successful we'll return with the new btree root
|
||||
* information logged to the repair transaction but not yet committed.
|
||||
*/
|
||||
STATIC int
|
||||
xrep_abt_build_new_trees(
|
||||
struct xrep_abt *ra)
|
||||
{
|
||||
struct xfs_scrub *sc = ra->sc;
|
||||
struct xfs_btree_cur *bno_cur;
|
||||
struct xfs_btree_cur *cnt_cur;
|
||||
struct xfs_perag *pag = sc->sa.pag;
|
||||
bool needs_resort = false;
|
||||
int error;
|
||||
|
||||
/*
|
||||
* Sort the free extents by length so that we can set up the free space
|
||||
* btrees in as few extents as possible. This reduces the amount of
|
||||
* deferred rmap / free work we have to do at the end.
|
||||
*/
|
||||
error = xrep_cntbt_sort_records(ra, false);
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
/*
|
||||
* Prepare to construct the new btree by reserving disk space for the
|
||||
* new btree and setting up all the accounting information we'll need
|
||||
* to root the new btree while it's under construction and before we
|
||||
* attach it to the AG header.
|
||||
*/
|
||||
xrep_newbt_init_bare(&ra->new_bnobt, sc);
|
||||
xrep_newbt_init_bare(&ra->new_cntbt, sc);
|
||||
|
||||
ra->new_bnobt.bload.get_records = xrep_abt_get_records;
|
||||
ra->new_cntbt.bload.get_records = xrep_abt_get_records;
|
||||
|
||||
ra->new_bnobt.bload.claim_block = xrep_abt_claim_block;
|
||||
ra->new_cntbt.bload.claim_block = xrep_abt_claim_block;
|
||||
|
||||
/* Allocate cursors for the staged btrees. */
|
||||
bno_cur = xfs_allocbt_stage_cursor(sc->mp, &ra->new_bnobt.afake,
|
||||
pag, XFS_BTNUM_BNO);
|
||||
cnt_cur = xfs_allocbt_stage_cursor(sc->mp, &ra->new_cntbt.afake,
|
||||
pag, XFS_BTNUM_CNT);
|
||||
|
||||
/* Last chance to abort before we start committing fixes. */
|
||||
if (xchk_should_terminate(sc, &error))
|
||||
goto err_cur;
|
||||
|
||||
/* Reserve the space we'll need for the new btrees. */
|
||||
error = xrep_abt_reserve_space(ra, bno_cur, cnt_cur, &needs_resort);
|
||||
if (error)
|
||||
goto err_cur;
|
||||
|
||||
/*
|
||||
* If we need to re-sort the free extents by length, do so so that we
|
||||
* can put the records into the cntbt in the correct order.
|
||||
*/
|
||||
if (needs_resort) {
|
||||
error = xrep_cntbt_sort_records(ra, needs_resort);
|
||||
if (error)
|
||||
goto err_cur;
|
||||
}
|
||||
|
||||
/*
|
||||
* Due to btree slack factors, it's possible for a new btree to be one
|
||||
* level taller than the old btree. Update the alternate incore btree
|
||||
* height so that we don't trip the verifiers when writing the new
|
||||
* btree blocks to disk.
|
||||
*/
|
||||
pag->pagf_repair_levels[XFS_BTNUM_BNOi] =
|
||||
ra->new_bnobt.bload.btree_height;
|
||||
pag->pagf_repair_levels[XFS_BTNUM_CNTi] =
|
||||
ra->new_cntbt.bload.btree_height;
|
||||
|
||||
/* Load the free space by length tree. */
|
||||
ra->array_cur = XFARRAY_CURSOR_INIT;
|
||||
ra->longest = 0;
|
||||
error = xfs_btree_bload(cnt_cur, &ra->new_cntbt.bload, ra);
|
||||
if (error)
|
||||
goto err_levels;
|
||||
|
||||
error = xrep_bnobt_sort_records(ra);
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
/* Load the free space by block number tree. */
|
||||
ra->array_cur = XFARRAY_CURSOR_INIT;
|
||||
error = xfs_btree_bload(bno_cur, &ra->new_bnobt.bload, ra);
|
||||
if (error)
|
||||
goto err_levels;
|
||||
|
||||
/*
|
||||
* Install the new btrees in the AG header. After this point the old
|
||||
* btrees are no longer accessible and the new trees are live.
|
||||
*/
|
||||
xfs_allocbt_commit_staged_btree(bno_cur, sc->tp, sc->sa.agf_bp);
|
||||
xfs_btree_del_cursor(bno_cur, 0);
|
||||
xfs_allocbt_commit_staged_btree(cnt_cur, sc->tp, sc->sa.agf_bp);
|
||||
xfs_btree_del_cursor(cnt_cur, 0);
|
||||
|
||||
/* Reset the AGF counters now that we've changed the btree shape. */
|
||||
error = xrep_abt_reset_counters(ra);
|
||||
if (error)
|
||||
goto err_newbt;
|
||||
|
||||
/* Dispose of any unused blocks and the accounting information. */
|
||||
xrep_abt_dispose_reservations(ra, error);
|
||||
|
||||
return xrep_roll_ag_trans(sc);
|
||||
|
||||
err_levels:
|
||||
pag->pagf_repair_levels[XFS_BTNUM_BNOi] = 0;
|
||||
pag->pagf_repair_levels[XFS_BTNUM_CNTi] = 0;
|
||||
err_cur:
|
||||
xfs_btree_del_cursor(cnt_cur, error);
|
||||
xfs_btree_del_cursor(bno_cur, error);
|
||||
err_newbt:
|
||||
xrep_abt_dispose_reservations(ra, error);
|
||||
return error;
|
||||
}
|
||||
|
||||
/*
|
||||
* Now that we've logged the roots of the new btrees, invalidate all of the
|
||||
* old blocks and free them.
|
||||
*/
|
||||
STATIC int
|
||||
xrep_abt_remove_old_trees(
|
||||
struct xrep_abt *ra)
|
||||
{
|
||||
struct xfs_perag *pag = ra->sc->sa.pag;
|
||||
int error;
|
||||
|
||||
/* Free the old btree blocks if they're not in use. */
|
||||
error = xrep_reap_agblocks(ra->sc, &ra->old_allocbt_blocks,
|
||||
&XFS_RMAP_OINFO_AG, XFS_AG_RESV_IGNORE);
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
/*
|
||||
* Now that we've zapped all the old allocbt blocks we can turn off
|
||||
* the alternate height mechanism.
|
||||
*/
|
||||
pag->pagf_repair_levels[XFS_BTNUM_BNOi] = 0;
|
||||
pag->pagf_repair_levels[XFS_BTNUM_CNTi] = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Repair the freespace btrees for some AG. */
|
||||
int
|
||||
xrep_allocbt(
|
||||
struct xfs_scrub *sc)
|
||||
{
|
||||
struct xrep_abt *ra;
|
||||
struct xfs_mount *mp = sc->mp;
|
||||
char *descr;
|
||||
int error;
|
||||
|
||||
/* We require the rmapbt to rebuild anything. */
|
||||
if (!xfs_has_rmapbt(mp))
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
ra = kzalloc(sizeof(struct xrep_abt), XCHK_GFP_FLAGS);
|
||||
if (!ra)
|
||||
return -ENOMEM;
|
||||
ra->sc = sc;
|
||||
|
||||
/* We rebuild both data structures. */
|
||||
sc->sick_mask = XFS_SICK_AG_BNOBT | XFS_SICK_AG_CNTBT;
|
||||
|
||||
/*
|
||||
* Make sure the busy extent list is clear because we can't put extents
|
||||
* on there twice. In theory we cleared this before we started, but
|
||||
* let's not risk the filesystem.
|
||||
*/
|
||||
if (!xfs_extent_busy_list_empty(sc->sa.pag)) {
|
||||
error = -EDEADLOCK;
|
||||
goto out_ra;
|
||||
}
|
||||
|
||||
/* Set up enough storage to handle maximally fragmented free space. */
|
||||
descr = xchk_xfile_ag_descr(sc, "free space records");
|
||||
error = xfarray_create(descr, mp->m_sb.sb_agblocks / 2,
|
||||
sizeof(struct xfs_alloc_rec_incore),
|
||||
&ra->free_records);
|
||||
kfree(descr);
|
||||
if (error)
|
||||
goto out_ra;
|
||||
|
||||
/* Collect the free space data and find the old btree blocks. */
|
||||
xagb_bitmap_init(&ra->old_allocbt_blocks);
|
||||
error = xrep_abt_find_freespace(ra);
|
||||
if (error)
|
||||
goto out_bitmap;
|
||||
|
||||
/* Rebuild the free space information. */
|
||||
error = xrep_abt_build_new_trees(ra);
|
||||
if (error)
|
||||
goto out_bitmap;
|
||||
|
||||
/* Kill the old trees. */
|
||||
error = xrep_abt_remove_old_trees(ra);
|
||||
if (error)
|
||||
goto out_bitmap;
|
||||
|
||||
out_bitmap:
|
||||
xagb_bitmap_destroy(&ra->old_allocbt_blocks);
|
||||
xfarray_destroy(ra->free_records);
|
||||
out_ra:
|
||||
kfree(ra);
|
||||
return error;
|
||||
}
|
||||
|
||||
/* Make sure both btrees are ok after we've rebuilt them. */
|
||||
int
|
||||
xrep_revalidate_allocbt(
|
||||
struct xfs_scrub *sc)
|
||||
{
|
||||
__u32 old_type = sc->sm->sm_type;
|
||||
int error;
|
||||
|
||||
/*
|
||||
* We must update sm_type temporarily so that the tree-to-tree cross
|
||||
* reference checks will work in the correct direction, and also so
|
||||
* that tracing will report correctly if there are more errors.
|
||||
*/
|
||||
sc->sm->sm_type = XFS_SCRUB_TYPE_BNOBT;
|
||||
error = xchk_allocbt(sc);
|
||||
if (error)
|
||||
goto out;
|
||||
|
||||
sc->sm->sm_type = XFS_SCRUB_TYPE_CNTBT;
|
||||
error = xchk_allocbt(sc);
|
||||
out:
|
||||
sc->sm->sm_type = old_type;
|
||||
return error;
|
||||
}
|
@ -200,8 +200,21 @@ static inline bool xchk_needs_repair(const struct xfs_scrub_metadata *sm)
|
||||
XFS_SCRUB_OFLAG_XCORRUPT |
|
||||
XFS_SCRUB_OFLAG_PREEN);
|
||||
}
|
||||
|
||||
/*
|
||||
* "Should we prepare for a repair?"
|
||||
*
|
||||
* Return true if the caller permits us to repair metadata and we're not
|
||||
* setting up for a post-repair evaluation.
|
||||
*/
|
||||
static inline bool xchk_could_repair(const struct xfs_scrub *sc)
|
||||
{
|
||||
return (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
|
||||
!(sc->flags & XREP_ALREADY_FIXED);
|
||||
}
|
||||
#else
|
||||
# define xchk_needs_repair(sc) (false)
|
||||
# define xchk_could_repair(sc) (false)
|
||||
#endif /* CONFIG_XFS_ONLINE_REPAIR */
|
||||
|
||||
int xchk_metadata_inode_forks(struct xfs_scrub *sc);
|
||||
@ -213,6 +226,12 @@ int xchk_metadata_inode_forks(struct xfs_scrub *sc);
|
||||
#define xchk_xfile_descr(sc, fmt, ...) \
|
||||
kasprintf(XCHK_GFP_FLAGS, "XFS (%s): " fmt, \
|
||||
(sc)->mp->m_super->s_id, ##__VA_ARGS__)
|
||||
#define xchk_xfile_ag_descr(sc, fmt, ...) \
|
||||
kasprintf(XCHK_GFP_FLAGS, "XFS (%s): AG 0x%x " fmt, \
|
||||
(sc)->mp->m_super->s_id, \
|
||||
(sc)->sa.pag ? (sc)->sa.pag->pag_agno : (sc)->sm->sm_agno, \
|
||||
##__VA_ARGS__)
|
||||
|
||||
|
||||
/*
|
||||
* Setting up a hook to wait for intents to drain is costly -- we have to take
|
||||
|
@ -157,11 +157,13 @@ xrep_newbt_add_blocks(
|
||||
resv->used = 0;
|
||||
resv->pag = xfs_perag_hold(pag);
|
||||
|
||||
ASSERT(xnr->oinfo.oi_offset == 0);
|
||||
if (args->tp) {
|
||||
ASSERT(xnr->oinfo.oi_offset == 0);
|
||||
|
||||
error = xfs_alloc_schedule_autoreap(args, true, &resv->autoreap);
|
||||
if (error)
|
||||
goto out_pag;
|
||||
error = xfs_alloc_schedule_autoreap(args, true, &resv->autoreap);
|
||||
if (error)
|
||||
goto out_pag;
|
||||
}
|
||||
|
||||
list_add_tail(&resv->list, &xnr->resv_list);
|
||||
return 0;
|
||||
@ -171,6 +173,30 @@ out_pag:
|
||||
return error;
|
||||
}
|
||||
|
||||
/*
|
||||
* Add an extent to the new btree reservation pool. Callers are required to
|
||||
* reap this reservation manually if the repair is cancelled. @pag must be a
|
||||
* passive reference.
|
||||
*/
|
||||
int
|
||||
xrep_newbt_add_extent(
|
||||
struct xrep_newbt *xnr,
|
||||
struct xfs_perag *pag,
|
||||
xfs_agblock_t agbno,
|
||||
xfs_extlen_t len)
|
||||
{
|
||||
struct xfs_mount *mp = xnr->sc->mp;
|
||||
struct xfs_alloc_arg args = {
|
||||
.tp = NULL, /* no autoreap */
|
||||
.oinfo = xnr->oinfo,
|
||||
.fsbno = XFS_AGB_TO_FSB(mp, pag->pag_agno, agbno),
|
||||
.len = len,
|
||||
.resv = xnr->resv,
|
||||
};
|
||||
|
||||
return xrep_newbt_add_blocks(xnr, pag, &args);
|
||||
}
|
||||
|
||||
/* Don't let our allocation hint take us beyond this AG */
|
||||
static inline void
|
||||
xrep_newbt_validate_ag_alloc_hint(
|
||||
@ -372,6 +398,7 @@ xrep_newbt_free_extent(
|
||||
free_aglen, xnr->oinfo.oi_owner);
|
||||
|
||||
ASSERT(xnr->resv != XFS_AG_RESV_AGFL);
|
||||
ASSERT(xnr->resv != XFS_AG_RESV_IGNORE);
|
||||
|
||||
/*
|
||||
* Use EFIs to free the reservations. This reduces the chance
|
||||
@ -517,3 +544,16 @@ xrep_newbt_claim_block(
|
||||
/* Relog all the EFIs. */
|
||||
return xrep_defer_finish(xnr->sc);
|
||||
}
|
||||
|
||||
/* How many reserved blocks are unused? */
|
||||
unsigned int
|
||||
xrep_newbt_unused_blocks(
|
||||
struct xrep_newbt *xnr)
|
||||
{
|
||||
struct xrep_newbt_resv *resv;
|
||||
unsigned int unused = 0;
|
||||
|
||||
list_for_each_entry(resv, &xnr->resv_list, list)
|
||||
unused += resv->len - resv->used;
|
||||
return unused;
|
||||
}
|
||||
|
@ -57,9 +57,12 @@ void xrep_newbt_init_ag(struct xrep_newbt *xnr, struct xfs_scrub *sc,
|
||||
int xrep_newbt_init_inode(struct xrep_newbt *xnr, struct xfs_scrub *sc,
|
||||
int whichfork, const struct xfs_owner_info *oinfo);
|
||||
int xrep_newbt_alloc_blocks(struct xrep_newbt *xnr, uint64_t nr_blocks);
|
||||
int xrep_newbt_add_extent(struct xrep_newbt *xnr, struct xfs_perag *pag,
|
||||
xfs_agblock_t agbno, xfs_extlen_t len);
|
||||
void xrep_newbt_cancel(struct xrep_newbt *xnr);
|
||||
int xrep_newbt_commit(struct xrep_newbt *xnr);
|
||||
int xrep_newbt_claim_block(struct xfs_btree_cur *cur, struct xrep_newbt *xnr,
|
||||
union xfs_btree_ptr *ptr);
|
||||
unsigned int xrep_newbt_unused_blocks(struct xrep_newbt *xnr);
|
||||
|
||||
#endif /* __XFS_SCRUB_NEWBT_H__ */
|
||||
|
@ -734,3 +734,75 @@ xrep_ino_dqattach(
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize all the btree cursors for an AG repair except for the btree that
|
||||
* we're rebuilding.
|
||||
*/
|
||||
void
|
||||
xrep_ag_btcur_init(
|
||||
struct xfs_scrub *sc,
|
||||
struct xchk_ag *sa)
|
||||
{
|
||||
struct xfs_mount *mp = sc->mp;
|
||||
|
||||
/* Set up a bnobt cursor for cross-referencing. */
|
||||
if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT &&
|
||||
sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) {
|
||||
sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
|
||||
sc->sa.pag, XFS_BTNUM_BNO);
|
||||
sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
|
||||
sc->sa.pag, XFS_BTNUM_CNT);
|
||||
}
|
||||
|
||||
/* Set up a inobt cursor for cross-referencing. */
|
||||
if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT &&
|
||||
sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) {
|
||||
sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp,
|
||||
sa->agi_bp, XFS_BTNUM_INO);
|
||||
if (xfs_has_finobt(mp))
|
||||
sa->fino_cur = xfs_inobt_init_cursor(sc->sa.pag,
|
||||
sc->tp, sa->agi_bp, XFS_BTNUM_FINO);
|
||||
}
|
||||
|
||||
/* Set up a rmapbt cursor for cross-referencing. */
|
||||
if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT &&
|
||||
xfs_has_rmapbt(mp))
|
||||
sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
|
||||
sc->sa.pag);
|
||||
|
||||
/* Set up a refcountbt cursor for cross-referencing. */
|
||||
if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT &&
|
||||
xfs_has_reflink(mp))
|
||||
sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
|
||||
sa->agf_bp, sc->sa.pag);
|
||||
}
|
||||
|
||||
/*
|
||||
* Reinitialize the in-core AG state after a repair by rereading the AGF
|
||||
* buffer. We had better get the same AGF buffer as the one that's attached
|
||||
* to the scrub context.
|
||||
*/
|
||||
int
|
||||
xrep_reinit_pagf(
|
||||
struct xfs_scrub *sc)
|
||||
{
|
||||
struct xfs_perag *pag = sc->sa.pag;
|
||||
struct xfs_buf *bp;
|
||||
int error;
|
||||
|
||||
ASSERT(pag);
|
||||
ASSERT(xfs_perag_initialised_agf(pag));
|
||||
|
||||
clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
|
||||
error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp);
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
if (bp != sc->sa.agf_bp) {
|
||||
ASSERT(bp == sc->sa.agf_bp);
|
||||
return -EFSCORRUPTED;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -60,6 +60,15 @@ int xrep_find_ag_btree_roots(struct xfs_scrub *sc, struct xfs_buf *agf_bp,
|
||||
void xrep_force_quotacheck(struct xfs_scrub *sc, xfs_dqtype_t type);
|
||||
int xrep_ino_dqattach(struct xfs_scrub *sc);
|
||||
|
||||
/* Repair setup functions */
|
||||
int xrep_setup_ag_allocbt(struct xfs_scrub *sc);
|
||||
|
||||
void xrep_ag_btcur_init(struct xfs_scrub *sc, struct xchk_ag *sa);
|
||||
|
||||
/* Metadata revalidators */
|
||||
|
||||
int xrep_revalidate_allocbt(struct xfs_scrub *sc);
|
||||
|
||||
/* Metadata repairers */
|
||||
|
||||
int xrep_probe(struct xfs_scrub *sc);
|
||||
@ -67,6 +76,9 @@ int xrep_superblock(struct xfs_scrub *sc);
|
||||
int xrep_agf(struct xfs_scrub *sc);
|
||||
int xrep_agfl(struct xfs_scrub *sc);
|
||||
int xrep_agi(struct xfs_scrub *sc);
|
||||
int xrep_allocbt(struct xfs_scrub *sc);
|
||||
|
||||
int xrep_reinit_pagf(struct xfs_scrub *sc);
|
||||
|
||||
#else
|
||||
|
||||
@ -87,11 +99,23 @@ xrep_calc_ag_resblks(
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* repair setup functions for no-repair */
|
||||
static inline int
|
||||
xrep_setup_nothing(
|
||||
struct xfs_scrub *sc)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#define xrep_setup_ag_allocbt xrep_setup_nothing
|
||||
|
||||
#define xrep_revalidate_allocbt (NULL)
|
||||
|
||||
#define xrep_probe xrep_notsupported
|
||||
#define xrep_superblock xrep_notsupported
|
||||
#define xrep_agf xrep_notsupported
|
||||
#define xrep_agfl xrep_notsupported
|
||||
#define xrep_agi xrep_notsupported
|
||||
#define xrep_allocbt xrep_notsupported
|
||||
|
||||
#endif /* CONFIG_XFS_ONLINE_REPAIR */
|
||||
|
||||
|
@ -239,13 +239,15 @@ static const struct xchk_meta_ops meta_scrub_ops[] = {
|
||||
.type = ST_PERAG,
|
||||
.setup = xchk_setup_ag_allocbt,
|
||||
.scrub = xchk_allocbt,
|
||||
.repair = xrep_notsupported,
|
||||
.repair = xrep_allocbt,
|
||||
.repair_eval = xrep_revalidate_allocbt,
|
||||
},
|
||||
[XFS_SCRUB_TYPE_CNTBT] = { /* cntbt */
|
||||
.type = ST_PERAG,
|
||||
.setup = xchk_setup_ag_allocbt,
|
||||
.scrub = xchk_allocbt,
|
||||
.repair = xrep_notsupported,
|
||||
.repair = xrep_allocbt,
|
||||
.repair_eval = xrep_revalidate_allocbt,
|
||||
},
|
||||
[XFS_SCRUB_TYPE_INOBT] = { /* inobt */
|
||||
.type = ST_PERAG,
|
||||
@ -531,7 +533,10 @@ retry_op:
|
||||
|
||||
/* Scrub for errors. */
|
||||
check_start = xchk_stats_now();
|
||||
error = sc->ops->scrub(sc);
|
||||
if ((sc->flags & XREP_ALREADY_FIXED) && sc->ops->repair_eval != NULL)
|
||||
error = sc->ops->repair_eval(sc);
|
||||
else
|
||||
error = sc->ops->scrub(sc);
|
||||
run.scrub_ns += xchk_stats_elapsed_ns(check_start);
|
||||
if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
|
||||
goto try_harder;
|
||||
@ -542,8 +547,7 @@ retry_op:
|
||||
|
||||
xchk_update_health(sc);
|
||||
|
||||
if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
|
||||
!(sc->flags & XREP_ALREADY_FIXED)) {
|
||||
if (xchk_could_repair(sc)) {
|
||||
bool needs_fix = xchk_needs_repair(sc->sm);
|
||||
|
||||
/* Userspace asked us to rebuild the structure regardless. */
|
||||
|
@ -35,6 +35,14 @@ struct xchk_meta_ops {
|
||||
/* Repair or optimize the metadata. */
|
||||
int (*repair)(struct xfs_scrub *);
|
||||
|
||||
/*
|
||||
* Re-scrub the metadata we repaired, in case there's extra work that
|
||||
* we need to do to check our repair work. If this is NULL, we'll use
|
||||
* the ->scrub function pointer, assuming that the regular scrub is
|
||||
* sufficient.
|
||||
*/
|
||||
int (*repair_eval)(struct xfs_scrub *sc);
|
||||
|
||||
/* Decide if we even have this piece of metadata. */
|
||||
bool (*has)(struct xfs_mount *);
|
||||
|
||||
|
@ -1172,11 +1172,33 @@ DEFINE_EVENT(xrep_rmap_class, name, \
|
||||
xfs_agblock_t agbno, xfs_extlen_t len, \
|
||||
uint64_t owner, uint64_t offset, unsigned int flags), \
|
||||
TP_ARGS(mp, agno, agbno, len, owner, offset, flags))
|
||||
DEFINE_REPAIR_RMAP_EVENT(xrep_alloc_extent_fn);
|
||||
DEFINE_REPAIR_RMAP_EVENT(xrep_ialloc_extent_fn);
|
||||
DEFINE_REPAIR_RMAP_EVENT(xrep_rmap_extent_fn);
|
||||
DEFINE_REPAIR_RMAP_EVENT(xrep_bmap_extent_fn);
|
||||
|
||||
TRACE_EVENT(xrep_abt_found,
|
||||
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
|
||||
const struct xfs_alloc_rec_incore *rec),
|
||||
TP_ARGS(mp, agno, rec),
|
||||
TP_STRUCT__entry(
|
||||
__field(dev_t, dev)
|
||||
__field(xfs_agnumber_t, agno)
|
||||
__field(xfs_agblock_t, startblock)
|
||||
__field(xfs_extlen_t, blockcount)
|
||||
),
|
||||
TP_fast_assign(
|
||||
__entry->dev = mp->m_super->s_dev;
|
||||
__entry->agno = agno;
|
||||
__entry->startblock = rec->ar_startblock;
|
||||
__entry->blockcount = rec->ar_blockcount;
|
||||
),
|
||||
TP_printk("dev %d:%d agno 0x%x agbno 0x%x fsbcount 0x%x",
|
||||
MAJOR(__entry->dev), MINOR(__entry->dev),
|
||||
__entry->agno,
|
||||
__entry->startblock,
|
||||
__entry->blockcount)
|
||||
)
|
||||
|
||||
TRACE_EVENT(xrep_refcount_extent_fn,
|
||||
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
|
||||
struct xfs_refcount_irec *irec),
|
||||
|
@ -54,6 +54,28 @@ static inline int xfarray_append(struct xfarray *array, const void *ptr)
|
||||
uint64_t xfarray_length(struct xfarray *array);
|
||||
int xfarray_load_next(struct xfarray *array, xfarray_idx_t *idx, void *rec);
|
||||
|
||||
/*
|
||||
* Iterate the non-null elements in a sparse xfarray. Callers should
|
||||
* initialize *idx to XFARRAY_CURSOR_INIT before the first call; on return, it
|
||||
* will be set to one more than the index of the record that was retrieved.
|
||||
* Returns 1 if a record was retrieved, 0 if there weren't any more records, or
|
||||
* a negative errno.
|
||||
*/
|
||||
static inline int
|
||||
xfarray_iter(
|
||||
struct xfarray *array,
|
||||
xfarray_idx_t *idx,
|
||||
void *rec)
|
||||
{
|
||||
int ret = xfarray_load_next(array, idx, rec);
|
||||
|
||||
if (ret == -ENODATA)
|
||||
return 0;
|
||||
if (ret == 0)
|
||||
return 1;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Declarations for xfile array sort functionality. */
|
||||
|
||||
typedef cmp_func_t xfarray_cmp_fn;
|
||||
|
@ -678,3 +678,16 @@ xfs_extent_busy_ag_cmp(
|
||||
diff = b1->bno - b2->bno;
|
||||
return diff;
|
||||
}
|
||||
|
||||
/* Are there any busy extents in this AG? */
|
||||
bool
|
||||
xfs_extent_busy_list_empty(
|
||||
struct xfs_perag *pag)
|
||||
{
|
||||
bool res;
|
||||
|
||||
spin_lock(&pag->pagb_lock);
|
||||
res = RB_EMPTY_ROOT(&pag->pagb_tree);
|
||||
spin_unlock(&pag->pagb_lock);
|
||||
return res;
|
||||
}
|
||||
|
@ -85,4 +85,6 @@ static inline void xfs_extent_busy_sort(struct list_head *list)
|
||||
list_sort(NULL, list, xfs_extent_busy_ag_cmp);
|
||||
}
|
||||
|
||||
bool xfs_extent_busy_list_empty(struct xfs_perag *pag);
|
||||
|
||||
#endif /* __XFS_EXTENT_BUSY_H__ */
|
||||
|
Loading…
Reference in New Issue
Block a user