ARM SCMI updates for v5.11

Two main additions this time:
 1. Support for SCMI v3.0 sensor extensions
 2. Support for voltage domain management protocol added newly to SCMI v3.0
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEunHlEgbzHrJD3ZPhAEG6vDF+4pgFAl+89d8ACgkQAEG6vDF+
 4phtNQ/9E0S1gRMVWSIgKh3K/DeqwZuUyBofOYpAOxp6pJr+as6ILK7h/62OVLHi
 02VenSHkeeDdQwXdrXNAee3TBofiWPXpar2laPcGacREhYPb4c5xeuGa1ygvUt0s
 h6Ot9GsOniPLtDRx0LStIE6jSEZzee8mCkK5rW1lt9zEpcq+zf7ull43qDbfeNNd
 uqOBgqzQS/Ngy05Iqf86uMp6zGD21lLmubmzMPIrZoTuqiGdaT7skCEEvlCdwhxU
 EqCvQ3xdQYTLAEPNExj5RGJ77JiHYEzhexNlxFdcBQYkfhR48xesTxiZrWd0Z9dc
 zJO0wkQSsZ+neMFPy12OtJVd/nKugFzDk0OXejtlKc7Wt4NpnVI6jCNI/ZdFidsW
 SCKbyWFufCgA/vwD4Sx/0du7aTSHhJYweQxSWvG5/WE4lxWdBPnaQY/SMTIWbvDd
 jw9RbWrzRiXU8fHqOmtKsfbBnEueHhZ9fR35DlAowoD+lJIWZlWcPcY7hJdTCOnw
 vI/NrTbt9wImQqA6G0yWAAqZpj2qdWn3rfvBeHM8oFXCtrbFi4fbKay/jfz0MhQE
 BacJQFe30bvhV0vANNdY1lABdjSqajRit693SJlle2oc3qQsQe79DfI2x5axKP/I
 T6eZCRp+PN/hY4l2Rvij1g62HjCsDgfQ+ENfjuJsAjN1VPEcXiI=
 =8amn
 -----END PGP SIGNATURE-----

Merge tag 'scmi-updates-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/sudeep.holla/linux into arm/drivers

ARM SCMI updates for v5.11

Two main additions this time:
1. Support for SCMI v3.0 sensor extensions
2. Support for voltage domain management protocol added newly to SCMI v3.0

* tag 'scmi-updates-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/sudeep.holla/linux:
  firmware: arm_scmi: Remove residual _le structs naming
  firmware: arm_scmi: Add SCMI v3.0 sensor notifications
  firmware: arm_scmi: Add SCMI v3.0 sensor configuration support
  firmware: arm_scmi: Add SCMI v3.0 sensors timestamped reads
  hwmon: (scmi) Update hwmon internal scale data type
  firmware: arm_scmi: Add support to enumerated SCMI voltage domain device
  firmware: arm_scmi: Add voltage domain management protocol support
  dt-bindings: arm: Add support for SCMI Regulators
  firmware: arm_scmi: Add SCMI v3.0 sensors descriptors extensions
  firmware: arm_scmi: Add full list of sensor type enumeration
  firmware: arm_scmi: Rework scmi_sensors_protocol_init
  firmware: arm_scmi: Fix missing destroy_workqueue()

Link: https://lore.kernel.org/r/20201124122412.22386-1-sudeep.holla@arm.com
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
This commit is contained in:
Arnd Bergmann 2020-11-27 21:06:06 +01:00
commit 270a5bbb09
9 changed files with 1452 additions and 65 deletions

View File

@ -62,6 +62,29 @@ Required properties:
- #power-domain-cells : Should be 1. Contains the device or the power
domain ID value used by SCMI commands.
Regulator bindings for the SCMI Regulator based on SCMI Message Protocol
------------------------------------------------------------
An SCMI Regulator is permanently bound to a well defined SCMI Voltage Domain,
and should be always positioned as a root regulator.
It does not support any current operation.
SCMI Regulators are grouped under a 'regulators' node which in turn is a child
of the SCMI Voltage protocol node inside the desired SCMI instance node.
This binding uses the common regulator binding[6] but, due to SCMI abstractions,
supports only a subset of its properties as specified below amongst Optional
properties.
Required properties:
- reg : shall identify an existent SCMI Voltage Domain.
Optional properties:
- regulator-name
- regulator-min-microvolt / regulator-max-microvolt
- regulator-always-on / regulator-boot-on
- regulator-max-step-microvolt
- regulator-coupled-with / regulator-coupled-max-spread
Sensor bindings for the sensors based on SCMI Message Protocol
--------------------------------------------------------------
SCMI provides an API to access the various sensors on the SoC.
@ -105,6 +128,7 @@ Required sub-node properties:
[3] Documentation/devicetree/bindings/thermal/thermal*.yaml
[4] Documentation/devicetree/bindings/sram/sram.yaml
[5] Documentation/devicetree/bindings/reset/reset.txt
[6] Documentation/devicetree/bindings/regulator/regulator.yaml
Example:
@ -169,6 +193,25 @@ firmware {
reg = <0x16>;
#reset-cells = <1>;
};
scmi_voltage: protocol@17 {
reg = <0x17>;
regulators {
regulator_devX: regulator@0 {
reg = <0x0>;
regulator-max-microvolt = <3300000>;
};
regulator_devY: regulator@9 {
reg = <0x9>;
regulator-min-microvolt = <500000>;
regulator-max-microvolt = <4200000>;
};
...
};
};
};
};

View File

@ -4,7 +4,7 @@ scmi-driver-y = driver.o notify.o
scmi-transport-y = shmem.o
scmi-transport-$(CONFIG_MAILBOX) += mailbox.o
scmi-transport-$(CONFIG_HAVE_ARM_SMCCC_DISCOVERY) += smc.o
scmi-protocols-y = base.o clock.o perf.o power.o reset.o sensors.o system.o
scmi-protocols-y = base.o clock.o perf.o power.o reset.o sensors.o system.o voltage.o
scmi-module-objs := $(scmi-bus-y) $(scmi-driver-y) $(scmi-protocols-y) \
$(scmi-transport-y)
obj-$(CONFIG_ARM_SCMI_PROTOCOL) += scmi-module.o

View File

@ -169,6 +169,7 @@ DECLARE_SCMI_REGISTER_UNREGISTER(perf);
DECLARE_SCMI_REGISTER_UNREGISTER(power);
DECLARE_SCMI_REGISTER_UNREGISTER(reset);
DECLARE_SCMI_REGISTER_UNREGISTER(sensors);
DECLARE_SCMI_REGISTER_UNREGISTER(voltage);
DECLARE_SCMI_REGISTER_UNREGISTER(system);
#define DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(id, name) \

View File

@ -743,6 +743,7 @@ static struct scmi_prot_devnames devnames[] = {
{ SCMI_PROTOCOL_CLOCK, { "clocks" },},
{ SCMI_PROTOCOL_SENSOR, { "hwmon" },},
{ SCMI_PROTOCOL_RESET, { "reset" },},
{ SCMI_PROTOCOL_VOLTAGE, { "regulator" },},
};
static inline void
@ -946,6 +947,7 @@ static int __init scmi_driver_init(void)
scmi_power_register();
scmi_reset_register();
scmi_sensors_register();
scmi_voltage_register();
scmi_system_register();
return platform_driver_register(&scmi_driver);
@ -961,6 +963,7 @@ static void __exit scmi_driver_exit(void)
scmi_power_unregister();
scmi_reset_unregister();
scmi_sensors_unregister();
scmi_voltage_unregister();
scmi_system_unregister();
platform_driver_unregister(&scmi_driver);

View File

@ -1474,17 +1474,17 @@ int scmi_notification_init(struct scmi_handle *handle)
ni->gid = gid;
ni->handle = handle;
ni->registered_protocols = devm_kcalloc(handle->dev, SCMI_MAX_PROTO,
sizeof(char *), GFP_KERNEL);
if (!ni->registered_protocols)
goto err;
ni->notify_wq = alloc_workqueue(dev_name(handle->dev),
WQ_UNBOUND | WQ_FREEZABLE | WQ_SYSFS,
0);
if (!ni->notify_wq)
goto err;
ni->registered_protocols = devm_kcalloc(handle->dev, SCMI_MAX_PROTO,
sizeof(char *), GFP_KERNEL);
if (!ni->registered_protocols)
goto err;
mutex_init(&ni->pending_mtx);
hash_init(ni->pending_events_handlers);

View File

@ -2,21 +2,30 @@
/*
* System Control and Management Interface (SCMI) Sensor Protocol
*
* Copyright (C) 2018 ARM Ltd.
* Copyright (C) 2018-2020 ARM Ltd.
*/
#define pr_fmt(fmt) "SCMI Notifications SENSOR - " fmt
#include <linux/bitfield.h>
#include <linux/scmi_protocol.h>
#include "common.h"
#include "notify.h"
#define SCMI_MAX_NUM_SENSOR_AXIS 63
#define SCMIv2_SENSOR_PROTOCOL 0x10000
enum scmi_sensor_protocol_cmd {
SENSOR_DESCRIPTION_GET = 0x3,
SENSOR_TRIP_POINT_NOTIFY = 0x4,
SENSOR_TRIP_POINT_CONFIG = 0x5,
SENSOR_READING_GET = 0x6,
SENSOR_AXIS_DESCRIPTION_GET = 0x7,
SENSOR_LIST_UPDATE_INTERVALS = 0x8,
SENSOR_CONFIG_GET = 0x9,
SENSOR_CONFIG_SET = 0xA,
SENSOR_CONTINUOUS_UPDATE_NOTIFY = 0xB,
};
struct scmi_msg_resp_sensor_attributes {
@ -28,29 +37,106 @@ struct scmi_msg_resp_sensor_attributes {
__le32 reg_size;
};
/* v3 attributes_low macros */
#define SUPPORTS_UPDATE_NOTIFY(x) FIELD_GET(BIT(30), (x))
#define SENSOR_TSTAMP_EXP(x) FIELD_GET(GENMASK(14, 10), (x))
#define SUPPORTS_TIMESTAMP(x) FIELD_GET(BIT(9), (x))
#define SUPPORTS_EXTEND_ATTRS(x) FIELD_GET(BIT(8), (x))
/* v2 attributes_high macros */
#define SENSOR_UPDATE_BASE(x) FIELD_GET(GENMASK(31, 27), (x))
#define SENSOR_UPDATE_SCALE(x) FIELD_GET(GENMASK(26, 22), (x))
/* v3 attributes_high macros */
#define SENSOR_AXIS_NUMBER(x) FIELD_GET(GENMASK(21, 16), (x))
#define SUPPORTS_AXIS(x) FIELD_GET(BIT(8), (x))
/* v3 resolution macros */
#define SENSOR_RES(x) FIELD_GET(GENMASK(26, 0), (x))
#define SENSOR_RES_EXP(x) FIELD_GET(GENMASK(31, 27), (x))
struct scmi_msg_resp_attrs {
__le32 min_range_low;
__le32 min_range_high;
__le32 max_range_low;
__le32 max_range_high;
};
struct scmi_msg_resp_sensor_description {
__le16 num_returned;
__le16 num_remaining;
struct {
struct scmi_sensor_descriptor {
__le32 id;
__le32 attributes_low;
#define SUPPORTS_ASYNC_READ(x) ((x) & BIT(31))
#define NUM_TRIP_POINTS(x) ((x) & 0xff)
/* Common attributes_low macros */
#define SUPPORTS_ASYNC_READ(x) FIELD_GET(BIT(31), (x))
#define NUM_TRIP_POINTS(x) FIELD_GET(GENMASK(7, 0), (x))
__le32 attributes_high;
#define SENSOR_TYPE(x) ((x) & 0xff)
#define SENSOR_SCALE(x) (((x) >> 11) & 0x1f)
#define SENSOR_SCALE_SIGN BIT(4)
#define SENSOR_SCALE_EXTEND GENMASK(7, 5)
#define SENSOR_UPDATE_SCALE(x) (((x) >> 22) & 0x1f)
#define SENSOR_UPDATE_BASE(x) (((x) >> 27) & 0x1f)
u8 name[SCMI_MAX_STR_SIZE];
} desc[0];
/* Common attributes_high macros */
#define SENSOR_SCALE(x) FIELD_GET(GENMASK(15, 11), (x))
#define SENSOR_SCALE_SIGN BIT(4)
#define SENSOR_SCALE_EXTEND GENMASK(31, 5)
#define SENSOR_TYPE(x) FIELD_GET(GENMASK(7, 0), (x))
u8 name[SCMI_MAX_STR_SIZE];
/* only for version > 2.0 */
__le32 power;
__le32 resolution;
struct scmi_msg_resp_attrs scalar_attrs;
} desc[];
};
struct scmi_msg_sensor_trip_point_notify {
/* Base scmi_sensor_descriptor size excluding extended attrs after name */
#define SCMI_MSG_RESP_SENS_DESCR_BASE_SZ 28
/* Sign extend to a full s32 */
#define S32_EXT(v) \
({ \
int __v = (v); \
\
if (__v & SENSOR_SCALE_SIGN) \
__v |= SENSOR_SCALE_EXTEND; \
__v; \
})
struct scmi_msg_sensor_axis_description_get {
__le32 id;
__le32 axis_desc_index;
};
struct scmi_msg_resp_sensor_axis_description {
__le32 num_axis_flags;
#define NUM_AXIS_RETURNED(x) FIELD_GET(GENMASK(5, 0), (x))
#define NUM_AXIS_REMAINING(x) FIELD_GET(GENMASK(31, 26), (x))
struct scmi_axis_descriptor {
__le32 id;
__le32 attributes_low;
__le32 attributes_high;
u8 name[SCMI_MAX_STR_SIZE];
__le32 resolution;
struct scmi_msg_resp_attrs attrs;
} desc[];
};
/* Base scmi_axis_descriptor size excluding extended attrs after name */
#define SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ 28
struct scmi_msg_sensor_list_update_intervals {
__le32 id;
__le32 index;
};
struct scmi_msg_resp_sensor_list_update_intervals {
__le32 num_intervals_flags;
#define NUM_INTERVALS_RETURNED(x) FIELD_GET(GENMASK(11, 0), (x))
#define SEGMENTED_INTVL_FORMAT(x) FIELD_GET(BIT(12), (x))
#define NUM_INTERVALS_REMAINING(x) FIELD_GET(GENMASK(31, 16), (x))
__le32 intervals[];
};
struct scmi_msg_sensor_request_notify {
__le32 id;
__le32 event_control;
#define SENSOR_TP_NOTIFY_ALL BIT(0)
#define SENSOR_NOTIFY_ALL BIT(0)
};
struct scmi_msg_set_sensor_trip_point {
@ -66,18 +152,46 @@ struct scmi_msg_set_sensor_trip_point {
__le32 value_high;
};
struct scmi_msg_sensor_config_set {
__le32 id;
__le32 sensor_config;
};
struct scmi_msg_sensor_reading_get {
__le32 id;
__le32 flags;
#define SENSOR_READ_ASYNC BIT(0)
};
struct scmi_resp_sensor_reading_complete {
__le32 id;
__le64 readings;
};
struct scmi_sensor_reading_resp {
__le32 sensor_value_low;
__le32 sensor_value_high;
__le32 timestamp_low;
__le32 timestamp_high;
};
struct scmi_resp_sensor_reading_complete_v3 {
__le32 id;
struct scmi_sensor_reading_resp readings[];
};
struct scmi_sensor_trip_notify_payld {
__le32 agent_id;
__le32 sensor_id;
__le32 trip_point_desc;
};
struct scmi_sensor_update_notify_payld {
__le32 agent_id;
__le32 sensor_id;
struct scmi_sensor_reading_resp readings[];
};
struct sensors_info {
u32 version;
int num_sensors;
@ -114,6 +228,194 @@ static int scmi_sensor_attributes_get(const struct scmi_handle *handle,
return ret;
}
static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out,
struct scmi_msg_resp_attrs *in)
{
out->min_range = get_unaligned_le64((void *)&in->min_range_low);
out->max_range = get_unaligned_le64((void *)&in->max_range_low);
}
static int scmi_sensor_update_intervals(const struct scmi_handle *handle,
struct scmi_sensor_info *s)
{
int ret, cnt;
u32 desc_index = 0;
u16 num_returned, num_remaining;
struct scmi_xfer *ti;
struct scmi_msg_resp_sensor_list_update_intervals *buf;
struct scmi_msg_sensor_list_update_intervals *msg;
ret = scmi_xfer_get_init(handle, SENSOR_LIST_UPDATE_INTERVALS,
SCMI_PROTOCOL_SENSOR, sizeof(*msg), 0, &ti);
if (ret)
return ret;
buf = ti->rx.buf;
do {
u32 flags;
msg = ti->tx.buf;
/* Set the number of sensors to be skipped/already read */
msg->id = cpu_to_le32(s->id);
msg->index = cpu_to_le32(desc_index);
ret = scmi_do_xfer(handle, ti);
if (ret)
break;
flags = le32_to_cpu(buf->num_intervals_flags);
num_returned = NUM_INTERVALS_RETURNED(flags);
num_remaining = NUM_INTERVALS_REMAINING(flags);
/*
* Max intervals is not declared previously anywhere so we
* assume it's returned+remaining.
*/
if (!s->intervals.count) {
s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
s->intervals.count = num_returned + num_remaining;
/* segmented intervals are reported in one triplet */
if (s->intervals.segmented &&
(num_remaining || num_returned != 3)) {
dev_err(handle->dev,
"Sensor ID:%d advertises an invalid segmented interval (%d)\n",
s->id, s->intervals.count);
s->intervals.segmented = false;
s->intervals.count = 0;
ret = -EINVAL;
break;
}
/* Direct allocation when exceeding pre-allocated */
if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
s->intervals.desc =
devm_kcalloc(handle->dev,
s->intervals.count,
sizeof(*s->intervals.desc),
GFP_KERNEL);
if (!s->intervals.desc) {
s->intervals.segmented = false;
s->intervals.count = 0;
ret = -ENOMEM;
break;
}
}
} else if (desc_index + num_returned > s->intervals.count) {
dev_err(handle->dev,
"No. of update intervals can't exceed %d\n",
s->intervals.count);
ret = -EINVAL;
break;
}
for (cnt = 0; cnt < num_returned; cnt++)
s->intervals.desc[desc_index + cnt] =
le32_to_cpu(buf->intervals[cnt]);
desc_index += num_returned;
scmi_reset_rx_to_maxsz(handle, ti);
/*
* check for both returned and remaining to avoid infinite
* loop due to buggy firmware
*/
} while (num_returned && num_remaining);
scmi_xfer_put(handle, ti);
return ret;
}
static int scmi_sensor_axis_description(const struct scmi_handle *handle,
struct scmi_sensor_info *s)
{
int ret, cnt;
u32 desc_index = 0;
u16 num_returned, num_remaining;
struct scmi_xfer *te;
struct scmi_msg_resp_sensor_axis_description *buf;
struct scmi_msg_sensor_axis_description_get *msg;
s->axis = devm_kcalloc(handle->dev, s->num_axis,
sizeof(*s->axis), GFP_KERNEL);
if (!s->axis)
return -ENOMEM;
ret = scmi_xfer_get_init(handle, SENSOR_AXIS_DESCRIPTION_GET,
SCMI_PROTOCOL_SENSOR, sizeof(*msg), 0, &te);
if (ret)
return ret;
buf = te->rx.buf;
do {
u32 flags;
struct scmi_axis_descriptor *adesc;
msg = te->tx.buf;
/* Set the number of sensors to be skipped/already read */
msg->id = cpu_to_le32(s->id);
msg->axis_desc_index = cpu_to_le32(desc_index);
ret = scmi_do_xfer(handle, te);
if (ret)
break;
flags = le32_to_cpu(buf->num_axis_flags);
num_returned = NUM_AXIS_RETURNED(flags);
num_remaining = NUM_AXIS_REMAINING(flags);
if (desc_index + num_returned > s->num_axis) {
dev_err(handle->dev, "No. of axis can't exceed %d\n",
s->num_axis);
break;
}
adesc = &buf->desc[0];
for (cnt = 0; cnt < num_returned; cnt++) {
u32 attrh, attrl;
struct scmi_sensor_axis_info *a;
size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
attrl = le32_to_cpu(adesc->attributes_low);
a = &s->axis[desc_index + cnt];
a->id = le32_to_cpu(adesc->id);
a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
attrh = le32_to_cpu(adesc->attributes_high);
a->scale = S32_EXT(SENSOR_SCALE(attrh));
a->type = SENSOR_TYPE(attrh);
strlcpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
if (a->extended_attrs) {
unsigned int ares =
le32_to_cpu(adesc->resolution);
a->resolution = SENSOR_RES(ares);
a->exponent =
S32_EXT(SENSOR_RES_EXP(ares));
dsize += sizeof(adesc->resolution);
scmi_parse_range_attrs(&a->attrs,
&adesc->attrs);
dsize += sizeof(adesc->attrs);
}
adesc = (typeof(adesc))((u8 *)adesc + dsize);
}
desc_index += num_returned;
scmi_reset_rx_to_maxsz(handle, te);
/*
* check for both returned and remaining to avoid infinite
* loop due to buggy firmware
*/
} while (num_returned && num_remaining);
scmi_xfer_put(handle, te);
return ret;
}
static int scmi_sensor_description_get(const struct scmi_handle *handle,
struct sensors_info *si)
{
@ -131,9 +433,10 @@ static int scmi_sensor_description_get(const struct scmi_handle *handle,
buf = t->rx.buf;
do {
struct scmi_sensor_descriptor *sdesc;
/* Set the number of sensors to be skipped/already read */
put_unaligned_le32(desc_index, t->tx.buf);
ret = scmi_do_xfer(handle, t);
if (ret)
break;
@ -147,22 +450,97 @@ static int scmi_sensor_description_get(const struct scmi_handle *handle,
break;
}
sdesc = &buf->desc[0];
for (cnt = 0; cnt < num_returned; cnt++) {
u32 attrh, attrl;
struct scmi_sensor_info *s;
size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
attrl = le32_to_cpu(buf->desc[cnt].attributes_low);
attrh = le32_to_cpu(buf->desc[cnt].attributes_high);
s = &si->sensors[desc_index + cnt];
s->id = le32_to_cpu(buf->desc[cnt].id);
s->type = SENSOR_TYPE(attrh);
s->scale = SENSOR_SCALE(attrh);
/* Sign extend to a full s8 */
if (s->scale & SENSOR_SCALE_SIGN)
s->scale |= SENSOR_SCALE_EXTEND;
s->id = le32_to_cpu(sdesc->id);
attrl = le32_to_cpu(sdesc->attributes_low);
/* common bitfields parsing */
s->async = SUPPORTS_ASYNC_READ(attrl);
s->num_trip_points = NUM_TRIP_POINTS(attrl);
strlcpy(s->name, buf->desc[cnt].name, SCMI_MAX_STR_SIZE);
/**
* only SCMIv3.0 specific bitfield below.
* Such bitfields are assumed to be zeroed on non
* relevant fw versions...assuming fw not buggy !
*/
s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
s->timestamped = SUPPORTS_TIMESTAMP(attrl);
if (s->timestamped)
s->tstamp_scale =
S32_EXT(SENSOR_TSTAMP_EXP(attrl));
s->extended_scalar_attrs =
SUPPORTS_EXTEND_ATTRS(attrl);
attrh = le32_to_cpu(sdesc->attributes_high);
/* common bitfields parsing */
s->scale = S32_EXT(SENSOR_SCALE(attrh));
s->type = SENSOR_TYPE(attrh);
/* Use pre-allocated pool wherever possible */
s->intervals.desc = s->intervals.prealloc_pool;
if (si->version == SCMIv2_SENSOR_PROTOCOL) {
s->intervals.segmented = false;
s->intervals.count = 1;
/*
* Convert SCMIv2.0 update interval format to
* SCMIv3.0 to be used as the common exposed
* descriptor, accessible via common macros.
*/
s->intervals.desc[0] =
(SENSOR_UPDATE_BASE(attrh) << 5) |
SENSOR_UPDATE_SCALE(attrh);
} else {
/*
* From SCMIv3.0 update intervals are retrieved
* via a dedicated (optional) command.
* Since the command is optional, on error carry
* on without any update interval.
*/
if (scmi_sensor_update_intervals(handle, s))
dev_dbg(handle->dev,
"Update Intervals not available for sensor ID:%d\n",
s->id);
}
/**
* only > SCMIv2.0 specific bitfield below.
* Such bitfields are assumed to be zeroed on non
* relevant fw versions...assuming fw not buggy !
*/
s->num_axis = min_t(unsigned int,
SUPPORTS_AXIS(attrh) ?
SENSOR_AXIS_NUMBER(attrh) : 0,
SCMI_MAX_NUM_SENSOR_AXIS);
strlcpy(s->name, sdesc->name, SCMI_MAX_STR_SIZE);
if (s->extended_scalar_attrs) {
s->sensor_power = le32_to_cpu(sdesc->power);
dsize += sizeof(sdesc->power);
/* Only for sensors reporting scalar values */
if (s->num_axis == 0) {
unsigned int sres =
le32_to_cpu(sdesc->resolution);
s->resolution = SENSOR_RES(sres);
s->exponent =
S32_EXT(SENSOR_RES_EXP(sres));
dsize += sizeof(sdesc->resolution);
scmi_parse_range_attrs(&s->scalar_attrs,
&sdesc->scalar_attrs);
dsize += sizeof(sdesc->scalar_attrs);
}
}
if (s->num_axis > 0) {
ret = scmi_sensor_axis_description(handle, s);
if (ret)
goto out;
}
sdesc = (typeof(sdesc))((u8 *)sdesc + dsize);
}
desc_index += num_returned;
@ -174,19 +552,21 @@ static int scmi_sensor_description_get(const struct scmi_handle *handle,
*/
} while (num_returned && num_remaining);
out:
scmi_xfer_put(handle, t);
return ret;
}
static int scmi_sensor_trip_point_notify(const struct scmi_handle *handle,
u32 sensor_id, bool enable)
static inline int
scmi_sensor_request_notify(const struct scmi_handle *handle, u32 sensor_id,
u8 message_id, bool enable)
{
int ret;
u32 evt_cntl = enable ? SENSOR_TP_NOTIFY_ALL : 0;
u32 evt_cntl = enable ? SENSOR_NOTIFY_ALL : 0;
struct scmi_xfer *t;
struct scmi_msg_sensor_trip_point_notify *cfg;
struct scmi_msg_sensor_request_notify *cfg;
ret = scmi_xfer_get_init(handle, SENSOR_TRIP_POINT_NOTIFY,
ret = scmi_xfer_get_init(handle, message_id,
SCMI_PROTOCOL_SENSOR, sizeof(*cfg), 0, &t);
if (ret)
return ret;
@ -201,6 +581,23 @@ static int scmi_sensor_trip_point_notify(const struct scmi_handle *handle,
return ret;
}
static int scmi_sensor_trip_point_notify(const struct scmi_handle *handle,
u32 sensor_id, bool enable)
{
return scmi_sensor_request_notify(handle, sensor_id,
SENSOR_TRIP_POINT_NOTIFY,
enable);
}
static int
scmi_sensor_continuous_update_notify(const struct scmi_handle *handle,
u32 sensor_id, bool enable)
{
return scmi_sensor_request_notify(handle, sensor_id,
SENSOR_CONTINUOUS_UPDATE_NOTIFY,
enable);
}
static int
scmi_sensor_trip_point_config(const struct scmi_handle *handle, u32 sensor_id,
u8 trip_id, u64 trip_value)
@ -227,6 +624,75 @@ scmi_sensor_trip_point_config(const struct scmi_handle *handle, u32 sensor_id,
return ret;
}
static int scmi_sensor_config_get(const struct scmi_handle *handle,
u32 sensor_id, u32 *sensor_config)
{
int ret;
struct scmi_xfer *t;
ret = scmi_xfer_get_init(handle, SENSOR_CONFIG_GET,
SCMI_PROTOCOL_SENSOR, sizeof(__le32),
sizeof(__le32), &t);
if (ret)
return ret;
put_unaligned_le32(cpu_to_le32(sensor_id), t->tx.buf);
ret = scmi_do_xfer(handle, t);
if (!ret) {
struct sensors_info *si = handle->sensor_priv;
struct scmi_sensor_info *s = si->sensors + sensor_id;
*sensor_config = get_unaligned_le64(t->rx.buf);
s->sensor_config = *sensor_config;
}
scmi_xfer_put(handle, t);
return ret;
}
static int scmi_sensor_config_set(const struct scmi_handle *handle,
u32 sensor_id, u32 sensor_config)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_sensor_config_set *msg;
ret = scmi_xfer_get_init(handle, SENSOR_CONFIG_SET,
SCMI_PROTOCOL_SENSOR, sizeof(*msg), 0, &t);
if (ret)
return ret;
msg = t->tx.buf;
msg->id = cpu_to_le32(sensor_id);
msg->sensor_config = cpu_to_le32(sensor_config);
ret = scmi_do_xfer(handle, t);
if (!ret) {
struct sensors_info *si = handle->sensor_priv;
struct scmi_sensor_info *s = si->sensors + sensor_id;
s->sensor_config = sensor_config;
}
scmi_xfer_put(handle, t);
return ret;
}
/**
* scmi_sensor_reading_get - Read scalar sensor value
* @handle: Platform handle
* @sensor_id: Sensor ID
* @value: The 64bit value sensor reading
*
* This function returns a single 64 bit reading value representing the sensor
* value; if the platform SCMI Protocol implementation and the sensor support
* multiple axis and timestamped-reads, this just returns the first axis while
* dropping the timestamp value.
* Use instead the @scmi_sensor_reading_get_timestamped to retrieve the array of
* timestamped multi-axis values.
*
* Return: 0 on Success
*/
static int scmi_sensor_reading_get(const struct scmi_handle *handle,
u32 sensor_id, u64 *value)
{
@ -237,20 +703,24 @@ static int scmi_sensor_reading_get(const struct scmi_handle *handle,
struct scmi_sensor_info *s = si->sensors + sensor_id;
ret = scmi_xfer_get_init(handle, SENSOR_READING_GET,
SCMI_PROTOCOL_SENSOR, sizeof(*sensor),
sizeof(u64), &t);
SCMI_PROTOCOL_SENSOR, sizeof(*sensor), 0, &t);
if (ret)
return ret;
sensor = t->tx.buf;
sensor->id = cpu_to_le32(sensor_id);
if (s->async) {
sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
ret = scmi_do_xfer_with_response(handle, t);
if (!ret)
*value = get_unaligned_le64((void *)
((__le32 *)t->rx.buf + 1));
if (!ret) {
struct scmi_resp_sensor_reading_complete *resp;
resp = t->rx.buf;
if (le32_to_cpu(resp->id) == sensor_id)
*value = get_unaligned_le64(&resp->readings);
else
ret = -EPROTO;
}
} else {
sensor->flags = cpu_to_le32(0);
ret = scmi_do_xfer(handle, t);
@ -262,6 +732,84 @@ static int scmi_sensor_reading_get(const struct scmi_handle *handle,
return ret;
}
static inline void
scmi_parse_sensor_readings(struct scmi_sensor_reading *out,
const struct scmi_sensor_reading_resp *in)
{
out->value = get_unaligned_le64((void *)&in->sensor_value_low);
out->timestamp = get_unaligned_le64((void *)&in->timestamp_low);
}
/**
* scmi_sensor_reading_get_timestamped - Read multiple-axis timestamped values
* @handle: Platform handle
* @sensor_id: Sensor ID
* @count: The length of the provided @readings array
* @readings: An array of elements each representing a timestamped per-axis
* reading of type @struct scmi_sensor_reading.
* Returned readings are ordered as the @axis descriptors array
* included in @struct scmi_sensor_info and the max number of
* returned elements is min(@count, @num_axis); ideally the provided
* array should be of length @count equal to @num_axis.
*
* Return: 0 on Success
*/
static int
scmi_sensor_reading_get_timestamped(const struct scmi_handle *handle,
u32 sensor_id, u8 count,
struct scmi_sensor_reading *readings)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_sensor_reading_get *sensor;
struct sensors_info *si = handle->sensor_priv;
struct scmi_sensor_info *s = si->sensors + sensor_id;
if (!count || !readings ||
(!s->num_axis && count > 1) || (s->num_axis && count > s->num_axis))
return -EINVAL;
ret = scmi_xfer_get_init(handle, SENSOR_READING_GET,
SCMI_PROTOCOL_SENSOR, sizeof(*sensor), 0, &t);
if (ret)
return ret;
sensor = t->tx.buf;
sensor->id = cpu_to_le32(sensor_id);
if (s->async) {
sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
ret = scmi_do_xfer_with_response(handle, t);
if (!ret) {
int i;
struct scmi_resp_sensor_reading_complete_v3 *resp;
resp = t->rx.buf;
/* Retrieve only the number of requested axis anyway */
if (le32_to_cpu(resp->id) == sensor_id)
for (i = 0; i < count; i++)
scmi_parse_sensor_readings(&readings[i],
&resp->readings[i]);
else
ret = -EPROTO;
}
} else {
sensor->flags = cpu_to_le32(0);
ret = scmi_do_xfer(handle, t);
if (!ret) {
int i;
struct scmi_sensor_reading_resp *resp_readings;
resp_readings = t->rx.buf;
for (i = 0; i < count; i++)
scmi_parse_sensor_readings(&readings[i],
&resp_readings[i]);
}
}
scmi_xfer_put(handle, t);
return ret;
}
static const struct scmi_sensor_info *
scmi_sensor_info_get(const struct scmi_handle *handle, u32 sensor_id)
{
@ -282,6 +830,9 @@ static const struct scmi_sensor_ops sensor_ops = {
.info_get = scmi_sensor_info_get,
.trip_point_config = scmi_sensor_trip_point_config,
.reading_get = scmi_sensor_reading_get,
.reading_get_timestamped = scmi_sensor_reading_get_timestamped,
.config_get = scmi_sensor_config_get,
.config_set = scmi_sensor_config_set,
};
static int scmi_sensor_set_notify_enabled(const struct scmi_handle *handle,
@ -289,7 +840,19 @@ static int scmi_sensor_set_notify_enabled(const struct scmi_handle *handle,
{
int ret;
ret = scmi_sensor_trip_point_notify(handle, src_id, enable);
switch (evt_id) {
case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
ret = scmi_sensor_trip_point_notify(handle, src_id, enable);
break;
case SCMI_EVENT_SENSOR_UPDATE:
ret = scmi_sensor_continuous_update_notify(handle, src_id,
enable);
break;
default:
ret = -EINVAL;
break;
}
if (ret)
pr_debug("FAIL_ENABLED - evt[%X] dom[%d] - ret:%d\n",
evt_id, src_id, ret);
@ -302,20 +865,59 @@ static void *scmi_sensor_fill_custom_report(const struct scmi_handle *handle,
const void *payld, size_t payld_sz,
void *report, u32 *src_id)
{
const struct scmi_sensor_trip_notify_payld *p = payld;
struct scmi_sensor_trip_point_report *r = report;
void *rep = NULL;
if (evt_id != SCMI_EVENT_SENSOR_TRIP_POINT_EVENT ||
sizeof(*p) != payld_sz)
return NULL;
switch (evt_id) {
case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
{
const struct scmi_sensor_trip_notify_payld *p = payld;
struct scmi_sensor_trip_point_report *r = report;
r->timestamp = timestamp;
r->agent_id = le32_to_cpu(p->agent_id);
r->sensor_id = le32_to_cpu(p->sensor_id);
r->trip_point_desc = le32_to_cpu(p->trip_point_desc);
*src_id = r->sensor_id;
if (sizeof(*p) != payld_sz)
break;
return r;
r->timestamp = timestamp;
r->agent_id = le32_to_cpu(p->agent_id);
r->sensor_id = le32_to_cpu(p->sensor_id);
r->trip_point_desc = le32_to_cpu(p->trip_point_desc);
*src_id = r->sensor_id;
rep = r;
break;
}
case SCMI_EVENT_SENSOR_UPDATE:
{
int i;
struct scmi_sensor_info *s;
const struct scmi_sensor_update_notify_payld *p = payld;
struct scmi_sensor_update_report *r = report;
struct sensors_info *sinfo = handle->sensor_priv;
/* payld_sz is variable for this event */
r->sensor_id = le32_to_cpu(p->sensor_id);
if (r->sensor_id >= sinfo->num_sensors)
break;
r->timestamp = timestamp;
r->agent_id = le32_to_cpu(p->agent_id);
s = &sinfo->sensors[r->sensor_id];
/*
* The generated report r (@struct scmi_sensor_update_report)
* was pre-allocated to contain up to SCMI_MAX_NUM_SENSOR_AXIS
* readings: here it is filled with the effective @num_axis
* readings defined for this sensor or 1 for scalar sensors.
*/
r->readings_count = s->num_axis ?: 1;
for (i = 0; i < r->readings_count; i++)
scmi_parse_sensor_readings(&r->readings[i],
&p->readings[i]);
*src_id = r->sensor_id;
rep = r;
break;
}
default:
break;
}
return rep;
}
static const struct scmi_event sensor_events[] = {
@ -324,6 +926,16 @@ static const struct scmi_event sensor_events[] = {
.max_payld_sz = sizeof(struct scmi_sensor_trip_notify_payld),
.max_report_sz = sizeof(struct scmi_sensor_trip_point_report),
},
{
.id = SCMI_EVENT_SENSOR_UPDATE,
.max_payld_sz =
sizeof(struct scmi_sensor_update_notify_payld) +
SCMI_MAX_NUM_SENSOR_AXIS *
sizeof(struct scmi_sensor_reading_resp),
.max_report_sz = sizeof(struct scmi_sensor_update_report) +
SCMI_MAX_NUM_SENSOR_AXIS *
sizeof(struct scmi_sensor_reading),
},
};
static const struct scmi_event_ops sensor_event_ops = {
@ -334,6 +946,7 @@ static const struct scmi_event_ops sensor_event_ops = {
static int scmi_sensors_protocol_init(struct scmi_handle *handle)
{
u32 version;
int ret;
struct sensors_info *sinfo;
scmi_version_get(handle, SCMI_PROTOCOL_SENSOR, &version);
@ -344,15 +957,19 @@ static int scmi_sensors_protocol_init(struct scmi_handle *handle)
sinfo = devm_kzalloc(handle->dev, sizeof(*sinfo), GFP_KERNEL);
if (!sinfo)
return -ENOMEM;
sinfo->version = version;
scmi_sensor_attributes_get(handle, sinfo);
ret = scmi_sensor_attributes_get(handle, sinfo);
if (ret)
return ret;
sinfo->sensors = devm_kcalloc(handle->dev, sinfo->num_sensors,
sizeof(*sinfo->sensors), GFP_KERNEL);
if (!sinfo->sensors)
return -ENOMEM;
scmi_sensor_description_get(handle, sinfo);
ret = scmi_sensor_description_get(handle, sinfo);
if (ret)
return ret;
scmi_register_protocol_events(handle,
SCMI_PROTOCOL_SENSOR, SCMI_PROTO_QUEUE_SZ,
@ -360,9 +977,8 @@ static int scmi_sensors_protocol_init(struct scmi_handle *handle)
ARRAY_SIZE(sensor_events),
sinfo->num_sensors);
sinfo->version = version;
handle->sensor_ops = &sensor_ops;
handle->sensor_priv = sinfo;
handle->sensor_ops = &sensor_ops;
return 0;
}

View File

@ -0,0 +1,380 @@
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Voltage Protocol
*
* Copyright (C) 2020 ARM Ltd.
*/
#include <linux/scmi_protocol.h>
#include "common.h"
#define VOLTAGE_DOMS_NUM_MASK GENMASK(15, 0)
#define REMAINING_LEVELS_MASK GENMASK(31, 16)
#define RETURNED_LEVELS_MASK GENMASK(11, 0)
enum scmi_voltage_protocol_cmd {
VOLTAGE_DOMAIN_ATTRIBUTES = 0x3,
VOLTAGE_DESCRIBE_LEVELS = 0x4,
VOLTAGE_CONFIG_SET = 0x5,
VOLTAGE_CONFIG_GET = 0x6,
VOLTAGE_LEVEL_SET = 0x7,
VOLTAGE_LEVEL_GET = 0x8,
};
#define NUM_VOLTAGE_DOMAINS(x) ((u16)(FIELD_GET(VOLTAGE_DOMS_NUM_MASK, (x))))
struct scmi_msg_resp_domain_attributes {
__le32 attr;
u8 name[SCMI_MAX_STR_SIZE];
};
struct scmi_msg_cmd_describe_levels {
__le32 domain_id;
__le32 level_index;
};
struct scmi_msg_resp_describe_levels {
__le32 flags;
#define NUM_REMAINING_LEVELS(f) ((u16)(FIELD_GET(REMAINING_LEVELS_MASK, (f))))
#define NUM_RETURNED_LEVELS(f) ((u16)(FIELD_GET(RETURNED_LEVELS_MASK, (f))))
#define SUPPORTS_SEGMENTED_LEVELS(f) ((f) & BIT(12))
__le32 voltage[];
};
struct scmi_msg_cmd_config_set {
__le32 domain_id;
__le32 config;
};
struct scmi_msg_cmd_level_set {
__le32 domain_id;
__le32 flags;
__le32 voltage_level;
};
struct voltage_info {
unsigned int version;
unsigned int num_domains;
struct scmi_voltage_info *domains;
};
static int scmi_protocol_attributes_get(const struct scmi_handle *handle,
struct voltage_info *vinfo)
{
int ret;
struct scmi_xfer *t;
ret = scmi_xfer_get_init(handle, PROTOCOL_ATTRIBUTES,
SCMI_PROTOCOL_VOLTAGE, 0, sizeof(__le32), &t);
if (ret)
return ret;
ret = scmi_do_xfer(handle, t);
if (!ret)
vinfo->num_domains =
NUM_VOLTAGE_DOMAINS(get_unaligned_le32(t->rx.buf));
scmi_xfer_put(handle, t);
return ret;
}
static int scmi_init_voltage_levels(struct device *dev,
struct scmi_voltage_info *v,
u32 num_returned, u32 num_remaining,
bool segmented)
{
u32 num_levels;
num_levels = num_returned + num_remaining;
/*
* segmented levels entries are represented by a single triplet
* returned all in one go.
*/
if (!num_levels ||
(segmented && (num_remaining || num_returned != 3))) {
dev_err(dev,
"Invalid level descriptor(%d/%d/%d) for voltage dom %d\n",
num_levels, num_returned, num_remaining, v->id);
return -EINVAL;
}
v->levels_uv = devm_kcalloc(dev, num_levels, sizeof(u32), GFP_KERNEL);
if (!v->levels_uv)
return -ENOMEM;
v->num_levels = num_levels;
v->segmented = segmented;
return 0;
}
static int scmi_voltage_descriptors_get(const struct scmi_handle *handle,
struct voltage_info *vinfo)
{
int ret, dom;
struct scmi_xfer *td, *tl;
struct device *dev = handle->dev;
struct scmi_msg_resp_domain_attributes *resp_dom;
struct scmi_msg_resp_describe_levels *resp_levels;
ret = scmi_xfer_get_init(handle, VOLTAGE_DOMAIN_ATTRIBUTES,
SCMI_PROTOCOL_VOLTAGE, sizeof(__le32),
sizeof(*resp_dom), &td);
if (ret)
return ret;
resp_dom = td->rx.buf;
ret = scmi_xfer_get_init(handle, VOLTAGE_DESCRIBE_LEVELS,
SCMI_PROTOCOL_VOLTAGE, sizeof(__le64), 0, &tl);
if (ret)
goto outd;
resp_levels = tl->rx.buf;
for (dom = 0; dom < vinfo->num_domains; dom++) {
u32 desc_index = 0;
u16 num_returned = 0, num_remaining = 0;
struct scmi_msg_cmd_describe_levels *cmd;
struct scmi_voltage_info *v;
/* Retrieve domain attributes at first ... */
put_unaligned_le32(dom, td->tx.buf);
ret = scmi_do_xfer(handle, td);
/* Skip domain on comms error */
if (ret)
continue;
v = vinfo->domains + dom;
v->id = dom;
v->attributes = le32_to_cpu(resp_dom->attr);
strlcpy(v->name, resp_dom->name, SCMI_MAX_STR_SIZE);
cmd = tl->tx.buf;
/* ...then retrieve domain levels descriptions */
do {
u32 flags;
int cnt;
cmd->domain_id = cpu_to_le32(v->id);
cmd->level_index = desc_index;
ret = scmi_do_xfer(handle, tl);
if (ret)
break;
flags = le32_to_cpu(resp_levels->flags);
num_returned = NUM_RETURNED_LEVELS(flags);
num_remaining = NUM_REMAINING_LEVELS(flags);
/* Allocate space for num_levels if not already done */
if (!v->num_levels) {
ret = scmi_init_voltage_levels(dev, v,
num_returned,
num_remaining,
SUPPORTS_SEGMENTED_LEVELS(flags));
if (ret)
break;
}
if (desc_index + num_returned > v->num_levels) {
dev_err(handle->dev,
"No. of voltage levels can't exceed %d\n",
v->num_levels);
ret = -EINVAL;
break;
}
for (cnt = 0; cnt < num_returned; cnt++) {
s32 val;
val =
(s32)le32_to_cpu(resp_levels->voltage[cnt]);
v->levels_uv[desc_index + cnt] = val;
if (val < 0)
v->negative_volts_allowed = true;
}
desc_index += num_returned;
scmi_reset_rx_to_maxsz(handle, tl);
/* check both to avoid infinite loop due to buggy fw */
} while (num_returned && num_remaining);
if (ret) {
v->num_levels = 0;
devm_kfree(dev, v->levels_uv);
}
scmi_reset_rx_to_maxsz(handle, td);
}
scmi_xfer_put(handle, tl);
outd:
scmi_xfer_put(handle, td);
return ret;
}
static int __scmi_voltage_get_u32(const struct scmi_handle *handle,
u8 cmd_id, u32 domain_id, u32 *value)
{
int ret;
struct scmi_xfer *t;
struct voltage_info *vinfo = handle->voltage_priv;
if (domain_id >= vinfo->num_domains)
return -EINVAL;
ret = scmi_xfer_get_init(handle, cmd_id,
SCMI_PROTOCOL_VOLTAGE,
sizeof(__le32), 0, &t);
if (ret)
return ret;
put_unaligned_le32(domain_id, t->tx.buf);
ret = scmi_do_xfer(handle, t);
if (!ret)
*value = get_unaligned_le32(t->rx.buf);
scmi_xfer_put(handle, t);
return ret;
}
static int scmi_voltage_config_set(const struct scmi_handle *handle,
u32 domain_id, u32 config)
{
int ret;
struct scmi_xfer *t;
struct voltage_info *vinfo = handle->voltage_priv;
struct scmi_msg_cmd_config_set *cmd;
if (domain_id >= vinfo->num_domains)
return -EINVAL;
ret = scmi_xfer_get_init(handle, VOLTAGE_CONFIG_SET,
SCMI_PROTOCOL_VOLTAGE,
sizeof(*cmd), 0, &t);
if (ret)
return ret;
cmd = t->tx.buf;
cmd->domain_id = cpu_to_le32(domain_id);
cmd->config = cpu_to_le32(config & GENMASK(3, 0));
ret = scmi_do_xfer(handle, t);
scmi_xfer_put(handle, t);
return ret;
}
static int scmi_voltage_config_get(const struct scmi_handle *handle,
u32 domain_id, u32 *config)
{
return __scmi_voltage_get_u32(handle, VOLTAGE_CONFIG_GET,
domain_id, config);
}
static int scmi_voltage_level_set(const struct scmi_handle *handle,
u32 domain_id, u32 flags, s32 volt_uV)
{
int ret;
struct scmi_xfer *t;
struct voltage_info *vinfo = handle->voltage_priv;
struct scmi_msg_cmd_level_set *cmd;
if (domain_id >= vinfo->num_domains)
return -EINVAL;
ret = scmi_xfer_get_init(handle, VOLTAGE_LEVEL_SET,
SCMI_PROTOCOL_VOLTAGE,
sizeof(*cmd), 0, &t);
if (ret)
return ret;
cmd = t->tx.buf;
cmd->domain_id = cpu_to_le32(domain_id);
cmd->flags = cpu_to_le32(flags);
cmd->voltage_level = cpu_to_le32(volt_uV);
ret = scmi_do_xfer(handle, t);
scmi_xfer_put(handle, t);
return ret;
}
static int scmi_voltage_level_get(const struct scmi_handle *handle,
u32 domain_id, s32 *volt_uV)
{
return __scmi_voltage_get_u32(handle, VOLTAGE_LEVEL_GET,
domain_id, (u32 *)volt_uV);
}
static const struct scmi_voltage_info * __must_check
scmi_voltage_info_get(const struct scmi_handle *handle, u32 domain_id)
{
struct voltage_info *vinfo = handle->voltage_priv;
if (domain_id >= vinfo->num_domains ||
!vinfo->domains[domain_id].num_levels)
return NULL;
return vinfo->domains + domain_id;
}
static int scmi_voltage_domains_num_get(const struct scmi_handle *handle)
{
struct voltage_info *vinfo = handle->voltage_priv;
return vinfo->num_domains;
}
static struct scmi_voltage_ops voltage_ops = {
.num_domains_get = scmi_voltage_domains_num_get,
.info_get = scmi_voltage_info_get,
.config_set = scmi_voltage_config_set,
.config_get = scmi_voltage_config_get,
.level_set = scmi_voltage_level_set,
.level_get = scmi_voltage_level_get,
};
static int scmi_voltage_protocol_init(struct scmi_handle *handle)
{
int ret;
u32 version;
struct voltage_info *vinfo;
ret = scmi_version_get(handle, SCMI_PROTOCOL_VOLTAGE, &version);
if (ret)
return ret;
dev_dbg(handle->dev, "Voltage Version %d.%d\n",
PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
vinfo = devm_kzalloc(handle->dev, sizeof(*vinfo), GFP_KERNEL);
if (!vinfo)
return -ENOMEM;
vinfo->version = version;
ret = scmi_protocol_attributes_get(handle, vinfo);
if (ret)
return ret;
if (vinfo->num_domains) {
vinfo->domains = devm_kcalloc(handle->dev, vinfo->num_domains,
sizeof(*vinfo->domains),
GFP_KERNEL);
if (!vinfo->domains)
return -ENOMEM;
ret = scmi_voltage_descriptors_get(handle, vinfo);
if (ret)
return ret;
} else {
dev_warn(handle->dev, "No Voltage domains found.\n");
}
handle->voltage_ops = &voltage_ops;
handle->voltage_priv = vinfo;
return 0;
}
DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(SCMI_PROTOCOL_VOLTAGE, voltage)

View File

@ -30,7 +30,7 @@ static inline u64 __pow10(u8 x)
static int scmi_hwmon_scale(const struct scmi_sensor_info *sensor, u64 *value)
{
s8 scale = sensor->scale;
int scale = sensor->scale;
u64 f;
switch (sensor->type) {

View File

@ -8,6 +8,7 @@
#ifndef _LINUX_SCMI_PROTOCOL_H
#define _LINUX_SCMI_PROTOCOL_H
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/notifier.h>
#include <linux/types.h>
@ -148,13 +149,180 @@ struct scmi_power_ops {
u32 *state);
};
struct scmi_sensor_info {
u32 id;
u8 type;
s8 scale;
u8 num_trip_points;
bool async;
/**
* scmi_sensor_reading - represent a timestamped read
*
* Used by @reading_get_timestamped method.
*
* @value: The signed value sensor read.
* @timestamp: An unsigned timestamp for the sensor read, as provided by
* SCMI platform. Set to zero when not available.
*/
struct scmi_sensor_reading {
long long value;
unsigned long long timestamp;
};
/**
* scmi_range_attrs - specifies a sensor or axis values' range
* @min_range: The minimum value which can be represented by the sensor/axis.
* @max_range: The maximum value which can be represented by the sensor/axis.
*/
struct scmi_range_attrs {
long long min_range;
long long max_range;
};
/**
* scmi_sensor_axis_info - describes one sensor axes
* @id: The axes ID.
* @type: Axes type. Chosen amongst one of @enum scmi_sensor_class.
* @scale: Power-of-10 multiplier applied to the axis unit.
* @name: NULL-terminated string representing axes name as advertised by
* SCMI platform.
* @extended_attrs: Flag to indicate the presence of additional extended
* attributes for this axes.
* @resolution: Extended attribute representing the resolution of the axes.
* Set to 0 if not reported by this axes.
* @exponent: Extended attribute representing the power-of-10 multiplier that
* is applied to the resolution field. Set to 0 if not reported by
* this axes.
* @attrs: Extended attributes representing minimum and maximum values
* measurable by this axes. Set to 0 if not reported by this sensor.
*/
struct scmi_sensor_axis_info {
unsigned int id;
unsigned int type;
int scale;
char name[SCMI_MAX_STR_SIZE];
bool extended_attrs;
unsigned int resolution;
int exponent;
struct scmi_range_attrs attrs;
};
/**
* scmi_sensor_intervals_info - describes number and type of available update
* intervals
* @segmented: Flag for segmented intervals' representation. When True there
* will be exactly 3 intervals in @desc, with each entry
* representing a member of a segment in this order:
* {lowest update interval, highest update interval, step size}
* @count: Number of intervals described in @desc.
* @desc: Array of @count interval descriptor bitmask represented as detailed in
* the SCMI specification: it can be accessed using the accompanying
* macros.
* @prealloc_pool: A minimal preallocated pool of desc entries used to avoid
* lesser-than-64-bytes dynamic allocation for small @count
* values.
*/
struct scmi_sensor_intervals_info {
bool segmented;
unsigned int count;
#define SCMI_SENS_INTVL_SEGMENT_LOW 0
#define SCMI_SENS_INTVL_SEGMENT_HIGH 1
#define SCMI_SENS_INTVL_SEGMENT_STEP 2
unsigned int *desc;
#define SCMI_SENS_INTVL_GET_SECS(x) FIELD_GET(GENMASK(20, 5), (x))
#define SCMI_SENS_INTVL_GET_EXP(x) \
({ \
int __signed_exp = FIELD_GET(GENMASK(4, 0), (x)); \
\
if (__signed_exp & BIT(4)) \
__signed_exp |= GENMASK(31, 5); \
__signed_exp; \
})
#define SCMI_MAX_PREALLOC_POOL 16
unsigned int prealloc_pool[SCMI_MAX_PREALLOC_POOL];
};
/**
* struct scmi_sensor_info - represents information related to one of the
* available sensors.
* @id: Sensor ID.
* @type: Sensor type. Chosen amongst one of @enum scmi_sensor_class.
* @scale: Power-of-10 multiplier applied to the sensor unit.
* @num_trip_points: Number of maximum configurable trip points.
* @async: Flag for asynchronous read support.
* @update: Flag for continuouos update notification support.
* @timestamped: Flag for timestamped read support.
* @tstamp_scale: Power-of-10 multiplier applied to the sensor timestamps to
* represent it in seconds.
* @num_axis: Number of supported axis if any. Reported as 0 for scalar sensors.
* @axis: Pointer to an array of @num_axis descriptors.
* @intervals: Descriptor of available update intervals.
* @sensor_config: A bitmask reporting the current sensor configuration as
* detailed in the SCMI specification: it can accessed and
* modified through the accompanying macros.
* @name: NULL-terminated string representing sensor name as advertised by
* SCMI platform.
* @extended_scalar_attrs: Flag to indicate the presence of additional extended
* attributes for this sensor.
* @sensor_power: Extended attribute representing the average power
* consumed by the sensor in microwatts (uW) when it is active.
* Reported here only for scalar sensors.
* Set to 0 if not reported by this sensor.
* @resolution: Extended attribute representing the resolution of the sensor.
* Reported here only for scalar sensors.
* Set to 0 if not reported by this sensor.
* @exponent: Extended attribute representing the power-of-10 multiplier that is
* applied to the resolution field.
* Reported here only for scalar sensors.
* Set to 0 if not reported by this sensor.
* @scalar_attrs: Extended attributes representing minimum and maximum
* measurable values by this sensor.
* Reported here only for scalar sensors.
* Set to 0 if not reported by this sensor.
*/
struct scmi_sensor_info {
unsigned int id;
unsigned int type;
int scale;
unsigned int num_trip_points;
bool async;
bool update;
bool timestamped;
int tstamp_scale;
unsigned int num_axis;
struct scmi_sensor_axis_info *axis;
struct scmi_sensor_intervals_info intervals;
unsigned int sensor_config;
#define SCMI_SENS_CFG_UPDATE_SECS_MASK GENMASK(31, 16)
#define SCMI_SENS_CFG_GET_UPDATE_SECS(x) \
FIELD_GET(SCMI_SENS_CFG_UPDATE_SECS_MASK, (x))
#define SCMI_SENS_CFG_UPDATE_EXP_MASK GENMASK(15, 11)
#define SCMI_SENS_CFG_GET_UPDATE_EXP(x) \
({ \
int __signed_exp = \
FIELD_GET(SCMI_SENS_CFG_UPDATE_EXP_MASK, (x)); \
\
if (__signed_exp & BIT(4)) \
__signed_exp |= GENMASK(31, 5); \
__signed_exp; \
})
#define SCMI_SENS_CFG_ROUND_MASK GENMASK(10, 9)
#define SCMI_SENS_CFG_ROUND_AUTO 2
#define SCMI_SENS_CFG_ROUND_UP 1
#define SCMI_SENS_CFG_ROUND_DOWN 0
#define SCMI_SENS_CFG_TSTAMP_ENABLED_MASK BIT(1)
#define SCMI_SENS_CFG_TSTAMP_ENABLE 1
#define SCMI_SENS_CFG_TSTAMP_DISABLE 0
#define SCMI_SENS_CFG_IS_TSTAMP_ENABLED(x) \
FIELD_GET(SCMI_SENS_CFG_TSTAMP_ENABLED_MASK, (x))
#define SCMI_SENS_CFG_SENSOR_ENABLED_MASK BIT(0)
#define SCMI_SENS_CFG_SENSOR_ENABLE 1
#define SCMI_SENS_CFG_SENSOR_DISABLE 0
char name[SCMI_MAX_STR_SIZE];
#define SCMI_SENS_CFG_IS_ENABLED(x) FIELD_GET(BIT(0), (x))
bool extended_scalar_attrs;
unsigned int sensor_power;
unsigned int resolution;
int exponent;
struct scmi_range_attrs scalar_attrs;
};
/*
@ -163,11 +331,100 @@ struct scmi_sensor_info {
*/
enum scmi_sensor_class {
NONE = 0x0,
UNSPEC = 0x1,
TEMPERATURE_C = 0x2,
TEMPERATURE_F = 0x3,
TEMPERATURE_K = 0x4,
VOLTAGE = 0x5,
CURRENT = 0x6,
POWER = 0x7,
ENERGY = 0x8,
CHARGE = 0x9,
VOLTAMPERE = 0xA,
NITS = 0xB,
LUMENS = 0xC,
LUX = 0xD,
CANDELAS = 0xE,
KPA = 0xF,
PSI = 0x10,
NEWTON = 0x11,
CFM = 0x12,
RPM = 0x13,
HERTZ = 0x14,
SECS = 0x15,
MINS = 0x16,
HOURS = 0x17,
DAYS = 0x18,
WEEKS = 0x19,
MILS = 0x1A,
INCHES = 0x1B,
FEET = 0x1C,
CUBIC_INCHES = 0x1D,
CUBIC_FEET = 0x1E,
METERS = 0x1F,
CUBIC_CM = 0x20,
CUBIC_METERS = 0x21,
LITERS = 0x22,
FLUID_OUNCES = 0x23,
RADIANS = 0x24,
STERADIANS = 0x25,
REVOLUTIONS = 0x26,
CYCLES = 0x27,
GRAVITIES = 0x28,
OUNCES = 0x29,
POUNDS = 0x2A,
FOOT_POUNDS = 0x2B,
OUNCE_INCHES = 0x2C,
GAUSS = 0x2D,
GILBERTS = 0x2E,
HENRIES = 0x2F,
FARADS = 0x30,
OHMS = 0x31,
SIEMENS = 0x32,
MOLES = 0x33,
BECQUERELS = 0x34,
PPM = 0x35,
DECIBELS = 0x36,
DBA = 0x37,
DBC = 0x38,
GRAYS = 0x39,
SIEVERTS = 0x3A,
COLOR_TEMP_K = 0x3B,
BITS = 0x3C,
BYTES = 0x3D,
WORDS = 0x3E,
DWORDS = 0x3F,
QWORDS = 0x40,
PERCENTAGE = 0x41,
PASCALS = 0x42,
COUNTS = 0x43,
GRAMS = 0x44,
NEWTON_METERS = 0x45,
HITS = 0x46,
MISSES = 0x47,
RETRIES = 0x48,
OVERRUNS = 0x49,
UNDERRUNS = 0x4A,
COLLISIONS = 0x4B,
PACKETS = 0x4C,
MESSAGES = 0x4D,
CHARS = 0x4E,
ERRORS = 0x4F,
CORRECTED_ERRS = 0x50,
UNCORRECTABLE_ERRS = 0x51,
SQ_MILS = 0x52,
SQ_INCHES = 0x53,
SQ_FEET = 0x54,
SQ_CM = 0x55,
SQ_METERS = 0x56,
RADIANS_SEC = 0x57,
BPM = 0x58,
METERS_SEC_SQUARED = 0x59,
METERS_SEC = 0x5A,
CUBIC_METERS_SEC = 0x5B,
MM_MERCURY = 0x5C,
RADIANS_SEC_SQUARED = 0x5D,
OEM_UNIT = 0xFF
};
/**
@ -178,6 +435,13 @@ enum scmi_sensor_class {
* @info_get: get the information of the specified sensor
* @trip_point_config: selects and configures a trip-point of interest
* @reading_get: gets the current value of the sensor
* @reading_get_timestamped: gets the current value and timestamp, when
* available, of the sensor. (as of v3.0 spec)
* Supports multi-axis sensors for sensors which
* supports it and if the @reading array size of
* @count entry equals the sensor num_axis
* @config_get: Get sensor current configuration
* @config_set: Set sensor current configuration
*/
struct scmi_sensor_ops {
int (*count_get)(const struct scmi_handle *handle);
@ -187,6 +451,13 @@ struct scmi_sensor_ops {
u32 sensor_id, u8 trip_id, u64 trip_value);
int (*reading_get)(const struct scmi_handle *handle, u32 sensor_id,
u64 *value);
int (*reading_get_timestamped)(const struct scmi_handle *handle,
u32 sensor_id, u8 count,
struct scmi_sensor_reading *readings);
int (*config_get)(const struct scmi_handle *handle,
u32 sensor_id, u32 *sensor_config);
int (*config_set)(const struct scmi_handle *handle,
u32 sensor_id, u32 sensor_config);
};
/**
@ -209,6 +480,64 @@ struct scmi_reset_ops {
int (*deassert)(const struct scmi_handle *handle, u32 domain);
};
/**
* struct scmi_voltage_info - describe one available SCMI Voltage Domain
*
* @id: the domain ID as advertised by the platform
* @segmented: defines the layout of the entries of array @levels_uv.
* - when True the entries are to be interpreted as triplets,
* each defining a segment representing a range of equally
* space voltages: <lowest_volts>, <highest_volt>, <step_uV>
* - when False the entries simply represent a single discrete
* supported voltage level
* @negative_volts_allowed: True if any of the entries of @levels_uv represent
* a negative voltage.
* @attributes: represents Voltage Domain advertised attributes
* @name: name assigned to the Voltage Domain by platform
* @num_levels: number of total entries in @levels_uv.
* @levels_uv: array of entries describing the available voltage levels for
* this domain.
*/
struct scmi_voltage_info {
unsigned int id;
bool segmented;
bool negative_volts_allowed;
unsigned int attributes;
char name[SCMI_MAX_STR_SIZE];
unsigned int num_levels;
#define SCMI_VOLTAGE_SEGMENT_LOW 0
#define SCMI_VOLTAGE_SEGMENT_HIGH 1
#define SCMI_VOLTAGE_SEGMENT_STEP 2
int *levels_uv;
};
/**
* struct scmi_voltage_ops - represents the various operations provided
* by SCMI Voltage Protocol
*
* @num_domains_get: get the count of voltage domains provided by SCMI
* @info_get: get the information of the specified domain
* @config_set: set the config for the specified domain
* @config_get: get the config of the specified domain
* @level_set: set the voltage level for the specified domain
* @level_get: get the voltage level of the specified domain
*/
struct scmi_voltage_ops {
int (*num_domains_get)(const struct scmi_handle *handle);
const struct scmi_voltage_info __must_check *(*info_get)
(const struct scmi_handle *handle, u32 domain_id);
int (*config_set)(const struct scmi_handle *handle, u32 domain_id,
u32 config);
#define SCMI_VOLTAGE_ARCH_STATE_OFF 0x0
#define SCMI_VOLTAGE_ARCH_STATE_ON 0x7
int (*config_get)(const struct scmi_handle *handle, u32 domain_id,
u32 *config);
int (*level_set)(const struct scmi_handle *handle, u32 domain_id,
u32 flags, s32 volt_uV);
int (*level_get)(const struct scmi_handle *handle, u32 domain_id,
s32 *volt_uV);
};
/**
* struct scmi_notify_ops - represents notifications' operations provided by
* SCMI core
@ -262,6 +591,7 @@ struct scmi_notify_ops {
* @clk_ops: pointer to set of clock protocol operations
* @sensor_ops: pointer to set of sensor protocol operations
* @reset_ops: pointer to set of reset protocol operations
* @voltage_ops: pointer to set of voltage protocol operations
* @notify_ops: pointer to set of notifications related operations
* @perf_priv: pointer to private data structure specific to performance
* protocol(for internal use only)
@ -273,6 +603,8 @@ struct scmi_notify_ops {
* protocol(for internal use only)
* @reset_priv: pointer to private data structure specific to reset
* protocol(for internal use only)
* @voltage_priv: pointer to private data structure specific to voltage
* protocol(for internal use only)
* @notify_priv: pointer to private data structure specific to notifications
* (for internal use only)
*/
@ -284,6 +616,7 @@ struct scmi_handle {
const struct scmi_power_ops *power_ops;
const struct scmi_sensor_ops *sensor_ops;
const struct scmi_reset_ops *reset_ops;
const struct scmi_voltage_ops *voltage_ops;
const struct scmi_notify_ops *notify_ops;
/* for protocol internal use */
void *perf_priv;
@ -291,6 +624,7 @@ struct scmi_handle {
void *power_priv;
void *sensor_priv;
void *reset_priv;
void *voltage_priv;
void *notify_priv;
void *system_priv;
};
@ -303,6 +637,7 @@ enum scmi_std_protocol {
SCMI_PROTOCOL_CLOCK = 0x14,
SCMI_PROTOCOL_SENSOR = 0x15,
SCMI_PROTOCOL_RESET = 0x16,
SCMI_PROTOCOL_VOLTAGE = 0x17,
};
enum scmi_system_events {
@ -386,6 +721,7 @@ enum scmi_notification_events {
SCMI_EVENT_PERFORMANCE_LIMITS_CHANGED = 0x0,
SCMI_EVENT_PERFORMANCE_LEVEL_CHANGED = 0x1,
SCMI_EVENT_SENSOR_TRIP_POINT_EVENT = 0x0,
SCMI_EVENT_SENSOR_UPDATE = 0x1,
SCMI_EVENT_RESET_ISSUED = 0x0,
SCMI_EVENT_BASE_ERROR_EVENT = 0x0,
SCMI_EVENT_SYSTEM_POWER_STATE_NOTIFIER = 0x0,
@ -427,6 +763,14 @@ struct scmi_sensor_trip_point_report {
unsigned int trip_point_desc;
};
struct scmi_sensor_update_report {
ktime_t timestamp;
unsigned int agent_id;
unsigned int sensor_id;
unsigned int readings_count;
struct scmi_sensor_reading readings[];
};
struct scmi_reset_issued_report {
ktime_t timestamp;
unsigned int agent_id;