mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 21:51:40 +00:00
pwm: add microchip soft ip corePWM driver
Add a driver that supports the Microchip FPGA "soft" PWM IP core. Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
This commit is contained in:
parent
38ba835986
commit
2bf7ecf7b4
@ -405,6 +405,16 @@ config PWM_MEDIATEK
|
||||
To compile this driver as a module, choose M here: the module
|
||||
will be called pwm-mediatek.
|
||||
|
||||
config PWM_MICROCHIP_CORE
|
||||
tristate "Microchip corePWM PWM support"
|
||||
depends on SOC_MICROCHIP_POLARFIRE || COMPILE_TEST
|
||||
depends on HAS_IOMEM && OF
|
||||
help
|
||||
PWM driver for Microchip FPGA soft IP core.
|
||||
|
||||
To compile this driver as a module, choose M here: the module
|
||||
will be called pwm-microchip-core.
|
||||
|
||||
config PWM_MXS
|
||||
tristate "Freescale MXS PWM support"
|
||||
depends on ARCH_MXS || COMPILE_TEST
|
||||
|
@ -35,6 +35,7 @@ obj-$(CONFIG_PWM_LPSS_PCI) += pwm-lpss-pci.o
|
||||
obj-$(CONFIG_PWM_LPSS_PLATFORM) += pwm-lpss-platform.o
|
||||
obj-$(CONFIG_PWM_MESON) += pwm-meson.o
|
||||
obj-$(CONFIG_PWM_MEDIATEK) += pwm-mediatek.o
|
||||
obj-$(CONFIG_PWM_MICROCHIP_CORE) += pwm-microchip-core.o
|
||||
obj-$(CONFIG_PWM_MTK_DISP) += pwm-mtk-disp.o
|
||||
obj-$(CONFIG_PWM_MXS) += pwm-mxs.o
|
||||
obj-$(CONFIG_PWM_NTXEC) += pwm-ntxec.o
|
||||
|
507
drivers/pwm/pwm-microchip-core.c
Normal file
507
drivers/pwm/pwm-microchip-core.c
Normal file
@ -0,0 +1,507 @@
|
||||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* corePWM driver for Microchip "soft" FPGA IP cores.
|
||||
*
|
||||
* Copyright (c) 2021-2023 Microchip Corporation. All rights reserved.
|
||||
* Author: Conor Dooley <conor.dooley@microchip.com>
|
||||
* Documentation:
|
||||
* https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb
|
||||
*
|
||||
* Limitations:
|
||||
* - If the IP block is configured without "shadow registers", all register
|
||||
* writes will take effect immediately, causing glitches on the output.
|
||||
* If shadow registers *are* enabled, setting the "SYNC_UPDATE" register
|
||||
* notifies the core that it needs to update the registers defining the
|
||||
* waveform from the contents of the "shadow registers". Otherwise, changes
|
||||
* will take effective immediately, even for those channels.
|
||||
* As setting the period/duty cycle takes 4 register writes, there is a window
|
||||
* in which this races against the start of a new period.
|
||||
* - The IP block has no concept of a duty cycle, only rising/falling edges of
|
||||
* the waveform. Unfortunately, if the rising & falling edges registers have
|
||||
* the same value written to them the IP block will do whichever of a rising
|
||||
* or a falling edge is possible. I.E. a 50% waveform at twice the requested
|
||||
* period. Therefore to get a 0% waveform, the output is set the max high/low
|
||||
* time depending on polarity.
|
||||
* If the duty cycle is 0%, and the requested period is less than the
|
||||
* available period resolution, this will manifest as a ~100% waveform (with
|
||||
* some output glitches) rather than 50%.
|
||||
* - The PWM period is set for the whole IP block not per channel. The driver
|
||||
* will only change the period if no other PWM output is enabled.
|
||||
*/
|
||||
|
||||
#include <linux/clk.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/ktime.h>
|
||||
#include <linux/math.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/of_device.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/pwm.h>
|
||||
|
||||
#define MCHPCOREPWM_PRESCALE_MAX 0xff
|
||||
#define MCHPCOREPWM_PERIOD_STEPS_MAX 0xfe
|
||||
#define MCHPCOREPWM_PERIOD_MAX 0xff00
|
||||
|
||||
#define MCHPCOREPWM_PRESCALE 0x00
|
||||
#define MCHPCOREPWM_PERIOD 0x04
|
||||
#define MCHPCOREPWM_EN(i) (0x08 + 0x04 * (i)) /* 0x08, 0x0c */
|
||||
#define MCHPCOREPWM_POSEDGE(i) (0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */
|
||||
#define MCHPCOREPWM_NEGEDGE(i) (0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */
|
||||
#define MCHPCOREPWM_SYNC_UPD 0xe4
|
||||
#define MCHPCOREPWM_TIMEOUT_MS 100u
|
||||
|
||||
struct mchp_core_pwm_chip {
|
||||
struct pwm_chip chip;
|
||||
struct clk *clk;
|
||||
void __iomem *base;
|
||||
struct mutex lock; /* protects the shared period */
|
||||
ktime_t update_timestamp;
|
||||
u32 sync_update_mask;
|
||||
u16 channel_enabled;
|
||||
};
|
||||
|
||||
static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip)
|
||||
{
|
||||
return container_of(chip, struct mchp_core_pwm_chip, chip);
|
||||
}
|
||||
|
||||
static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm,
|
||||
bool enable, u64 period)
|
||||
{
|
||||
struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
|
||||
u8 channel_enable, reg_offset, shift;
|
||||
|
||||
/*
|
||||
* There are two adjacent 8 bit control regs, the lower reg controls
|
||||
* 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg
|
||||
* and if so, offset by the bus width.
|
||||
*/
|
||||
reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3);
|
||||
shift = pwm->hwpwm & 7;
|
||||
|
||||
channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset);
|
||||
channel_enable &= ~(1 << shift);
|
||||
channel_enable |= (enable << shift);
|
||||
|
||||
writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset);
|
||||
mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm);
|
||||
mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm;
|
||||
|
||||
/*
|
||||
* The updated values will not appear on the bus until they have been
|
||||
* applied to the waveform at the beginning of the next period.
|
||||
* This is a NO-OP if the channel does not have shadow registers.
|
||||
*/
|
||||
if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm))
|
||||
mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period);
|
||||
}
|
||||
|
||||
static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm,
|
||||
unsigned int channel)
|
||||
{
|
||||
/*
|
||||
* If a shadow register is used for this PWM channel, and iff there is
|
||||
* a pending update to the waveform, we must wait for it to be applied
|
||||
* before attempting to read its state. Reading the registers yields
|
||||
* the currently implemented settings & the new ones are only readable
|
||||
* once the current period has ended.
|
||||
*/
|
||||
|
||||
if (mchp_core_pwm->sync_update_mask & (1 << channel)) {
|
||||
ktime_t current_time = ktime_get();
|
||||
s64 remaining_ns;
|
||||
u32 delay_us;
|
||||
|
||||
remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp,
|
||||
current_time));
|
||||
|
||||
/*
|
||||
* If the update has gone through, don't bother waiting for
|
||||
* obvious reasons. Otherwise wait around for an appropriate
|
||||
* amount of time for the update to go through.
|
||||
*/
|
||||
if (remaining_ns <= 0)
|
||||
return;
|
||||
|
||||
delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC);
|
||||
fsleep(delay_us);
|
||||
}
|
||||
}
|
||||
|
||||
static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate,
|
||||
u8 prescale, u8 period_steps)
|
||||
{
|
||||
u64 duty_steps, tmp;
|
||||
|
||||
/*
|
||||
* Calculate the duty cycle in multiples of the prescaled period:
|
||||
* duty_steps = duty_in_ns / step_in_ns
|
||||
* step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate
|
||||
* The code below is rearranged slightly to only divide once.
|
||||
*/
|
||||
tmp = (((u64)prescale) + 1) * NSEC_PER_SEC;
|
||||
duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp);
|
||||
|
||||
return duty_steps;
|
||||
}
|
||||
|
||||
static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm,
|
||||
const struct pwm_state *state, u64 duty_steps,
|
||||
u16 period_steps)
|
||||
{
|
||||
struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
|
||||
u8 posedge, negedge;
|
||||
u8 first_edge = 0, second_edge = duty_steps;
|
||||
|
||||
/*
|
||||
* Setting posedge == negedge doesn't yield a constant output,
|
||||
* so that's an unsuitable setting to model duty_steps = 0.
|
||||
* In that case set the unwanted edge to a value that never
|
||||
* triggers.
|
||||
*/
|
||||
if (duty_steps == 0)
|
||||
first_edge = period_steps + 1;
|
||||
|
||||
if (state->polarity == PWM_POLARITY_INVERSED) {
|
||||
negedge = first_edge;
|
||||
posedge = second_edge;
|
||||
} else {
|
||||
posedge = first_edge;
|
||||
negedge = second_edge;
|
||||
}
|
||||
|
||||
/*
|
||||
* Set the sync bit which ensures that periods that already started are
|
||||
* completed unaltered. At each counter reset event the values are
|
||||
* updated from the shadow registers.
|
||||
*/
|
||||
writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
|
||||
writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
|
||||
}
|
||||
|
||||
static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate,
|
||||
u16 *prescale, u16 *period_steps)
|
||||
{
|
||||
u64 tmp;
|
||||
|
||||
/*
|
||||
* Calculate the period cycles and prescale values.
|
||||
* The registers are each 8 bits wide & multiplied to compute the period
|
||||
* using the formula:
|
||||
* (prescale + 1) * (period_steps + 1)
|
||||
* period = -------------------------------------
|
||||
* clk_rate
|
||||
* so the maximum period that can be generated is 0x10000 times the
|
||||
* period of the input clock.
|
||||
* However, due to the design of the "hardware", it is not possible to
|
||||
* attain a 100% duty cycle if the full range of period_steps is used.
|
||||
* Therefore period_steps is restricted to 0xfe and the maximum multiple
|
||||
* of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00
|
||||
*
|
||||
* The prescale and period_steps registers operate similarly to
|
||||
* CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
|
||||
* in the register plus one.
|
||||
* It's therefore not possible to set a period lower than 1/clk_rate, so
|
||||
* if tmp is 0, abort. Without aborting, we will set a period that is
|
||||
* greater than that requested and, more importantly, will trigger the
|
||||
* neg-/pos-edge issue described in the limitations.
|
||||
*/
|
||||
tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC);
|
||||
if (tmp >= MCHPCOREPWM_PERIOD_MAX) {
|
||||
*prescale = MCHPCOREPWM_PRESCALE_MAX;
|
||||
*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* There are multiple strategies that could be used to choose the
|
||||
* prescale & period_steps values.
|
||||
* Here the idea is to pick values so that the selection of duty cycles
|
||||
* is as finegrain as possible, while also keeping the period less than
|
||||
* that requested.
|
||||
*
|
||||
* A simple way to satisfy the first condition is to always set
|
||||
* period_steps to its maximum value. This neatly also satisfies the
|
||||
* second condition too, since using the maximum value of period_steps
|
||||
* to calculate prescale actually calculates its upper bound.
|
||||
* Integer division will ensure a round down, so the period will thereby
|
||||
* always be less than that requested.
|
||||
*
|
||||
* The downside of this approach is a significant degree of inaccuracy,
|
||||
* especially as tmp approaches integer multiples of
|
||||
* MCHPCOREPWM_PERIOD_STEPS_MAX.
|
||||
*
|
||||
* As we must produce a period less than that requested, and for the
|
||||
* sake of creating a simple algorithm, disallow small values of tmp
|
||||
* that would need special handling.
|
||||
*/
|
||||
if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1)
|
||||
return -EINVAL;
|
||||
|
||||
/*
|
||||
* This "optimal" value for prescale is be calculated using the maximum
|
||||
* permitted value of period_steps, 0xfe.
|
||||
*
|
||||
* period * clk_rate
|
||||
* prescale = ------------------------- - 1
|
||||
* NSEC_PER_SEC * (0xfe + 1)
|
||||
*
|
||||
*
|
||||
* period * clk_rate
|
||||
* ------------------- was precomputed as `tmp`
|
||||
* NSEC_PER_SEC
|
||||
*/
|
||||
*prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1;
|
||||
|
||||
/*
|
||||
* period_steps can be computed from prescale:
|
||||
* period * clk_rate
|
||||
* period_steps = ----------------------------- - 1
|
||||
* NSEC_PER_SEC * (prescale + 1)
|
||||
*
|
||||
* However, in this approximation, we simply use the maximum value that
|
||||
* was used to compute prescale.
|
||||
*/
|
||||
*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
|
||||
const struct pwm_state *state)
|
||||
{
|
||||
struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
|
||||
bool period_locked;
|
||||
unsigned long clk_rate;
|
||||
u64 duty_steps;
|
||||
u16 prescale, period_steps;
|
||||
int ret;
|
||||
|
||||
if (!state->enabled) {
|
||||
mchp_core_pwm_enable(chip, pwm, false, pwm->state.period);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* If clk_rate is too big, the following multiplication might overflow.
|
||||
* However this is implausible, as the fabric of current FPGAs cannot
|
||||
* provide clocks at a rate high enough.
|
||||
*/
|
||||
clk_rate = clk_get_rate(mchp_core_pwm->clk);
|
||||
if (clk_rate >= NSEC_PER_SEC)
|
||||
return -EINVAL;
|
||||
|
||||
ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/*
|
||||
* If the only thing that has changed is the duty cycle or the polarity,
|
||||
* we can shortcut the calculations and just compute/apply the new duty
|
||||
* cycle pos & neg edges
|
||||
* As all the channels share the same period, do not allow it to be
|
||||
* changed if any other channels are enabled.
|
||||
* If the period is locked, it may not be possible to use a period
|
||||
* less than that requested. In that case, we just abort.
|
||||
*/
|
||||
period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm);
|
||||
|
||||
if (period_locked) {
|
||||
u16 hw_prescale;
|
||||
u16 hw_period_steps;
|
||||
|
||||
hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
|
||||
hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
|
||||
|
||||
if ((period_steps + 1) * (prescale + 1) <
|
||||
(hw_period_steps + 1) * (hw_prescale + 1))
|
||||
return -EINVAL;
|
||||
|
||||
/*
|
||||
* It is possible that something could have set the period_steps
|
||||
* register to 0xff, which would prevent us from setting a 100%
|
||||
* or 0% relative duty cycle, as explained above in
|
||||
* mchp_core_pwm_calc_period().
|
||||
* The period is locked and we cannot change this, so we abort.
|
||||
*/
|
||||
if (hw_period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX)
|
||||
return -EINVAL;
|
||||
|
||||
prescale = hw_prescale;
|
||||
period_steps = hw_period_steps;
|
||||
}
|
||||
|
||||
duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps);
|
||||
|
||||
/*
|
||||
* Because the period is not per channel, it is possible that the
|
||||
* requested duty cycle is longer than the period, in which case cap it
|
||||
* to the period, IOW a 100% duty cycle.
|
||||
*/
|
||||
if (duty_steps > period_steps)
|
||||
duty_steps = period_steps + 1;
|
||||
|
||||
if (!period_locked) {
|
||||
writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
|
||||
writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
|
||||
}
|
||||
|
||||
mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps);
|
||||
|
||||
mchp_core_pwm_enable(chip, pwm, true, pwm->state.period);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
|
||||
const struct pwm_state *state)
|
||||
{
|
||||
struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
|
||||
int ret;
|
||||
|
||||
mutex_lock(&mchp_core_pwm->lock);
|
||||
|
||||
mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
|
||||
|
||||
ret = mchp_core_pwm_apply_locked(chip, pwm, state);
|
||||
|
||||
mutex_unlock(&mchp_core_pwm->lock);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
|
||||
struct pwm_state *state)
|
||||
{
|
||||
struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
|
||||
u64 rate;
|
||||
u16 prescale, period_steps;
|
||||
u8 duty_steps, posedge, negedge;
|
||||
|
||||
mutex_lock(&mchp_core_pwm->lock);
|
||||
|
||||
mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
|
||||
|
||||
if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm))
|
||||
state->enabled = true;
|
||||
else
|
||||
state->enabled = false;
|
||||
|
||||
rate = clk_get_rate(mchp_core_pwm->clk);
|
||||
|
||||
/*
|
||||
* Calculating the period:
|
||||
* The registers are each 8 bits wide & multiplied to compute the period
|
||||
* using the formula:
|
||||
* (prescale + 1) * (period_steps + 1)
|
||||
* period = -------------------------------------
|
||||
* clk_rate
|
||||
*
|
||||
* Note:
|
||||
* The prescale and period_steps registers operate similarly to
|
||||
* CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
|
||||
* in the register plus one.
|
||||
*/
|
||||
prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
|
||||
period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
|
||||
|
||||
state->period = (period_steps + 1) * (prescale + 1);
|
||||
state->period *= NSEC_PER_SEC;
|
||||
state->period = DIV64_U64_ROUND_UP(state->period, rate);
|
||||
|
||||
posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
|
||||
negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
|
||||
|
||||
mutex_unlock(&mchp_core_pwm->lock);
|
||||
|
||||
if (negedge == posedge) {
|
||||
state->duty_cycle = state->period;
|
||||
state->period *= 2;
|
||||
} else {
|
||||
duty_steps = abs((s16)posedge - (s16)negedge);
|
||||
state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC;
|
||||
state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate);
|
||||
}
|
||||
|
||||
state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct pwm_ops mchp_core_pwm_ops = {
|
||||
.apply = mchp_core_pwm_apply,
|
||||
.get_state = mchp_core_pwm_get_state,
|
||||
.owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static const struct of_device_id mchp_core_of_match[] = {
|
||||
{
|
||||
.compatible = "microchip,corepwm-rtl-v4",
|
||||
},
|
||||
{ /* sentinel */ }
|
||||
};
|
||||
MODULE_DEVICE_TABLE(of, mchp_core_of_match);
|
||||
|
||||
static int mchp_core_pwm_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct mchp_core_pwm_chip *mchp_core_pwm;
|
||||
struct resource *regs;
|
||||
int ret;
|
||||
|
||||
mchp_core_pwm = devm_kzalloc(&pdev->dev, sizeof(*mchp_core_pwm), GFP_KERNEL);
|
||||
if (!mchp_core_pwm)
|
||||
return -ENOMEM;
|
||||
|
||||
mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, ®s);
|
||||
if (IS_ERR(mchp_core_pwm->base))
|
||||
return PTR_ERR(mchp_core_pwm->base);
|
||||
|
||||
mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL);
|
||||
if (IS_ERR(mchp_core_pwm->clk))
|
||||
return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk),
|
||||
"failed to get PWM clock\n");
|
||||
|
||||
if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask",
|
||||
&mchp_core_pwm->sync_update_mask))
|
||||
mchp_core_pwm->sync_update_mask = 0;
|
||||
|
||||
mutex_init(&mchp_core_pwm->lock);
|
||||
|
||||
mchp_core_pwm->chip.dev = &pdev->dev;
|
||||
mchp_core_pwm->chip.ops = &mchp_core_pwm_ops;
|
||||
mchp_core_pwm->chip.npwm = 16;
|
||||
|
||||
mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0));
|
||||
mchp_core_pwm->channel_enabled |=
|
||||
readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8;
|
||||
|
||||
/*
|
||||
* Enable synchronous update mode for all channels for which shadow
|
||||
* registers have been synthesised.
|
||||
*/
|
||||
writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD);
|
||||
mchp_core_pwm->update_timestamp = ktime_get();
|
||||
|
||||
ret = devm_pwmchip_add(&pdev->dev, &mchp_core_pwm->chip);
|
||||
if (ret)
|
||||
return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct platform_driver mchp_core_pwm_driver = {
|
||||
.driver = {
|
||||
.name = "mchp-core-pwm",
|
||||
.of_match_table = mchp_core_of_match,
|
||||
},
|
||||
.probe = mchp_core_pwm_probe,
|
||||
};
|
||||
module_platform_driver(mchp_core_pwm_driver);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>");
|
||||
MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs");
|
Loading…
Reference in New Issue
Block a user