Merge commit 'origin/master' into next

This commit is contained in:
Benjamin Herrenschmidt 2009-01-08 16:24:38 +11:00
commit 24f030175d
3538 changed files with 619679 additions and 80890 deletions

View File

@ -32,6 +32,7 @@ Christoph Hellwig <hch@lst.de>
Corey Minyard <minyard@acm.org>
David Brownell <david-b@pacbell.net>
David Woodhouse <dwmw2@shinybook.infradead.org>
Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
Domen Puncer <domen@coderock.org>
Douglas Gilbert <dougg@torque.net>
Ed L. Cashin <ecashin@coraid.com>

27
CREDITS
View File

@ -369,10 +369,10 @@ P: 1024/8462A731 4C 55 86 34 44 59 A7 99 2B 97 88 4A 88 9A 0D 97
D: sun4 port, Sparc hacker
N: Hugh Blemings
E: hugh@misc.nu
W: http://misc.nu/hugh/
D: Author and maintainer of the Keyspan USB to Serial drivers
S: Po Box 234
E: hugh@blemings.org
W: http://blemings.org/hugh
D: Original author of the Keyspan USB to serial drivers, random PowerPC hacker
S: PO Box 234
S: Belconnen ACT 2616
S: Australia
@ -464,6 +464,11 @@ S: 1200 Goldenrod Dr.
S: Nampa, Idaho 83686
S: USA
N: Dirk J. Brandewie
E: dirk.j.brandewie@intel.com
E: linux-wimax@intel.com
D: Intel Wireless WiMAX Connection 2400 SDIO driver
N: Derrick J. Brashear
E: shadow@dementia.org
W: http://www.dementia.org/~shadow
@ -1681,7 +1686,7 @@ E: ajoshi@shell.unixbox.com
D: fbdev hacking
N: Jesper Juhl
E: jesper.juhl@gmail.com
E: jj@chaosbits.net
D: Various fixes, cleanups and minor features all over the tree.
D: Wrote initial version of the hdaps driver (since passed on to others).
S: Lemnosvej 1, 3.tv
@ -2119,6 +2124,11 @@ N: H.J. Lu
E: hjl@gnu.ai.mit.edu
D: GCC + libraries hacker
N: Yanir Lubetkin
E: yanirx.lubatkin@intel.com
E: linux-wimax@intel.com
D: Intel Wireless WiMAX Connection 2400 driver
N: Michal Ludvig
E: michal@logix.cz
E: michal.ludvig@asterisk.co.nz
@ -2693,6 +2703,13 @@ S: RR #5, 497 Pole Line Road
S: Thunder Bay, Ontario
S: CANADA P7C 5M9
N: Inaky Perez-Gonzalez
E: inaky.perez-gonzalez@intel.com
E: linux-wimax@intel.com
E: inakypg@yahoo.com
D: WiMAX stack
D: Intel Wireless WiMAX Connection 2400 driver
N: Yuri Per
E: yuri@pts.mipt.ru
D: Some smbfs fixes

View File

@ -32,14 +32,16 @@ Contact: linux-usb@vger.kernel.org
Description:
Write:
<channel> [<bpst offset>]
<channel>
to start beaconing on a specific channel, or stop
beaconing if <channel> is -1. Valid channels depends
on the radio controller's supported band groups.
to force a specific channel to be used when beaconing,
or, if <channel> is -1, to prohibit beaconing. If
<channel> is 0, then the default channel selection
algorithm will be used. Valid channels depends on the
radio controller's supported band groups.
<bpst offset> may be used to try and join a specific
beacon group if more than one was found during a scan.
Reading returns the currently active channel, or -1 if
the radio controller is not beaconing.
What: /sys/class/uwb_rc/uwbN/scan
Date: July 2008

View File

@ -6,7 +6,6 @@ Description:
internal state of the kernel memory blocks. Files could be
added or removed dynamically to represent hot-add/remove
operations.
Users: hotplug memory add/remove tools
https://w3.opensource.ibm.com/projects/powerpc-utils/
@ -19,6 +18,56 @@ Description:
This is useful for a user-level agent to determine
identify removable sections of the memory before attempting
potentially expensive hot-remove memory operation
Users: hotplug memory remove tools
https://w3.opensource.ibm.com/projects/powerpc-utils/
What: /sys/devices/system/memory/memoryX/phys_device
Date: September 2008
Contact: Badari Pulavarty <pbadari@us.ibm.com>
Description:
The file /sys/devices/system/memory/memoryX/phys_device
is read-only and is designed to show the name of physical
memory device. Implementation is currently incomplete.
What: /sys/devices/system/memory/memoryX/phys_index
Date: September 2008
Contact: Badari Pulavarty <pbadari@us.ibm.com>
Description:
The file /sys/devices/system/memory/memoryX/phys_index
is read-only and contains the section ID in hexadecimal
which is equivalent to decimal X contained in the
memory section directory name.
What: /sys/devices/system/memory/memoryX/state
Date: September 2008
Contact: Badari Pulavarty <pbadari@us.ibm.com>
Description:
The file /sys/devices/system/memory/memoryX/state
is read-write. When read, it's contents show the
online/offline state of the memory section. When written,
root can toggle the the online/offline state of a removable
memory section (see removable file description above)
using the following commands.
# echo online > /sys/devices/system/memory/memoryX/state
# echo offline > /sys/devices/system/memory/memoryX/state
For example, if /sys/devices/system/memory/memory22/removable
contains a value of 1 and
/sys/devices/system/memory/memory22/state contains the
string "online" the following command can be executed by
by root to offline that section.
# echo offline > /sys/devices/system/memory/memory22/state
Users: hotplug memory remove tools
https://w3.opensource.ibm.com/projects/powerpc-utils/
What: /sys/devices/system/node/nodeX/memoryY
Date: September 2008
Contact: Gary Hade <garyhade@us.ibm.com>
Description:
When CONFIG_NUMA is enabled
/sys/devices/system/node/nodeX/memoryY is a symbolic link that
points to the corresponding /sys/devices/system/memory/memoryY
memory section directory. For example, the following symbolic
link is created for memory section 9 on node0.
/sys/devices/system/node/node0/memory9 -> ../../memory/memory9

View File

@ -26,7 +26,7 @@ mapped only for the time they are actually used and unmapped after the DMA
transfer.
The following API will work of course even on platforms where no such
hardware exists, see e.g. include/asm-i386/pci.h for how it is implemented on
hardware exists, see e.g. arch/x86/include/asm/pci.h for how it is implemented on
top of the virt_to_bus interface.
First of all, you should make sure

View File

@ -74,6 +74,14 @@
!Enet/sunrpc/rpcb_clnt.c
!Enet/sunrpc/clnt.c
</sect1>
<sect1><title>WiMAX</title>
!Enet/wimax/op-msg.c
!Enet/wimax/op-reset.c
!Enet/wimax/op-rfkill.c
!Enet/wimax/stack.c
!Iinclude/net/wimax.h
!Iinclude/linux/wimax.h
</sect1>
</chapter>
<chapter id="netdev">

View File

@ -41,6 +41,12 @@ GPL version 2.
</abstract>
<revhistory>
<revision>
<revnumber>0.6</revnumber>
<date>2008-12-05</date>
<authorinitials>hjk</authorinitials>
<revremark>Added description of portio sysfs attributes.</revremark>
</revision>
<revision>
<revnumber>0.5</revnumber>
<date>2008-05-22</date>
@ -318,6 +324,54 @@ interested in translating it, please email me
offset = N * getpagesize();
</programlisting>
<para>
Sometimes there is hardware with memory-like regions that can not be
mapped with the technique described here, but there are still ways to
access them from userspace. The most common example are x86 ioports.
On x86 systems, userspace can access these ioports using
<function>ioperm()</function>, <function>iopl()</function>,
<function>inb()</function>, <function>outb()</function>, and similar
functions.
</para>
<para>
Since these ioport regions can not be mapped, they will not appear under
<filename>/sys/class/uio/uioX/maps/</filename> like the normal memory
described above. Without information about the port regions a hardware
has to offer, it becomes difficult for the userspace part of the
driver to find out which ports belong to which UIO device.
</para>
<para>
To address this situation, the new directory
<filename>/sys/class/uio/uioX/portio/</filename> was added. It only
exists if the driver wants to pass information about one or more port
regions to userspace. If that is the case, subdirectories named
<filename>port0</filename>, <filename>port1</filename>, and so on,
will appear underneath
<filename>/sys/class/uio/uioX/portio/</filename>.
</para>
<para>
Each <filename>portX/</filename> directory contains three read-only
files that show start, size, and type of the port region:
</para>
<itemizedlist>
<listitem>
<para>
<filename>start</filename>: The first port of this region.
</para>
</listitem>
<listitem>
<para>
<filename>size</filename>: The number of ports in this region.
</para>
</listitem>
<listitem>
<para>
<filename>porttype</filename>: A string describing the type of port.
</para>
</listitem>
</itemizedlist>
</sect1>
</chapter>
@ -339,12 +393,12 @@ offset = N * getpagesize();
<itemizedlist>
<listitem><para>
<varname>char *name</varname>: Required. The name of your driver as
<varname>const char *name</varname>: Required. The name of your driver as
it will appear in sysfs. I recommend using the name of your module for this.
</para></listitem>
<listitem><para>
<varname>char *version</varname>: Required. This string appears in
<varname>const char *version</varname>: Required. This string appears in
<filename>/sys/class/uio/uioX/version</filename>.
</para></listitem>
@ -355,6 +409,13 @@ mapping you need to fill one of the <varname>uio_mem</varname> structures.
See the description below for details.
</para></listitem>
<listitem><para>
<varname>struct uio_port port[ MAX_UIO_PORTS_REGIONS ]</varname>: Required
if you want to pass information about ioports to userspace. For each port
region you need to fill one of the <varname>uio_port</varname> structures.
See the description below for details.
</para></listitem>
<listitem><para>
<varname>long irq</varname>: Required. If your hardware generates an
interrupt, it's your modules task to determine the irq number during
@ -448,6 +509,42 @@ Please do not touch the <varname>kobj</varname> element of
<varname>struct uio_mem</varname>! It is used by the UIO framework
to set up sysfs files for this mapping. Simply leave it alone.
</para>
<para>
Sometimes, your device can have one or more port regions which can not be
mapped to userspace. But if there are other possibilities for userspace to
access these ports, it makes sense to make information about the ports
available in sysfs. For each region, you have to set up a
<varname>struct uio_port</varname> in the <varname>port[]</varname> array.
Here's a description of the fields of <varname>struct uio_port</varname>:
</para>
<itemizedlist>
<listitem><para>
<varname>char *porttype</varname>: Required. Set this to one of the predefined
constants. Use <varname>UIO_PORT_X86</varname> for the ioports found in x86
architectures.
</para></listitem>
<listitem><para>
<varname>unsigned long start</varname>: Required if the port region is used.
Fill in the number of the first port of this region.
</para></listitem>
<listitem><para>
<varname>unsigned long size</varname>: Fill in the number of ports in this
region. If <varname>size</varname> is zero, the region is considered unused.
Note that you <emphasis>must</emphasis> initialize <varname>size</varname>
with zero for all unused regions.
</para></listitem>
</itemizedlist>
<para>
Please do not touch the <varname>portio</varname> element of
<varname>struct uio_port</varname>! It is used internally by the UIO
framework to set up sysfs files for this region. Simply leave it alone.
</para>
</sect1>
<sect1 id="adding_irq_handler">

View File

@ -294,7 +294,8 @@ NOTE: pci_enable_device() can fail! Check the return value.
pci_set_master() will enable DMA by setting the bus master bit
in the PCI_COMMAND register. It also fixes the latency timer value if
it's set to something bogus by the BIOS.
it's set to something bogus by the BIOS. pci_clear_master() will
disable DMA by clearing the bus master bit.
If the PCI device can use the PCI Memory-Write-Invalidate transaction,
call pci_set_mwi(). This enables the PCI_COMMAND bit for Mem-Wr-Inval

View File

@ -9,3 +9,6 @@ cachefeatures.txt
Filesystems
- Requirements for mounting the root file system.
bfin-gpio-note.txt
- Notes in developing/using bfin-gpio driver.

View File

@ -0,0 +1,71 @@
/*
* File: Documentation/blackfin/bfin-gpio-note.txt
* Based on:
* Author:
*
* Created: $Id: bfin-gpio-note.txt 2008-11-24 16:42 grafyang $
* Description: This file contains the notes in developing/using bfin-gpio.
*
*
* Rev:
*
* Modified:
* Copyright 2004-2008 Analog Devices Inc.
*
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
*/
1. Blackfin GPIO introduction
There are many GPIO pins on Blackfin. Most of these pins are muxed to
multi-functions. They can be configured as peripheral, or just as GPIO,
configured to input with interrupt enabled, or output.
For detailed information, please see "arch/blackfin/kernel/bfin_gpio.c",
or the relevant HRM.
2. Avoiding resource conflict
Followed function groups are used to avoiding resource conflict,
- Use the pin as peripheral,
int peripheral_request(unsigned short per, const char *label);
int peripheral_request_list(const unsigned short per[], const char *label);
void peripheral_free(unsigned short per);
void peripheral_free_list(const unsigned short per[]);
- Use the pin as GPIO,
int bfin_gpio_request(unsigned gpio, const char *label);
void bfin_gpio_free(unsigned gpio);
- Use the pin as GPIO interrupt,
int bfin_gpio_irq_request(unsigned gpio, const char *label);
void bfin_gpio_irq_free(unsigned gpio);
The request functions will record the function state for a certain pin,
the free functions will clear it's function state.
Once a pin is requested, it can't be requested again before it is freed by
previous caller, otherwise kernel will dump stacks, and the request
function fail.
These functions are wrapped by other functions, most of the users need not
care.
3. But there are some exceptions
- Kernel permit the identical GPIO be requested both as GPIO and GPIO
interrut.
Some drivers, like gpio-keys, need this behavior. Kernel only print out
warning messages like,
bfin-gpio: GPIO 24 is already reserved by gpio-keys: BTN0, and you are
configuring it as IRQ!
Note: Consider the case that, if there are two drivers need the
identical GPIO, one of them use it as GPIO, the other use it as
GPIO interrupt. This will really cause resource conflict. So if
there is any abnormal driver behavior, please check the bfin-gpio
warning messages.
- Kernel permit the identical GPIO be requested from the same driver twice.

View File

@ -50,16 +50,17 @@ additional_cpus=n (*) Use this to limit hotpluggable cpus. This option sets
cpu_possible_map = cpu_present_map + additional_cpus
(*) Option valid only for following architectures
- x86_64, ia64
- ia64
ia64 and x86_64 use the number of disabled local apics in ACPI tables MADT
to determine the number of potentially hot-pluggable cpus. The implementation
should only rely on this to count the # of cpus, but *MUST* not rely on the
apicid values in those tables for disabled apics. In the event BIOS doesn't
mark such hot-pluggable cpus as disabled entries, one could use this
parameter "additional_cpus=x" to represent those cpus in the cpu_possible_map.
ia64 uses the number of disabled local apics in ACPI tables MADT to
determine the number of potentially hot-pluggable cpus. The implementation
should only rely on this to count the # of cpus, but *MUST* not rely
on the apicid values in those tables for disabled apics. In the event
BIOS doesn't mark such hot-pluggable cpus as disabled entries, one could
use this parameter "additional_cpus=x" to represent those cpus in the
cpu_possible_map.
possible_cpus=n [s390 only] use this to set hotpluggable cpus.
possible_cpus=n [s390,x86_64] use this to set hotpluggable cpus.
This option sets possible_cpus bits in
cpu_possible_map. Thus keeping the numbers of bits set
constant even if the machine gets rebooted.

View File

@ -31,3 +31,51 @@ not defined by include/asm-XXX/topology.h:
2) core_id: 0
3) thread_siblings: just the given CPU
4) core_siblings: just the given CPU
Additionally, cpu topology information is provided under
/sys/devices/system/cpu and includes these files. The internal
source for the output is in brackets ("[]").
kernel_max: the maximum cpu index allowed by the kernel configuration.
[NR_CPUS-1]
offline: cpus that are not online because they have been
HOTPLUGGED off (see cpu-hotplug.txt) or exceed the limit
of cpus allowed by the kernel configuration (kernel_max
above). [~cpu_online_mask + cpus >= NR_CPUS]
online: cpus that are online and being scheduled [cpu_online_mask]
possible: cpus that have been allocated resources and can be
brought online if they are present. [cpu_possible_mask]
present: cpus that have been identified as being present in the
system. [cpu_present_mask]
The format for the above output is compatible with cpulist_parse()
[see <linux/cpumask.h>]. Some examples follow.
In this example, there are 64 cpus in the system but cpus 32-63 exceed
the kernel max which is limited to 0..31 by the NR_CPUS config option
being 32. Note also that cpus 2 and 4-31 are not online but could be
brought online as they are both present and possible.
kernel_max: 31
offline: 2,4-31,32-63
online: 0-1,3
possible: 0-31
present: 0-31
In this example, the NR_CPUS config option is 128, but the kernel was
started with possible_cpus=144. There are 4 cpus in the system and cpu2
was manually taken offline (and is the only cpu that can be brought
online.)
kernel_max: 127
offline: 2,4-127,128-143
online: 0-1,3
possible: 0-127
present: 0-3
See cpu-hotplug.txt for the possible_cpus=NUM kernel start parameter
as well as more information on the various cpumask's.

View File

@ -81,8 +81,8 @@ Until this step is completed the driver cannot be unloaded.
Also echoing either mono ,packet or init in to image_type will free up the
memory allocated by the driver.
If an user by accident executes steps 1 and 3 above without executing step 2;
it will make the /sys/class/firmware/dell_rbu/ entries to disappear.
If a user by accident executes steps 1 and 3 above without executing step 2;
it will make the /sys/class/firmware/dell_rbu/ entries disappear.
The entries can be recreated by doing the following
echo init > /sys/devices/platform/dell_rbu/image_type
NOTE: echoing init in image_type does not change it original value.

View File

@ -310,17 +310,28 @@ Who: Krzysztof Piotr Oledzki <ole@ans.pl>
---------------------------
What: ide-scsi (BLK_DEV_IDESCSI)
When: 2.6.29
Why: The 2.6 kernel supports direct writing to ide CD drives, which
eliminates the need for ide-scsi. The new method is more
efficient in every way.
Who: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
---------------------------
What: i2c_attach_client(), i2c_detach_client(), i2c_driver->detach_client()
When: 2.6.29 (ideally) or 2.6.30 (more likely)
Why: Deprecated by the new (standard) device driver binding model. Use
i2c_driver->probe() and ->remove() instead.
Who: Jean Delvare <khali@linux-fr.org>
---------------------------
What: fscher and fscpos drivers
When: June 2009
Why: Deprecated by the new fschmd driver.
Who: Hans de Goede <hdegoede@redhat.com>
Jean Delvare <khali@linux-fr.org>
---------------------------
What: SELinux "compat_net" functionality
When: 2.6.30 at the earliest
Why: In 2.6.18 the Secmark concept was introduced to replace the "compat_net"
network access control functionality of SELinux. Secmark offers both
better performance and greater flexibility than the "compat_net"
mechanism. Now that the major Linux distributions have moved to
Secmark, it is time to deprecate the older mechanism and start the
process of removing the old code.
Who: Paul Moore <paul.moore@hp.com>

View File

@ -397,7 +397,7 @@ prototypes:
};
locking rules:
All except ->poll() may block.
All may block.
BKL
llseek: no (see below)
read: no

View File

@ -0,0 +1,132 @@
To support containers, we now allow multiple instances of devpts filesystem,
such that indices of ptys allocated in one instance are independent of indices
allocated in other instances of devpts.
To preserve backward compatibility, this support for multiple instances is
enabled only if:
- CONFIG_DEVPTS_MULTIPLE_INSTANCES=y, and
- '-o newinstance' mount option is specified while mounting devpts
IOW, devpts now supports both single-instance and multi-instance semantics.
If CONFIG_DEVPTS_MULTIPLE_INSTANCES=n, there is no change in behavior and
this referred to as the "legacy" mode. In this mode, the new mount options
(-o newinstance and -o ptmxmode) will be ignored with a 'bogus option' message
on console.
If CONFIG_DEVPTS_MULTIPLE_INSTANCES=y and devpts is mounted without the
'newinstance' option (as in current start-up scripts) the new mount binds
to the initial kernel mount of devpts. This mode is referred to as the
'single-instance' mode and the current, single-instance semantics are
preserved, i.e PTYs are common across the system.
The only difference between this single-instance mode and the legacy mode
is the presence of new, '/dev/pts/ptmx' node with permissions 0000, which
can safely be ignored.
If CONFIG_DEVPTS_MULTIPLE_INSTANCES=y and 'newinstance' option is specified,
the mount is considered to be in the multi-instance mode and a new instance
of the devpts fs is created. Any ptys created in this instance are independent
of ptys in other instances of devpts. Like in the single-instance mode, the
/dev/pts/ptmx node is present. To effectively use the multi-instance mode,
open of /dev/ptmx must be a redirected to '/dev/pts/ptmx' using a symlink or
bind-mount.
Eg: A container startup script could do the following:
$ chmod 0666 /dev/pts/ptmx
$ rm /dev/ptmx
$ ln -s pts/ptmx /dev/ptmx
$ ns_exec -cm /bin/bash
# We are now in new container
$ umount /dev/pts
$ mount -t devpts -o newinstance lxcpts /dev/pts
$ sshd -p 1234
where 'ns_exec -cm /bin/bash' calls clone() with CLONE_NEWNS flag and execs
/bin/bash in the child process. A pty created by the sshd is not visible in
the original mount of /dev/pts.
User-space changes
------------------
In multi-instance mode (i.e '-o newinstance' mount option is specified at least
once), following user-space issues should be noted.
1. If -o newinstance mount option is never used, /dev/pts/ptmx can be ignored
and no change is needed to system-startup scripts.
2. To effectively use multi-instance mode (i.e -o newinstance is specified)
administrators or startup scripts should "redirect" open of /dev/ptmx to
/dev/pts/ptmx using either a bind mount or symlink.
$ mount -t devpts -o newinstance devpts /dev/pts
followed by either
$ rm /dev/ptmx
$ ln -s pts/ptmx /dev/ptmx
$ chmod 666 /dev/pts/ptmx
or
$ mount -o bind /dev/pts/ptmx /dev/ptmx
3. The '/dev/ptmx -> pts/ptmx' symlink is the preferred method since it
enables better error-reporting and treats both single-instance and
multi-instance mounts similarly.
But this method requires that system-startup scripts set the mode of
/dev/pts/ptmx correctly (default mode is 0000). The scripts can set the
mode by, either
- adding ptmxmode mount option to devpts entry in /etc/fstab, or
- using 'chmod 0666 /dev/pts/ptmx'
4. If multi-instance mode mount is needed for containers, but the system
startup scripts have not yet been updated, container-startup scripts
should bind mount /dev/ptmx to /dev/pts/ptmx to avoid breaking single-
instance mounts.
Or, in general, container-startup scripts should use:
mount -t devpts -o newinstance -o ptmxmode=0666 devpts /dev/pts
if [ ! -L /dev/ptmx ]; then
mount -o bind /dev/pts/ptmx /dev/ptmx
fi
When all devpts mounts are multi-instance, /dev/ptmx can permanently be
a symlink to pts/ptmx and the bind mount can be ignored.
5. A multi-instance mount that is not accompanied by the /dev/ptmx to
/dev/pts/ptmx redirection would result in an unusable/unreachable pty.
mount -t devpts -o newinstance lxcpts /dev/pts
immediately followed by:
open("/dev/ptmx")
would create a pty, say /dev/pts/7, in the initial kernel mount.
But /dev/pts/7 would be invisible in the new mount.
6. The permissions for /dev/pts/ptmx node should be specified when mounting
/dev/pts, using the '-o ptmxmode=%o' mount option (default is 0000).
mount -t devpts -o newinstance -o ptmxmode=0644 devpts /dev/pts
The permissions can be later be changed as usual with 'chmod'.
chmod 666 /dev/pts/ptmx
7. A mount of devpts without the 'newinstance' option results in binding to
initial kernel mount. This behavior while preserving legacy semantics,
does not provide strict isolation in a container environment. i.e by
mounting devpts without the 'newinstance' option, a container could
get visibility into the 'host' or root container's devpts.
To workaround this and have strict isolation, all mounts of devpts,
including the mount in the root container, should use the newinstance
option.

View File

@ -31,7 +31,6 @@ Features which OCFS2 does not support yet:
- quotas
- Directory change notification (F_NOTIFY)
- Distributed Caching (F_SETLEASE/F_GETLEASE/break_lease)
- POSIX ACLs
Mount options
=============
@ -79,3 +78,5 @@ inode64 Indicates that Ocfs2 is allowed to create inodes at
bits of significance.
user_xattr (*) Enables Extended User Attributes.
nouser_xattr Disables Extended User Attributes.
acl Enables POSIX Access Control Lists support.
noacl (*) Disables POSIX Access Control Lists support.

View File

@ -140,6 +140,7 @@ Table 1-1: Process specific entries in /proc
statm Process memory status information
status Process status in human readable form
wchan If CONFIG_KALLSYMS is set, a pre-decoded wchan
stack Report full stack trace, enable via CONFIG_STACKTRACE
smaps Extension based on maps, the rss size for each mapped file
..............................................................................
@ -1385,6 +1386,15 @@ swapcache reclaim. Decreasing vfs_cache_pressure causes the kernel to prefer
to retain dentry and inode caches. Increasing vfs_cache_pressure beyond 100
causes the kernel to prefer to reclaim dentries and inodes.
dirty_background_bytes
----------------------
Contains the amount of dirty memory at which the pdflush background writeback
daemon will start writeback.
If dirty_background_bytes is written, dirty_background_ratio becomes a function
of its value (dirty_background_bytes / the amount of dirtyable system memory).
dirty_background_ratio
----------------------
@ -1393,14 +1403,29 @@ pages + file cache, not including locked pages and HugePages), the number of
pages at which the pdflush background writeback daemon will start writing out
dirty data.
If dirty_background_ratio is written, dirty_background_bytes becomes a function
of its value (dirty_background_ratio * the amount of dirtyable system memory).
dirty_bytes
-----------
Contains the amount of dirty memory at which a process generating disk writes
will itself start writeback.
If dirty_bytes is written, dirty_ratio becomes a function of its value
(dirty_bytes / the amount of dirtyable system memory).
dirty_ratio
-----------------
-----------
Contains, as a percentage of the dirtyable system memory (free pages + mapped
pages + file cache, not including locked pages and HugePages), the number of
pages at which a process which is generating disk writes will itself start
writing out dirty data.
If dirty_ratio is written, dirty_bytes becomes a function of its value
(dirty_ratio * the amount of dirtyable system memory).
dirty_writeback_centisecs
-------------------------

View File

@ -95,6 +95,9 @@ no_chk_data_crc skip checking of CRCs on data nodes in order to
of this option is that corruption of the contents
of a file can go unnoticed.
chk_data_crc (*) do not skip checking CRCs on data nodes
compr=none override default compressor and set it to "none"
compr=lzo override default compressor and set it to "lzo"
compr=zlib override default compressor and set it to "zlib"
Quick usage instructions

View File

@ -74,7 +74,7 @@ a sensor.
Notice that some banks have both a read and a write address this is how the
uGuru determines if a read from or a write to the bank is taking place, thus
when reading you should always use the read address and when writing the
write address. The write address is always one (1) more then the read address.
write address. The write address is always one (1) more than the read address.
uGuru ready
@ -224,7 +224,7 @@ Bit 3: Beep if alarm (RW)
Bit 4: 1 if alarm cause measured temp is over the warning threshold (R)
Bit 5: 1 if alarm cause measured volt is over the max threshold (R)
Bit 6: 1 if alarm cause measured volt is under the min threshold (R)
Bit 7: Volt sensor: Shutdown if alarm persist for more then 4 seconds (RW)
Bit 7: Volt sensor: Shutdown if alarm persist for more than 4 seconds (RW)
Temp sensor: Shutdown if temp is over the shutdown threshold (RW)
* This bit is only honored/used by the uGuru if a temp sensor is connected
@ -293,7 +293,7 @@ Byte 0:
Alarm behaviour for the selected sensor. A 1 enables the described behaviour.
Bit 0: Give an alarm if measured rpm is under the min threshold (RW)
Bit 3: Beep if alarm (RW)
Bit 7: Shutdown if alarm persist for more then 4 seconds (RW)
Bit 7: Shutdown if alarm persist for more than 4 seconds (RW)
Byte 1:
min threshold (scale as bank 0x26)

View File

@ -31,15 +31,11 @@ Each of the measured inputs (temperature, fan speed) has corresponding high/low
limit values. The ADT7470 will signal an ALARM if any measured value exceeds
either limit.
The ADT7470 DOES NOT sample all inputs continuously. A single pin on the
ADT7470 is connected to a multitude of thermal diodes, but the chip must be
instructed explicitly to read the multitude of diodes. If you want to use
automatic fan control mode, you must manually read any of the temperature
sensors or the fan control algorithm will not run. The chip WILL NOT DO THIS
AUTOMATICALLY; this must be done from userspace. This may be a bug in the chip
design, given that many other AD chips take care of this. The driver will not
read the registers more often than once every 5 seconds. Further,
configuration data is only read once per minute.
The ADT7470 samples all inputs continuously. A kernel thread is started up for
the purpose of periodically querying the temperature sensors, thus allowing the
automatic fan pwm control to set the fan speed. The driver will not read the
registers more often than once every 5 seconds. Further, configuration data is
only read once per minute.
Special Features
----------------
@ -72,5 +68,6 @@ pwm#_auto_point2_temp.
Notes
-----
As stated above, the temperature inputs must be read periodically from
userspace in order for the automatic pwm algorithm to run.
The temperature inputs no longer need to be read periodically from userspace in
order for the automatic pwm algorithm to run. This was the case for earlier
versions of the driver.

View File

@ -0,0 +1,89 @@
Kernel driver f71882fg
======================
Supported chips:
* Fintek F71882FG and F71883FG
Prefix: 'f71882fg'
Addresses scanned: none, address read from Super I/O config space
Datasheet: Available from the Fintek website
* Fintek F71862FG and F71863FG
Prefix: 'f71862fg'
Addresses scanned: none, address read from Super I/O config space
Datasheet: Available from the Fintek website
* Fintek F8000
Prefix: 'f8000'
Addresses scanned: none, address read from Super I/O config space
Datasheet: Not public
Author: Hans de Goede <hdegoede@redhat.com>
Description
-----------
Fintek F718xxFG/F8000 Super I/O chips include complete hardware monitoring
capabilities. They can monitor up to 9 voltages (3 for the F8000), 4 fans and
3 temperature sensors.
These chips also have fan controlling features, using either DC or PWM, in
three different modes (one manual, two automatic).
The driver assumes that no more than one chip is present, which seems
reasonable.
Monitoring
----------
The Voltage, Fan and Temperature Monitoring uses the standard sysfs
interface as documented in sysfs-interface, without any exceptions.
Fan Control
-----------
Both PWM (pulse-width modulation) and DC fan speed control methods are
supported. The right one to use depends on external circuitry on the
motherboard, so the driver assumes that the BIOS set the method
properly.
There are 2 modes to specify the speed of the fan, PWM duty cycle (or DC
voltage) mode, where 0-100% duty cycle (0-100% of 12V) is specified. And RPM
mode where the actual RPM of the fan (as measured) is controlled and the speed
gets specified as 0-100% of the fan#_full_speed file.
Since both modes work in a 0-100% (mapped to 0-255) scale, there isn't a
whole lot of a difference when modifying fan control settings. The only
important difference is that in RPM mode the 0-100% controls the fan speed
between 0-100% of fan#_full_speed. It is assumed that if the BIOS programs
RPM mode, it will also set fan#_full_speed properly, if it does not then
fan control will not work properly, unless you set a sane fan#_full_speed
value yourself.
Switching between these modes requires re-initializing a whole bunch of
registers, so the mode which the BIOS has set is kept. The mode is
printed when loading the driver.
Three different fan control modes are supported; the mode number is written
to the pwm#_enable file. Note that not all modes are supported on all
chips, and some modes may only be available in RPM / PWM mode on the F8000.
Writing an unsupported mode will result in an invalid parameter error.
* 1: Manual mode
You ask for a specific PWM duty cycle / DC voltage or a specific % of
fan#_full_speed by writing to the pwm# file. This mode is only
available on the F8000 if the fan channel is in RPM mode.
* 2: Normal auto mode
You can define a number of temperature/fan speed trip points, which % the
fan should run at at this temp and which temp a fan should follow using the
standard sysfs interface. The number and type of trip points is chip
depended, see which files are available in sysfs.
Fan/PWM channel 3 of the F8000 is always in this mode!
* 3: Thermostat mode (Only available on the F8000 when in duty cycle mode)
The fan speed is regulated to keep the temp the fan is mapped to between
temp#_auto_point2_temp and temp#_auto_point3_temp.
Both of the automatic modes require that pwm1 corresponds to fan1, pwm2 to
fan2 and pwm3 to fan3.

View File

@ -26,6 +26,10 @@ Supported chips:
Datasheet: Publicly available at the ITE website
http://www.ite.com.tw/product_info/file/pc/IT8718F_V0.2.zip
http://www.ite.com.tw/product_info/file/pc/IT8718F_V0%203_(for%20C%20version).zip
* IT8720F
Prefix: 'it8720'
Addresses scanned: from Super I/O config space (8 I/O ports)
Datasheet: Not yet publicly available.
* SiS950 [clone of IT8705F]
Prefix: 'it87'
Addresses scanned: from Super I/O config space (8 I/O ports)
@ -71,7 +75,7 @@ Description
-----------
This driver implements support for the IT8705F, IT8712F, IT8716F,
IT8718F, IT8726F and SiS950 chips.
IT8718F, IT8720F, IT8726F and SiS950 chips.
These chips are 'Super I/O chips', supporting floppy disks, infrared ports,
joysticks and other miscellaneous stuff. For hardware monitoring, they
@ -84,19 +88,19 @@ the IT8716F and late IT8712F have 6. They are shared with other functions
though, so the functionality may not be available on a given system.
The driver dumbly assume it is there.
The IT8718F also features VID inputs (up to 8 pins) but the value is
stored in the Super-I/O configuration space. Due to technical limitations,
The IT8718F and IT8720F also features VID inputs (up to 8 pins) but the value
is stored in the Super-I/O configuration space. Due to technical limitations,
this value can currently only be read once at initialization time, so
the driver won't notice and report changes in the VID value. The two
upper VID bits share their pins with voltage inputs (in5 and in6) so you
can't have both on a given board.
The IT8716F, IT8718F and later IT8712F revisions have support for
The IT8716F, IT8718F, IT8720F and later IT8712F revisions have support for
2 additional fans. The additional fans are supported by the driver.
The IT8716F and IT8718F, and late IT8712F and IT8705F also have optional
16-bit tachometer counters for fans 1 to 3. This is better (no more fan
clock divider mess) but not compatible with the older chips and
The IT8716F, IT8718F and IT8720F, and late IT8712F and IT8705F also have
optional 16-bit tachometer counters for fans 1 to 3. This is better (no more
fan clock divider mess) but not compatible with the older chips and
revisions. The 16-bit tachometer mode is enabled by the driver when one
of the above chips is detected.
@ -122,7 +126,7 @@ zero'; this is important for negative voltage measurements. All voltage
inputs can measure voltages between 0 and 4.08 volts, with a resolution of
0.016 volt. The battery voltage in8 does not have limit registers.
The VID lines (IT8712F/IT8716F/IT8718F) encode the core voltage value:
The VID lines (IT8712F/IT8716F/IT8718F/IT8720F) encode the core voltage value:
the voltage level your processor should work with. This is hardcoded by
the mainboard and/or processor itself. It is a value in volts.

View File

@ -1,9 +1,11 @@
Kernel driver lm70
==================
Supported chip:
Supported chips:
* National Semiconductor LM70
Datasheet: http://www.national.com/pf/LM/LM70.html
* Texas Instruments TMP121/TMP123
Information: http://focus.ti.com/docs/prod/folders/print/tmp121.html
Author:
Kaiwan N Billimoria <kaiwan@designergraphix.com>
@ -25,6 +27,14 @@ complement digital temperature (sent via the SIO line), is available in the
driver for interpretation. This driver makes use of the kernel's in-core
SPI support.
As a real (in-tree) example of this "SPI protocol driver" interfacing
with a "SPI master controller driver", see drivers/spi/spi_lm70llp.c
and its associated documentation.
The TMP121/TMP123 are very similar; main differences are 4 wire SPI inter-
face (read only) and 13-bit temperature data (0.0625 degrees celsius reso-
lution).
Thanks to
---------
Jean Delvare <khali@linux-fr.org> for mentoring the hwmon-side driver

View File

@ -164,7 +164,7 @@ configured individually according to the following options.
temperature. (PWM value from 0 to 255)
* pwm#_auto_pwm_minctl - this flags selects for temp#_auto_temp_off temperature
the bahaviour of fans. Write 1 to let fans spinning at
the behaviour of fans. Write 1 to let fans spinning at
pwm#_auto_pwm_min or write 0 to let them off.
NOTE: It has been reported that there is a bug in the LM85 that causes the flag

View File

@ -0,0 +1,81 @@
Kernel driver ltc4245
=====================
Supported chips:
* Linear Technology LTC4245
Prefix: 'ltc4245'
Addresses scanned: 0x20-0x3f
Datasheet:
http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1006,C1140,P19392,D13517
Author: Ira W. Snyder <iws@ovro.caltech.edu>
Description
-----------
The LTC4245 controller allows a board to be safely inserted and removed
from a live backplane in multiple supply systems such as CompactPCI and
PCI Express.
Usage Notes
-----------
This driver does not probe for LTC4245 devices, due to the fact that some
of the possible addresses are unfriendly to probing. You will need to use
the "force" parameter to tell the driver where to find the device.
Example: the following will load the driver for an LTC4245 at address 0x23
on I2C bus #1:
$ modprobe ltc4245 force=1,0x23
Sysfs entries
-------------
The LTC4245 has built-in limits for over and under current warnings. This
makes it very likely that the reference circuit will be used.
This driver uses the values in the datasheet to change the register values
into the values specified in the sysfs-interface document. The current readings
rely on the sense resistors listed in Table 2: "Sense Resistor Values".
in1_input 12v input voltage (mV)
in2_input 5v input voltage (mV)
in3_input 3v input voltage (mV)
in4_input Vee (-12v) input voltage (mV)
in1_min_alarm 12v input undervoltage alarm
in2_min_alarm 5v input undervoltage alarm
in3_min_alarm 3v input undervoltage alarm
in4_min_alarm Vee (-12v) input undervoltage alarm
curr1_input 12v current (mA)
curr2_input 5v current (mA)
curr3_input 3v current (mA)
curr4_input Vee (-12v) current (mA)
curr1_max_alarm 12v overcurrent alarm
curr2_max_alarm 5v overcurrent alarm
curr3_max_alarm 3v overcurrent alarm
curr4_max_alarm Vee (-12v) overcurrent alarm
in5_input 12v output voltage (mV)
in6_input 5v output voltage (mV)
in7_input 3v output voltage (mV)
in8_input Vee (-12v) output voltage (mV)
in5_min_alarm 12v output undervoltage alarm
in6_min_alarm 5v output undervoltage alarm
in7_min_alarm 3v output undervoltage alarm
in8_min_alarm Vee (-12v) output undervoltage alarm
in9_input GPIO #1 voltage data
in10_input GPIO #2 voltage data
in11_input GPIO #3 voltage data
power1_input 12v power usage (mW)
power2_input 5v power usage (mW)
power3_input 3v power usage (mW)
power4_input Vee (-12v) power usage (mW)

View File

@ -11,3 +11,8 @@ unplug old device(s) and plug new device(s)
# echo -n "1" > /sys/class/ide_port/idex/scan
done
NOTE: please make sure that partitions are unmounted and that there are
no other active references to devices before doing "delete_devices" step,
also do not attempt "scan" step on devices currently in use -- otherwise
results may be unpredictable and lead to data loss if you're unlucky

View File

@ -0,0 +1,109 @@
Walkera WK-0701 transmitter is supplied with a ready to fly Walkera
helicopters such as HM36, HM37, HM60. The walkera0701 module enables to use
this transmitter as joystick
Devel homepage and download:
http://zub.fei.tuke.sk/walkera-wk0701/
or use cogito:
cg-clone http://zub.fei.tuke.sk/GIT/walkera0701-joystick
Connecting to PC:
At back side of transmitter S-video connector can be found. Modulation
pulses from processor to HF part can be found at pin 2 of this connector,
pin 3 is GND. Between pin 3 and CPU 5k6 resistor can be found. To get
modulation pulses to PC, signal pulses must be amplified.
Cable: (walkera TX to parport)
Walkera WK-0701 TX S-VIDEO connector:
(back side of TX)
__ __ S-video: canon25
/ |_| \ pin 2 (signal) NPN parport
/ O 4 3 O \ pin 3 (GND) LED ________________ 10 ACK
( O 2 1 O ) | C
\ ___ / 2 ________________________|\|_____|/
| [___] | |/| B |\
------- 3 __________________________________|________________ 25 GND
E
I use green LED and BC109 NPN transistor.
Software:
Build kernel with walkera0701 module. Module walkera0701 need exclusive
access to parport, modules like lp must be unloaded before loading
walkera0701 module, check dmesg for error messages. Connect TX to PC by
cable and run jstest /dev/input/js0 to see values from TX. If no value can
be changed by TX "joystick", check output from /proc/interrupts. Value for
(usually irq7) parport must increase if TX is on.
Technical details:
Driver use interrupt from parport ACK input bit to measure pulse length
using hrtimers.
Frame format:
Based on walkera WK-0701 PCM Format description by Shaul Eizikovich.
(downloaded from http://www.smartpropoplus.com/Docs/Walkera_Wk-0701_PCM.pdf)
Signal pulses:
(ANALOG)
SYNC BIN OCT
+---------+ +------+
| | | |
--+ +------+ +---
Frame:
SYNC , BIN1, OCT1, BIN2, OCT2 ... BIN24, OCT24, BIN25, next frame SYNC ..
pulse length:
Binary values: Analog octal values:
288 uS Binary 0 318 uS 000
438 uS Binary 1 398 uS 001
478 uS 010
558 uS 011
638 uS 100
1306 uS SYNC 718 uS 101
798 uS 110
878 uS 111
24 bin+oct values + 1 bin value = 24*4+1 bits = 97 bits
(Warning, pulses on ACK ar inverted by transistor, irq is rised up on sync
to bin change or octal value to bin change).
Binary data representations:
One binary and octal value can be grouped to nibble. 24 nibbles + one binary
values can be sampled between sync pulses.
Values for first four channels (analog joystick values) can be found in
first 10 nibbles. Analog value is represented by one sign bit and 9 bit
absolute binary value. (10 bits per channel). Next nibble is checksum for
first ten nibbles.
Next nibbles 12 .. 21 represents four channels (not all channels can be
directly controlled from TX). Binary representations ar the same as in first
four channels. In nibbles 22 and 23 is a special magic number. Nibble 24 is
checksum for nibbles 12..23.
After last octal value for nibble 24 and next sync pulse one additional
binary value can be sampled. This bit and magic number is not used in
software driver. Some details about this magic numbers can be found in
Walkera_Wk-0701_PCM.pdf.
Checksum calculation:
Summary of octal values in nibbles must be same as octal value in checksum
nibble (only first 3 bits are used). Binary value for checksum nibble is
calculated by sum of binary values in checked nibbles + sum of octal values
in checked nibbles divided by 8. Only bit 0 of this sum is used.

View File

@ -84,7 +84,7 @@ Code Seq# Include File Comments
'B' C0-FF advanced bbus
<mailto:maassen@uni-freiburg.de>
'C' all linux/soundcard.h
'D' all asm-s390/dasd.h
'D' all arch/s390/include/asm/dasd.h
'E' all linux/input.h
'F' all linux/fb.h
'H' all linux/hiddev.h
@ -97,6 +97,7 @@ Code Seq# Include File Comments
<http://linux01.gwdg.de/~alatham/ppdd.html>
'M' all linux/soundcard.h
'N' 00-1F drivers/usb/scanner.h
'O' 00-02 include/mtd/ubi-user.h UBI
'P' all linux/soundcard.h
'Q' all linux/soundcard.h
'R' 00-1F linux/random.h
@ -104,7 +105,7 @@ Code Seq# Include File Comments
'S' 80-81 scsi/scsi_ioctl.h conflict!
'S' 82-FF scsi/scsi.h conflict!
'T' all linux/soundcard.h conflict!
'T' all asm-i386/ioctls.h conflict!
'T' all arch/x86/include/asm/ioctls.h conflict!
'U' 00-EF linux/drivers/usb/usb.h
'V' all linux/vt.h
'W' 00-1F linux/watchdog.h conflict!
@ -119,7 +120,7 @@ Code Seq# Include File Comments
<mailto:natalia@nikhefk.nikhef.nl>
'c' 00-7F linux/comstats.h conflict!
'c' 00-7F linux/coda.h conflict!
'c' 80-9F asm-s390/chsc.h
'c' 80-9F arch/s390/include/asm/chsc.h
'd' 00-FF linux/char/drm/drm/h conflict!
'd' 00-DF linux/video_decoder.h conflict!
'd' F0-FF linux/digi1.h
@ -142,6 +143,9 @@ Code Seq# Include File Comments
'n' 00-7F linux/ncp_fs.h
'n' E0-FF video/matrox.h matroxfb
'o' 00-1F fs/ocfs2/ocfs2_fs.h OCFS2
'o' 00-03 include/mtd/ubi-user.h conflict! (OCFS2 and UBI overlaps)
'o' 40-41 include/mtd/ubi-user.h UBI
'o' 01-A1 include/linux/dvb/*.h DVB
'p' 00-0F linux/phantom.h conflict! (OpenHaptics needs this)
'p' 00-3F linux/mc146818rtc.h conflict!
'p' 40-7F linux/nvram.h
@ -166,7 +170,7 @@ Code Seq# Include File Comments
<mailto:oe@port.de>
0x80 00-1F linux/fb.h
0x81 00-1F linux/videotext.h
0x89 00-06 asm-i386/sockios.h
0x89 00-06 arch/x86/include/asm/sockios.h
0x89 0B-DF linux/sockios.h
0x89 E0-EF linux/sockios.h SIOCPROTOPRIVATE range
0x89 F0-FF linux/sockios.h SIOCDEVPRIVATE range

View File

@ -1,5 +1,9 @@
00-INDEX
- this file: info on the kernel build process
- this file: info on the kernel build process
kbuild.txt
- developer information on kbuild
kconfig.txt
- usage help for make *config
kconfig-language.txt
- specification of Config Language, the language in Kconfig files
makefiles.txt

View File

@ -0,0 +1,133 @@
Environment variables
KCPPFLAGS
--------------------------------------------------
Additional options to pass when preprocessing. The preprocessing options
will be used in all cases where kbuild do preprocessing including
building C files and assembler files.
KAFLAGS
--------------------------------------------------
Additional options to the assembler.
KCFLAGS
--------------------------------------------------
Additional options to the C compiler.
KBUILD_VERBOSE
--------------------------------------------------
Set the kbuild verbosity. Can be assinged same values as "V=...".
See make help for the full list.
Setting "V=..." takes precedence over KBUILD_VERBOSE.
KBUILD_EXTMOD
--------------------------------------------------
Set the directory to look for the kernel source when building external
modules.
The directory can be specified in several ways:
1) Use "M=..." on the command line
2) Environmnet variable KBUILD_EXTMOD
3) Environmnet variable SUBDIRS
The possibilities are listed in the order they take precedence.
Using "M=..." will always override the others.
KBUILD_OUTPUT
--------------------------------------------------
Specify the output directory when building the kernel.
The output directory can also be specificed using "O=...".
Setting "O=..." takes precedence over KBUILD_OUTPUT
ARCH
--------------------------------------------------
Set ARCH to the architecture to be built.
In most cases the name of the architecture is the same as the
directory name found in the arch/ directory.
But some architectures suach as x86 and sparc has aliases.
x86: i386 for 32 bit, x86_64 for 64 bit
sparc: sparc for 32 bit, sparc64 for 64 bit
CROSS_COMPILE
--------------------------------------------------
Specify an optional fixed part of the binutils filename.
CROSS_COMPILE can be a part of the filename or the full path.
CROSS_COMPILE is also used for ccache is some setups.
CF
--------------------------------------------------
Additional options for sparse.
CF is often used on the command-line like this:
make CF=-Wbitwise C=2
INSTALL_PATH
--------------------------------------------------
INSTALL_PATH specifies where to place the updated kernel and system map
images. Default is /boot, but you can set it to other values
MODLIB
--------------------------------------------------
Specify where to install modules.
The default value is:
$(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE)
The value can be overridden in which case the default value is ignored.
INSTALL_MOD_PATH
--------------------------------------------------
INSTALL_MOD_PATH specifies a prefix to MODLIB for module directory
relocations required by build roots. This is not defined in the
makefile but the argument can be passed to make if needed.
INSTALL_MOD_STRIP
--------------------------------------------------
INSTALL_MOD_STRIP, if defined, will cause modules to be
stripped after they are installed. If INSTALL_MOD_STRIP is '1', then
the default option --strip-debug will be used. Otherwise,
INSTALL_MOD_STRIP will used as the options to the strip command.
INSTALL_FW_PATH
--------------------------------------------------
INSTALL_FW_PATH specify where to install the firmware blobs.
The default value is:
$(INSTALL_MOD_PATH)/lib/firmware
The value can be overridden in which case the default value is ignored.
INSTALL_HDR_PATH
--------------------------------------------------
INSTALL_HDR_PATH specify where to install user space headers when
executing "make headers_*".
The default value is:
$(objtree)/usr
$(objtree) is the directory where output files are saved.
The output directory is often set using "O=..." on the commandline.
The value can be overridden in which case the default value is ignored.
KBUILD_MODPOST_WARN
--------------------------------------------------
KBUILD_MODPOST_WARN can be set to avoid error out in case of undefined
symbols in the final module linking stage.
KBUILD_MODPOST_FINAL
--------------------------------------------------
KBUILD_MODPOST_NOFINAL can be set to skip the final link of modules.
This is solely usefull to speed up test compiles.
KBUILD_EXTRA_SYMBOLS
--------------------------------------------------
For modules use symbols from another modules.
See more details in modules.txt.
ALLSOURCE_ARCHS
--------------------------------------------------
For tags/TAGS/cscope targets, you can specify more than one archs
to be included in the databases, separated by blankspace. e.g.
$ make ALLSOURCE_ARCHS="x86 mips arm" tags

View File

@ -0,0 +1,188 @@
This file contains some assistance for using "make *config".
Use "make help" to list all of the possible configuration targets.
The xconfig ('qconf') and menuconfig ('mconf') programs also
have embedded help text. Be sure to check it for navigation,
search, and other general help text.
======================================================================
General
--------------------------------------------------
New kernel releases often introduce new config symbols. Often more
important, new kernel releases may rename config symbols. When
this happens, using a previously working .config file and running
"make oldconfig" won't necessarily produce a working new kernel
for you, so you may find that you need to see what NEW kernel
symbols have been introduced.
To see a list of new config symbols when using "make oldconfig", use
cp user/some/old.config .config
yes "" | make oldconfig >conf.new
and the config program will list as (NEW) any new symbols that have
unknown values. Of course, the .config file is also updated with
new (default) values, so you can use:
grep "(NEW)" conf.new
to see the new config symbols or you can 'diff' the previous and
new .config files to see the differences:
diff .config.old .config | less
(Yes, we need something better here.)
======================================================================
menuconfig
--------------------------------------------------
SEARCHING for CONFIG symbols
Searching in menuconfig:
The Search function searches for kernel configuration symbol
names, so you have to know something close to what you are
looking for.
Example:
/hotplug
This lists all config symbols that contain "hotplug",
e.g., HOTPLUG, HOTPLUG_CPU, MEMORY_HOTPLUG.
For search help, enter / followed TAB-TAB-TAB (to highlight
<Help>) and Enter. This will tell you that you can also use
regular expressions (regexes) in the search string, so if you
are not interested in MEMORY_HOTPLUG, you could try
/^hotplug
______________________________________________________________________
Color Themes for 'menuconfig'
It is possible to select different color themes using the variable
MENUCONFIG_COLOR. To select a theme use:
make MENUCONFIG_COLOR=<theme> menuconfig
Available themes are:
mono => selects colors suitable for monochrome displays
blackbg => selects a color scheme with black background
classic => theme with blue background. The classic look
bluetitle => a LCD friendly version of classic. (default)
______________________________________________________________________
Environment variables in 'menuconfig'
KCONFIG_ALLCONFIG
--------------------------------------------------
(partially based on lkml email from/by Rob Landley, re: miniconfig)
--------------------------------------------------
The allyesconfig/allmodconfig/allnoconfig/randconfig variants can
also use the environment variable KCONFIG_ALLCONFIG as a flag or a
filename that contains config symbols that the user requires to be
set to a specific value. If KCONFIG_ALLCONFIG is used without a
filename, "make *config" checks for a file named
"all{yes/mod/no/random}.config" (corresponding to the *config command
that was used) for symbol values that are to be forced. If this file
is not found, it checks for a file named "all.config" to contain forced
values.
This enables you to create "miniature" config (miniconfig) or custom
config files containing just the config symbols that you are interested
in. Then the kernel config system generates the full .config file,
including dependencies of your miniconfig file, based on the miniconfig
file.
This 'KCONFIG_ALLCONFIG' file is a config file which contains
(usually a subset of all) preset config symbols. These variable
settings are still subject to normal dependency checks.
Examples:
KCONFIG_ALLCONFIG=custom-notebook.config make allnoconfig
or
KCONFIG_ALLCONFIG=mini.config make allnoconfig
or
make KCONFIG_ALLCONFIG=mini.config allnoconfig
These examples will disable most options (allnoconfig) but enable or
disable the options that are explicitly listed in the specified
mini-config files.
KCONFIG_NOSILENTUPDATE
--------------------------------------------------
If this variable has a non-blank value, it prevents silent kernel
config udpates (requires explicit updates).
KCONFIG_CONFIG
--------------------------------------------------
This environment variable can be used to specify a default kernel config
file name to override the default name of ".config".
KCONFIG_OVERWRITECONFIG
--------------------------------------------------
If you set KCONFIG_OVERWRITECONFIG in the environment, Kconfig will not
break symlinks when .config is a symlink to somewhere else.
KCONFIG_NOTIMESTAMP
--------------------------------------------------
If this environment variable exists and is non-null, the timestamp line
in generated .config files is omitted.
KCONFIG_AUTOCONFIG
--------------------------------------------------
This environment variable can be set to specify the path & name of the
"auto.conf" file. Its default value is "include/config/auto.conf".
KCONFIG_AUTOHEADER
--------------------------------------------------
This environment variable can be set to specify the path & name of the
"autoconf.h" (header) file. Its default value is "include/linux/autoconf.h".
______________________________________________________________________
menuconfig User Interface Options
----------------------------------------------------------------------
MENUCONFIG_MODE
--------------------------------------------------
This mode shows all sub-menus in one large tree.
Example:
MENUCONFIG_MODE=single_menu make menuconfig
======================================================================
xconfig
--------------------------------------------------
Searching in xconfig:
The Search function searches for kernel configuration symbol
names, so you have to know something close to what you are
looking for.
Example:
Ctrl-F hotplug
or
Menu: File, Search, hotplug
lists all config symbol entries that contain "hotplug" in
the symbol name. In this Search dialog, you may change the
config setting for any of the entries that are not grayed out.
You can also enter a different search string without having
to return to the main menu.
======================================================================
gconfig
--------------------------------------------------
Searching in gconfig:
None (gconfig isn't maintained as well as xconfig or menuconfig);
however, gconfig does have a few more viewing choices than
xconfig does.
###

View File

@ -253,7 +253,7 @@ following files:
# Module specific targets
genbin:
echo "X" > 8123_bin_shipped
echo "X" > 8123_bin.o_shipped
In example 2, we are down to two fairly simple files and for simple
@ -279,7 +279,7 @@ following files:
# Module specific targets
genbin:
echo "X" > 8123_bin_shipped
echo "X" > 8123_bin.o_shipped
endif

View File

@ -71,6 +71,11 @@ The @argument descriptions must begin on the very next line following
this opening short function description line, with no intervening
empty comment lines.
If a function parameter is "..." (varargs), it should be listed in
kernel-doc notation as:
* @...: description
Example kernel-doc data structure comment.
/**
@ -282,6 +287,32 @@ struct my_struct {
};
Including documentation blocks in source files
----------------------------------------------
To facilitate having source code and comments close together, you can
include kernel-doc documentation blocks that are free-form comments
instead of being kernel-doc for functions, structures, unions,
enums, or typedefs. This could be used for something like a
theory of operation for a driver or library code, for example.
This is done by using a DOC: section keyword with a section title. E.g.:
/**
* DOC: Theory of Operation
*
* The whizbang foobar is a dilly of a gizmo. It can do whatever you
* want it to do, at any time. It reads your mind. Here's how it works.
*
* foo bar splat
*
* The only drawback to this gizmo is that is can sometimes damage
* hardware, software, or its subject(s).
*/
DOC: sections are used in SGML templates files as indicated below.
How to make new SGML template files
-----------------------------------
@ -302,6 +333,9 @@ exported using EXPORT_SYMBOL.
!F<filename> <function [functions...]> is replaced by the
documentation, in <filename>, for the functions listed.
!P<filename> <section title> is replaced by the contents of the DOC:
section titled <section title> from <filename>.
Spaces are allowed in <section title>; do not quote the <section title>.
Tim.
*/ <twaugh@redhat.com>

View File

@ -91,6 +91,7 @@ parameter is applicable:
SUSPEND System suspend states are enabled.
FTRACE Function tracing enabled.
TS Appropriate touchscreen support is enabled.
UMS USB Mass Storage support is enabled.
USB USB support is enabled.
USBHID USB Human Interface Device support is enabled.
V4L Video For Linux support is enabled.
@ -469,8 +470,8 @@ and is between 256 and 4096 characters. It is defined in the file
clearcpuid=BITNUM [X86]
Disable CPUID feature X for the kernel. See
include/asm-x86/cpufeature.h for the valid bit numbers.
Note the Linux specific bits are not necessarily
arch/x86/include/asm/cpufeature.h for the valid bit
numbers. Note the Linux specific bits are not necessarily
stable over kernel options, but the vendor specific
ones should be.
Also note that user programs calling CPUID directly
@ -551,6 +552,11 @@ and is between 256 and 4096 characters. It is defined in the file
not work reliably with all consoles, but is known
to work with serial and VGA consoles.
coredump_filter=
[KNL] Change the default value for
/proc/<pid>/coredump_filter.
See also Documentation/filesystems/proc.txt.
cpcihp_generic= [HW,PCI] Generic port I/O CompactPCI driver
Format:
<first_slot>,<last_slot>,<port>,<enum_bit>[,<debug>]
@ -913,6 +919,10 @@ and is between 256 and 4096 characters. It is defined in the file
inttest= [IA64]
iomem= Disable strict checking of access to MMIO memory
strict regions from userspace.
relaxed
iommu= [x86]
off
force
@ -1117,6 +1127,8 @@ and is between 256 and 4096 characters. It is defined in the file
If there are multiple matching configurations changing
the same attribute, the last one is used.
lmb=debug [KNL] Enable lmb debug messages.
load_ramdisk= [RAM] List of ramdisks to load from floppy
See Documentation/blockdev/ramdisk.txt.
@ -1569,6 +1581,10 @@ and is between 256 and 4096 characters. It is defined in the file
nr_uarts= [SERIAL] maximum number of UARTs to be registered.
ohci1394_dma=early [HW] enable debugging via the ohci1394 driver.
See Documentation/debugging-via-ohci1394.txt for more
info.
olpc_ec_timeout= [OLPC] ms delay when issuing EC commands
Rather than timing out after 20 ms if an EC
command is not properly ACKed, override the length
@ -1793,10 +1809,10 @@ and is between 256 and 4096 characters. It is defined in the file
autoconfiguration.
Ranges are in pairs (memory base and size).
dynamic_printk
Enables pr_debug()/dev_dbg() calls if
CONFIG_DYNAMIC_PRINTK_DEBUG has been enabled. These can also
be switched on/off via <debugfs>/dynamic_printk/modules
dynamic_printk Enables pr_debug()/dev_dbg() calls if
CONFIG_DYNAMIC_PRINTK_DEBUG has been enabled.
These can also be switched on/off via
<debugfs>/dynamic_printk/modules
print-fatal-signals=
[KNL] debug: print fatal signals
@ -1884,7 +1900,7 @@ and is between 256 and 4096 characters. It is defined in the file
reboot= [BUGS=X86-32,BUGS=ARM,BUGS=IA-64] Rebooting mode
Format: <reboot_mode>[,<reboot_mode2>[,...]]
See arch/*/kernel/reboot.c or arch/*/kernel/process.c
See arch/*/kernel/reboot.c or arch/*/kernel/process.c
relax_domain_level=
[KNL, SMP] Set scheduler's default relax_domain_level.
@ -2372,6 +2388,41 @@ and is between 256 and 4096 characters. It is defined in the file
usbhid.mousepoll=
[USBHID] The interval which mice are to be polled at.
usb-storage.delay_use=
[UMS] The delay in seconds before a new device is
scanned for Logical Units (default 5).
usb-storage.quirks=
[UMS] A list of quirks entries to supplement or
override the built-in unusual_devs list. List
entries are separated by commas. Each entry has
the form VID:PID:Flags where VID and PID are Vendor
and Product ID values (4-digit hex numbers) and
Flags is a set of characters, each corresponding
to a common usb-storage quirk flag as follows:
a = SANE_SENSE (collect more than 18 bytes
of sense data);
c = FIX_CAPACITY (decrease the reported
device capacity by one sector);
h = CAPACITY_HEURISTICS (decrease the
reported device capacity by one
sector if the number is odd);
i = IGNORE_DEVICE (don't bind to this
device);
l = NOT_LOCKABLE (don't try to lock and
unlock ejectable media);
m = MAX_SECTORS_64 (don't transfer more
than 64 sectors = 32 KB at a time);
o = CAPACITY_OK (accept the capacity
reported by the device);
r = IGNORE_RESIDUE (the device reports
bogus residue values);
s = SINGLE_LUN (the device has only one
Logical Unit);
w = NO_WP_DETECT (don't test whether the
medium is write-protected).
Example: quirks=0419:aaf5:rl,0421:0433:rc
add_efi_memmap [EFI; x86-32,X86-64] Include EFI memory map in
kernel's map of available physical RAM.
@ -2432,8 +2483,8 @@ and is between 256 and 4096 characters. It is defined in the file
Format:
<irq>,<irq_mask>,<io>,<full_duplex>,<do_sound>,<lockup_hack>[,<irq2>[,<irq3>[,<irq4>]]]
norandmaps Don't use address space randomization
Equivalent to echo 0 > /proc/sys/kernel/randomize_va_space
norandmaps Don't use address space randomization. Equivalent to
echo 0 > /proc/sys/kernel/randomize_va_space
______________________________________________________________________

View File

@ -118,8 +118,8 @@ the name of the kobject, call kobject_rename():
int kobject_rename(struct kobject *kobj, const char *new_name);
Note kobject_rename does perform any locking or have a solid notion of
what names are valid so the provide must provide their own sanity checking
kobject_rename does not perform any locking or have a solid notion of
what names are valid so the caller must provide their own sanity checking
and serialization.
There is a function called kobject_set_name() but that is legacy cruft and

View File

@ -497,7 +497,10 @@ The first column provides the kernel address where the probe is inserted.
The second column identifies the type of probe (k - kprobe, r - kretprobe
and j - jprobe), while the third column specifies the symbol+offset of
the probe. If the probed function belongs to a module, the module name
is also specified.
is also specified. Following columns show probe status. If the probe is on
a virtual address that is no longer valid (module init sections, module
virtual addresses that correspond to modules that've been unloaded),
such probes are marked with [GONE].
/debug/kprobes/enabled: Turn kprobes ON/OFF

View File

@ -1475,7 +1475,7 @@ Sysfs interface changelog:
0x020100: Marker for thinkpad-acpi with hot key NVRAM polling
support. If you must, use it to know you should not
start an userspace NVRAM poller (allows to detect when
start a userspace NVRAM poller (allows to detect when
NVRAM is compiled out by the user because it is
unneeded/undesired in the first place).
0x020101: Marker for thinkpad-acpi with hot key NVRAM polling

View File

@ -125,14 +125,14 @@ TRIDENT_CARD_MAGIC 0x5072696E trident_card sound/oss/trident.c
ROUTER_MAGIC 0x524d4157 wan_device include/linux/wanrouter.h
SCC_MAGIC 0x52696368 gs_port drivers/char/scc.h
SAVEKMSG_MAGIC1 0x53415645 savekmsg arch/*/amiga/config.c
GDA_MAGIC 0x58464552 gda include/asm-mips64/sn/gda.h
GDA_MAGIC 0x58464552 gda arch/mips/include/asm/sn/gda.h
RED_MAGIC1 0x5a2cf071 (any) mm/slab.c
STL_PORTMAGIC 0x5a7182c9 stlport include/linux/stallion.h
EEPROM_MAGIC_VALUE 0x5ab478d2 lanai_dev drivers/atm/lanai.c
HDLCDRV_MAGIC 0x5ac6e778 hdlcdrv_state include/linux/hdlcdrv.h
EPCA_MAGIC 0x5c6df104 channel include/linux/epca.h
PCXX_MAGIC 0x5c6df104 channel drivers/char/pcxx.h
KV_MAGIC 0x5f4b565f kernel_vars_s include/asm-mips64/sn/klkernvars.h
KV_MAGIC 0x5f4b565f kernel_vars_s arch/mips/include/asm/sn/klkernvars.h
I810_STATE_MAGIC 0x63657373 i810_state sound/oss/i810_audio.c
TRIDENT_STATE_MAGIC 0x63657373 trient_state sound/oss/trident.c
M3_CARD_MAGIC 0x646e6f50 m3_card sound/oss/maestro3.c
@ -158,7 +158,7 @@ CCB_MAGIC 0xf2691ad2 ccb drivers/scsi/ncr53c8xx.c
QUEUE_MAGIC_FREE 0xf7e1c9a3 queue_entry drivers/scsi/arm/queue.c
QUEUE_MAGIC_USED 0xf7e1cc33 queue_entry drivers/scsi/arm/queue.c
HTB_CMAGIC 0xFEFAFEF1 htb_class net/sched/sch_htb.c
NMI_MAGIC 0x48414d4d455201 nmi_s include/asm-mips64/sn/nmi.h
NMI_MAGIC 0x48414d4d455201 nmi_s arch/mips/include/asm/sn/nmi.h
Note that there are also defined special per-driver magic numbers in sound
memory management. See include/sound/sndmagic.h for complete list of them. Many

View File

@ -124,7 +124,7 @@ config options.
This option can be kernel module too.
--------------------------------
3 sysfs files for memory hotplug
4 sysfs files for memory hotplug
--------------------------------
All sections have their device information under /sys/devices/system/memory as
@ -138,11 +138,12 @@ For example, assume 1GiB section size. A device for a memory starting at
(0x100000000 / 1Gib = 4)
This device covers address range [0x100000000 ... 0x140000000)
Under each section, you can see 3 files.
Under each section, you can see 4 files.
/sys/devices/system/memory/memoryXXX/phys_index
/sys/devices/system/memory/memoryXXX/phys_device
/sys/devices/system/memory/memoryXXX/state
/sys/devices/system/memory/memoryXXX/removable
'phys_index' : read-only and contains section id, same as XXX.
'state' : read-write
@ -150,10 +151,20 @@ Under each section, you can see 3 files.
at write: user can specify "online", "offline" command
'phys_device': read-only: designed to show the name of physical memory device.
This is not well implemented now.
'removable' : read-only: contains an integer value indicating
whether the memory section is removable or not
removable. A value of 1 indicates that the memory
section is removable and a value of 0 indicates that
it is not removable.
NOTE:
These directories/files appear after physical memory hotplug phase.
If CONFIG_NUMA is enabled the
/sys/devices/system/memory/memoryXXX memory section
directories can also be accessed via symbolic links located in
the /sys/devices/system/node/node* directories. For example:
/sys/devices/system/node/node0/memory9 -> ../../memory/memory9
--------------------------------
4. Physical memory hot-add phase
@ -365,7 +376,6 @@ node if necessary.
- allowing memory hot-add to ZONE_MOVABLE. maybe we need some switch like
sysctl or new control file.
- showing memory section and physical device relationship.
- showing memory section and node relationship (maybe good for NUMA)
- showing memory section is under ZONE_MOVABLE or not
- test and make it better memory offlining.
- support HugeTLB page migration and offlining.

View File

@ -44,7 +44,7 @@ FILES, CONFIGS AND COMPATABILITY
Two files are introduced:
a) 'include/asm-mips/mach-au1x00/au1xxx_ide.h'
a) 'arch/mips/include/asm/mach-au1x00/au1xxx_ide.h'
containes : struct _auide_hwif
timing parameters for PIO mode 0/1/2/3/4
timing parameters for MWDMA 0/1/2

View File

@ -540,7 +540,7 @@ A client would issue an operation by:
MSG_MORE should be set in msghdr::msg_flags on all but the last part of
the request. Multiple requests may be made simultaneously.
If a call is intended to go to a destination other then the default
If a call is intended to go to a destination other than the default
specified through connect(), then msghdr::msg_name should be set on the
first request message of that call.

View File

@ -118,7 +118,7 @@ As mentioned above, main purpose of TUN/TAP driver is tunneling.
It is used by VTun (http://vtun.sourceforge.net).
Another interesting application using TUN/TAP is pipsecd
(http://perso.enst.fr/~beyssac/pipsec/), an userspace IPSec
(http://perso.enst.fr/~beyssac/pipsec/), a userspace IPSec
implementation that can use complete kernel routing (unlike FreeS/WAN).
3. How does Virtual network device actually work ?

View File

@ -31,7 +31,7 @@ anyways).
After detecting the processor type, the kernel patches out sections of code
that shouldn't be used by writing nop's over it. Using cpufeatures requires
just 2 macros (found in include/asm-ppc/cputable.h), as seen in head.S
just 2 macros (found in arch/powerpc/include/asm/cputable.h), as seen in head.S
transfer_to_handler:
#ifdef CONFIG_ALTIVEC

View File

@ -1402,7 +1402,7 @@ Syscalls are implemented on Linux for S390 by the Supervisor call instruction (S
possibilities of these as the instruction is made up of a 0xA opcode & the second byte being
the syscall number. They are traced using the simple command.
TR SVC <Optional value or range>
the syscalls are defined in linux/include/asm-s390/unistd.h
the syscalls are defined in linux/arch/s390/include/asm/unistd.h
e.g. to trace all file opens just do
TR SVC 5 ( as this is the syscall number of open )

View File

@ -98,7 +98,7 @@ platform. Some of the interface routines are specific to Linux/390 and some
of them can be found on other Linux platforms implementations too.
Miscellaneous function prototypes, data declarations, and macro definitions
can be found in the architecture specific C header file
linux/include/asm-s390/irq.h.
linux/arch/s390/include/asm/irq.h.
Overview of CDS interface concepts

View File

@ -2,7 +2,7 @@ S390 Debug Feature
==================
files: arch/s390/kernel/debug.c
include/asm-s390/debug.h
arch/s390/include/asm/debug.h
Description:
------------

View File

@ -733,7 +733,7 @@ Changes from 20040920 to 20041018
I/O completion path a little more, especially taking care of
fast-pathing the non-error case. Also removes tons of dead
members and defines from lpfc_scsi.h - e.g. lpfc_target is down
to nothing more then the lpfc_nodelist pointer.
to nothing more than the lpfc_nodelist pointer.
* Added binary sysfs file to issue mbox commands
* Replaced #if __BIG_ENDIAN with #if __BIG_ENDIAN_BITFIELD for
compatibility with the user space applications.

View File

@ -19,7 +19,7 @@ Sun Sep 24 21:30 2000 Gerard Roudier (groudier@club-internet.fr)
Wed Jul 26 23:30 2000 Gerard Roudier (groudier@club-internet.fr)
* version ncr53c8xx-3.4.1
- Provide OpenFirmare path through the proc FS on PPC.
- Provide OpenFirmware path through the proc FS on PPC.
- Remove trailing argument #2 from a couple of #undefs.
Sun Jul 09 16:30 2000 Gerard Roudier (groudier@club-internet.fr)

View File

@ -81,7 +81,7 @@ Sun Sep 24 21:30 2000 Gerard Roudier (groudier@club-internet.fr)
Wed Jul 26 23:30 2000 Gerard Roudier (groudier@club-internet.fr)
* version sym53c8xx-1.7.1
- Provide OpenFirmare path through the proc FS on PPC.
- Provide OpenFirmware path through the proc FS on PPC.
- Download of on-chip SRAM using memcpy_toio() doesn't work
on PPC. Restore previous method (MEMORY MOVE from SCRIPTS).
- Remove trailing argument #2 from a couple of #undefs.

View File

@ -13,10 +13,20 @@ Description
This driver provides glue code connecting a National Semiconductor LM70 LLP
temperature sensor evaluation board to the kernel's SPI core subsystem.
This is a SPI master controller driver. It can be used in conjunction with
(layered under) the LM70 logical driver (a "SPI protocol driver").
In effect, this driver turns the parallel port interface on the eval board
into a SPI bus with a single device, which will be driven by the generic
LM70 driver (drivers/hwmon/lm70.c).
Hardware Interfacing
--------------------
The schematic for this particular board (the LM70EVAL-LLP) is
available (on page 4) here:
http://www.national.com/appinfo/tempsensors/files/LM70LLPEVALmanual.pdf
The hardware interfacing on the LM70 LLP eval board is as follows:
Parallel LM70 LLP

View File

@ -41,7 +41,8 @@ Currently, these files are in /proc/sys/vm:
==============================================================
dirty_ratio, dirty_background_ratio, dirty_expire_centisecs,
dirty_bytes, dirty_ratio, dirty_background_bytes,
dirty_background_ratio, dirty_expire_centisecs,
dirty_writeback_centisecs, highmem_is_dirtyable,
vfs_cache_pressure, laptop_mode, block_dump, swap_token_timeout,
drop-caches, hugepages_treat_as_movable:

View File

@ -313,11 +313,13 @@ three of the methods listed above. In addition, a driver indicates
that it supports autosuspend by setting the .supports_autosuspend flag
in its usb_driver structure. It is then responsible for informing the
USB core whenever one of its interfaces becomes busy or idle. The
driver does so by calling these three functions:
driver does so by calling these five functions:
int usb_autopm_get_interface(struct usb_interface *intf);
void usb_autopm_put_interface(struct usb_interface *intf);
int usb_autopm_set_interface(struct usb_interface *intf);
int usb_autopm_get_interface_async(struct usb_interface *intf);
void usb_autopm_put_interface_async(struct usb_interface *intf);
The functions work by maintaining a counter in the usb_interface
structure. When intf->pm_usage_count is > 0 then the interface is
@ -330,10 +332,12 @@ associated with the device itself rather than any of its interfaces.
This field is used only by the USB core.)
The driver owns intf->pm_usage_count; it can modify the value however
and whenever it likes. A nice aspect of the usb_autopm_* routines is
that the changes they make are protected by the usb_device structure's
PM mutex (udev->pm_mutex); however drivers may change pm_usage_count
without holding the mutex.
and whenever it likes. A nice aspect of the non-async usb_autopm_*
routines is that the changes they make are protected by the usb_device
structure's PM mutex (udev->pm_mutex); however drivers may change
pm_usage_count without holding the mutex. Drivers using the async
routines are responsible for their own synchronization and mutual
exclusion.
usb_autopm_get_interface() increments pm_usage_count and
attempts an autoresume if the new value is > 0 and the
@ -348,6 +352,14 @@ without holding the mutex.
is suspended, and it attempts an autosuspend if the value is
<= 0 and the device isn't suspended.
usb_autopm_get_interface_async() and
usb_autopm_put_interface_async() do almost the same things as
their non-async counterparts. The differences are: they do
not acquire the PM mutex, and they use a workqueue to do their
jobs. As a result they can be called in an atomic context,
such as an URB's completion handler, but when they return the
device will not generally not yet be in the desired state.
There also are a couple of utility routines drivers can use:
usb_autopm_enable() sets pm_usage_cnt to 0 and then calls

View File

@ -80,12 +80,6 @@ case $1 in
start)
for dev in ${2:-$hdevs}
do
uwb_rc=$(readlink -f $dev/uwb_rc)
if cat $uwb_rc/beacon | grep -q -- "-1"
then
echo 13 0 > $uwb_rc/beacon
echo I: started beaconing on ch 13 on $(basename $uwb_rc) >&2
fi
echo $host_CHID > $dev/wusb_chid
echo I: started host $(basename $dev) >&2
done
@ -95,9 +89,6 @@ case $1 in
do
echo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 > $dev/wusb_chid
echo I: stopped host $(basename $dev) >&2
uwb_rc=$(readlink -f $dev/uwb_rc)
echo -1 | cat > $uwb_rc/beacon
echo I: stopped beaconing on $(basename $uwb_rc) >&2
done
;;
set-chid)

View File

@ -152,3 +152,4 @@
151 -> ADS Tech Instant HDTV [1421:0380]
152 -> Asus Tiger Rev:1.00 [1043:4857]
153 -> Kworld Plus TV Analog Lite PCI [17de:7128]
154 -> Avermedia AVerTV GO 007 FM Plus [1461:f31d]

View File

@ -41,6 +41,7 @@ chips are known to work:
- 10c4:818a: Silicon Labs USB FM Radio Reference Design
- 06e1:a155: ADS/Tech FM Radio Receiver (formerly Instant FM Music) (RDX-155-EF)
- 1b80:d700: KWorld USB FM Radio SnapMusic Mobile 700 (FM700)
- 10c5:819a: DealExtreme USB Radio
Software

View File

@ -184,7 +184,7 @@ may be NULL if the subdev driver does not support anything from that category.
It looks like this:
struct v4l2_subdev_core_ops {
int (*g_chip_ident)(struct v4l2_subdev *sd, struct v4l2_chip_ident *chip);
int (*g_chip_ident)(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip);
int (*log_status)(struct v4l2_subdev *sd);
int (*init)(struct v4l2_subdev *sd, u32 val);
...
@ -390,16 +390,18 @@ allocated memory.
You should also set these fields:
- parent: set to the parent device (same device as was used to register
v4l2_device).
- v4l2_dev: set to the v4l2_device parent device.
- name: set to something descriptive and unique.
- fops: set to the file_operations struct.
- fops: set to the v4l2_file_operations struct.
- ioctl_ops: if you use the v4l2_ioctl_ops to simplify ioctl maintenance
(highly recommended to use this and it might become compulsory in the
future!), then set this to your v4l2_ioctl_ops struct.
If you use v4l2_ioctl_ops, then you should set .unlocked_ioctl to
__video_ioctl2 or .ioctl to video_ioctl2 in your file_operations struct.
If you use v4l2_ioctl_ops, then you should set either .unlocked_ioctl or
.ioctl to video_ioctl2 in your v4l2_file_operations struct.
The v4l2_file_operations struct is a subset of file_operations. The main
difference is that the inode argument is omitted since it is never used.
video_device registration
@ -410,7 +412,7 @@ for you.
err = video_register_device(vdev, VFL_TYPE_GRABBER, -1);
if (err) {
video_device_release(vdev); // or kfree(my_vdev);
video_device_release(vdev); /* or kfree(my_vdev); */
return err;
}
@ -516,5 +518,4 @@ void *video_drvdata(struct file *file);
You can go from a video_device struct to the v4l2_device struct using:
struct v4l2_device *v4l2_dev = dev_get_drvdata(vdev->parent);
struct v4l2_device *v4l2_dev = vdev->v4l2_dev;

View File

@ -137,13 +137,6 @@ shrink_page_list() where they will be detected when vmscan walks the reverse
map in try_to_unmap(). If try_to_unmap() returns SWAP_MLOCK, shrink_page_list()
will cull the page at that point.
Note that for anonymous pages, shrink_page_list() attempts to add the page to
the swap cache before it tries to unmap the page. To avoid this unnecessary
consumption of swap space, shrink_page_list() calls try_to_munlock() to check
whether any VM_LOCKED vmas map the page without attempting to unmap the page.
If try_to_munlock() returns SWAP_MLOCK, shrink_page_list() will cull the page
without consuming swap space. try_to_munlock() will be described below.
To "cull" an unevictable page, vmscan simply puts the page back on the lru
list using putback_lru_page()--the inverse operation to isolate_lru_page()--
after dropping the page lock. Because the condition which makes the page
@ -190,8 +183,8 @@ several places:
in the VM_LOCKED flag being set for the vma.
3) in the fault path, if mlocked pages are "culled" in the fault path,
and when a VM_LOCKED stack segment is expanded.
4) as mentioned above, in vmscan:shrink_page_list() with attempting to
reclaim a page in a VM_LOCKED vma--via try_to_unmap() or try_to_munlock().
4) as mentioned above, in vmscan:shrink_page_list() when attempting to
reclaim a page in a VM_LOCKED vma via try_to_unmap().
Mlocked pages become unlocked and rescued from the unevictable list when:
@ -260,9 +253,9 @@ mlock_fixup() filters several classes of "special" vmas:
2) vmas mapping hugetlbfs page are already effectively pinned into memory.
We don't need nor want to mlock() these pages. However, to preserve the
prior behavior of mlock()--before the unevictable/mlock changes--mlock_fixup()
will call make_pages_present() in the hugetlbfs vma range to allocate the
huge pages and populate the ptes.
prior behavior of mlock()--before the unevictable/mlock changes--
mlock_fixup() will call make_pages_present() in the hugetlbfs vma range
to allocate the huge pages and populate the ptes.
3) vmas with VM_DONTEXPAND|VM_RESERVED are generally user space mappings of
kernel pages, such as the vdso page, relay channel pages, etc. These pages
@ -322,7 +315,7 @@ __mlock_vma_pages_range()--the same function used to mlock a vma range--
passing a flag to indicate that munlock() is being performed.
Because the vma access protections could have been changed to PROT_NONE after
faulting in and mlocking some pages, get_user_pages() was unreliable for visiting
faulting in and mlocking pages, get_user_pages() was unreliable for visiting
these pages for munlocking. Because we don't want to leave pages mlocked(),
get_user_pages() was enhanced to accept a flag to ignore the permissions when
fetching the pages--all of which should be resident as a result of previous
@ -416,8 +409,8 @@ Mlocked Pages: munmap()/exit()/exec() System Call Handling
When unmapping an mlocked region of memory, whether by an explicit call to
munmap() or via an internal unmap from exit() or exec() processing, we must
munlock the pages if we're removing the last VM_LOCKED vma that maps the pages.
Before the unevictable/mlock changes, mlocking did not mark the pages in any way,
so unmapping them required no processing.
Before the unevictable/mlock changes, mlocking did not mark the pages in any
way, so unmapping them required no processing.
To munlock a range of memory under the unevictable/mlock infrastructure, the
munmap() hander and task address space tear down function call
@ -517,12 +510,10 @@ couldn't be mlocked.
Mlocked pages: try_to_munlock() Reverse Map Scan
TODO/FIXME: a better name might be page_mlocked()--analogous to the
page_referenced() reverse map walker--especially if we continue to call this
from shrink_page_list(). See related TODO/FIXME below.
page_referenced() reverse map walker.
When munlock_vma_page()--see "Mlocked Pages: munlock()/munlockall() System
Call Handling" above--tries to munlock a page, or when shrink_page_list()
encounters an anonymous page that is not yet in the swap cache, they need to
When munlock_vma_page()--see "Mlocked Pages: munlock()/munlockall()
System Call Handling" above--tries to munlock a page, it needs to
determine whether or not the page is mapped by any VM_LOCKED vma, without
actually attempting to unmap all ptes from the page. For this purpose, the
unevictable/mlock infrastructure introduced a variant of try_to_unmap() called
@ -535,10 +526,7 @@ for VM_LOCKED vmas. When such a vma is found for anonymous pages and file
pages mapped in linear VMAs, as in the try_to_unmap() case, the functions
attempt to acquire the associated mmap semphore, mlock the page via
mlock_vma_page() and return SWAP_MLOCK. This effectively undoes the
pre-clearing of the page's PG_mlocked done by munlock_vma_page() and informs
shrink_page_list() that the anonymous page should be culled rather than added
to the swap cache in preparation for a try_to_unmap() that will almost
certainly fail.
pre-clearing of the page's PG_mlocked done by munlock_vma_page.
If try_to_unmap() is unable to acquire a VM_LOCKED vma's associated mmap
semaphore, it will return SWAP_AGAIN. This will allow shrink_page_list()
@ -557,10 +545,7 @@ However, the scan can terminate when it encounters a VM_LOCKED vma and can
successfully acquire the vma's mmap semphore for read and mlock the page.
Although try_to_munlock() can be called many [very many!] times when
munlock()ing a large region or tearing down a large address space that has been
mlocked via mlockall(), overall this is a fairly rare event. In addition,
although shrink_page_list() calls try_to_munlock() for every anonymous page that
it handles that is not yet in the swap cache, on average anonymous pages will
have very short reverse map lists.
mlocked via mlockall(), overall this is a fairly rare event.
Mlocked Page: Page Reclaim in shrink_*_list()
@ -588,8 +573,8 @@ Some examples of these unevictable pages on the LRU lists are:
munlock_vma_page() was forced to let the page back on to the normal
LRU list for vmscan to handle.
shrink_inactive_list() also culls any unevictable pages that it finds
on the inactive lists, again diverting them to the appropriate zone's unevictable
shrink_inactive_list() also culls any unevictable pages that it finds on
the inactive lists, again diverting them to the appropriate zone's unevictable
lru list. shrink_inactive_list() should only see SHM_LOCKed pages that became
SHM_LOCKed after shrink_active_list() had moved them to the inactive list, or
pages mapped into VM_LOCKED vmas that munlock_vma_page() couldn't isolate from
@ -597,19 +582,7 @@ the lru to recheck via try_to_munlock(). shrink_inactive_list() won't notice
the latter, but will pass on to shrink_page_list().
shrink_page_list() again culls obviously unevictable pages that it could
encounter for similar reason to shrink_inactive_list(). As already discussed,
shrink_page_list() proactively looks for anonymous pages that should have
PG_mlocked set but don't--these would not be detected by page_evictable()--to
avoid adding them to the swap cache unnecessarily. File pages mapped into
encounter for similar reason to shrink_inactive_list(). Pages mapped into
VM_LOCKED vmas but without PG_mlocked set will make it all the way to
try_to_unmap(). shrink_page_list() will divert them to the unevictable list when
try_to_unmap() returns SWAP_MLOCK, as discussed above.
TODO/FIXME: If we can enhance the swap cache to reliably remove entries
with page_count(page) > 2, as long as all ptes are mapped to the page and
not the swap entry, we can probably remove the call to try_to_munlock() in
shrink_page_list() and just remove the page from the swap cache when
try_to_unmap() returns SWAP_MLOCK. Currently, remove_exclusive_swap_page()
doesn't seem to allow that.
try_to_unmap(). shrink_page_list() will divert them to the unevictable list
when try_to_unmap() returns SWAP_MLOCK, as discussed above.

View File

@ -0,0 +1,260 @@
Driver for the Intel Wireless Wimax Connection 2400m
(C) 2008 Intel Corporation < linux-wimax@intel.com >
This provides a driver for the Intel Wireless WiMAX Connection 2400m
and a basic Linux kernel WiMAX stack.
1. Requirements
* Linux installation with Linux kernel 2.6.22 or newer (if building
from a separate tree)
* Intel i2400m Echo Peak or Baxter Peak; this includes the Intel
Wireless WiMAX/WiFi Link 5x50 series.
* build tools:
+ Linux kernel development package for the target kernel; to
build against your currently running kernel, you need to have
the kernel development package corresponding to the running
image installed (usually if your kernel is named
linux-VERSION, the development package is called
linux-dev-VERSION or linux-headers-VERSION).
+ GNU C Compiler, make
2. Compilation and installation
2.1. Compilation of the drivers included in the kernel
Configure the kernel; to enable the WiMAX drivers select Drivers >
Networking Drivers > WiMAX device support. Enable all of them as
modules (easier).
If USB or SDIO are not enabled in the kernel configuration, the options
to build the i2400m USB or SDIO drivers will not show. Enable said
subsystems and go back to the WiMAX menu to enable the drivers.
Compile and install your kernel as usual.
2.2. Compilation of the drivers distributed as an standalone module
To compile
$ cd source/directory
$ make
Once built you can load and unload using the provided load.sh script;
load.sh will load the modules, load.sh u will unload them.
To install in the default kernel directories (and enable auto loading
when the device is plugged):
$ make install
$ depmod -a
If your kernel development files are located in a non standard
directory or if you want to build for a kernel that is not the
currently running one, set KDIR to the right location:
$ make KDIR=/path/to/kernel/dev/tree
For more information, please contact linux-wimax@intel.com.
3. Installing the firmware
The firmware can be obtained from http://linuxwimax.org or might have
been supplied with your hardware.
It has to be installed in the target system:
*
$ cp FIRMWAREFILE.sbcf /lib/firmware/i2400m-fw-BUSTYPE-1.3.sbcf
* NOTE: if your firmware came in an .rpm or .deb file, just install
it as normal, with the rpm (rpm -i FIRMWARE.rpm) or dpkg
(dpkg -i FIRMWARE.deb) commands. No further action is needed.
* BUSTYPE will be usb or sdio, depending on the hardware you have.
Each hardware type comes with its own firmware and will not work
with other types.
4. Design
This package contains two major parts: a WiMAX kernel stack and a
driver for the Intel i2400m.
The WiMAX stack is designed to provide for common WiMAX control
services to current and future WiMAX devices from any vendor; please
see README.wimax for details.
The i2400m kernel driver is broken up in two main parts: the bus
generic driver and the bus-specific drivers. The bus generic driver
forms the drivercore and contain no knowledge of the actual method we
use to connect to the device. The bus specific drivers are just the
glue to connect the bus-generic driver and the device. Currently only
USB and SDIO are supported. See drivers/net/wimax/i2400m/i2400m.h for
more information.
The bus generic driver is logically broken up in two parts: OS-glue and
hardware-glue. The OS-glue interfaces with Linux. The hardware-glue
interfaces with the device on using an interface provided by the
bus-specific driver. The reason for this breakup is to be able to
easily reuse the hardware-glue to write drivers for other OSes; note
the hardware glue part is written as a native Linux driver; no
abstraction layers are used, so to port to another OS, the Linux kernel
API calls should be replaced with the target OS's.
5. Usage
To load the driver, follow the instructions in the install section;
once the driver is loaded, plug in the device (unless it is permanently
plugged in). The driver will enumerate the device, upload the firmware
and output messages in the kernel log (dmesg, /var/log/messages or
/var/log/kern.log) such as:
...
i2400m_usb 5-4:1.0: firmware interface version 8.0.0
i2400m_usb 5-4:1.0: WiMAX interface wmx0 (00:1d:e1:01:94:2c) ready
At this point the device is ready to work.
Current versions require the Intel WiMAX Network Service in userspace
to make things work. See the network service's README for instructions
on how to scan, connect and disconnect.
5.1. Module parameters
Module parameters can be set at kernel or module load time or by
echoing values:
$ echo VALUE > /sys/module/MODULENAME/parameters/PARAMETERNAME
To make changes permanent, for example, for the i2400m module, you can
also create a file named /etc/modprobe.d/i2400m containing:
options i2400m idle_mode_disabled=1
To find which parameters are supported by a module, run:
$ modinfo path/to/module.ko
During kernel bootup (if the driver is linked in the kernel), specify
the following to the kernel command line:
i2400m.PARAMETER=VALUE
5.1.1. i2400m: idle_mode_disabled
The i2400m module supports a parameter to disable idle mode. This
parameter, once set, will take effect only when the device is
reinitialized by the driver (eg: following a reset or a reconnect).
5.2. Debug operations: debugfs entries
The driver will register debugfs entries that allow the user to tweak
debug settings. There are three main container directories where
entries are placed, which correspond to the three blocks a i2400m WiMAX
driver has:
* /sys/kernel/debug/wimax:DEVNAME/ for the generic WiMAX stack
controls
* /sys/kernel/debug/wimax:DEVNAME/i2400m for the i2400m generic
driver controls
* /sys/kernel/debug/wimax:DEVNAME/i2400m-usb (or -sdio) for the
bus-specific i2400m-usb or i2400m-sdio controls).
Of course, if debugfs is mounted in a directory other than
/sys/kernel/debug, those paths will change.
5.2.1. Increasing debug output
The files named *dl_* indicate knobs for controlling the debug output
of different submodules:
*
# find /sys/kernel/debug/wimax\:wmx0 -name \*dl_\*
/sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_tx
/sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_rx
/sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_notif
/sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_fw
/sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_usb
/sys/kernel/debug/wimax:wmx0/i2400m/dl_tx
/sys/kernel/debug/wimax:wmx0/i2400m/dl_rx
/sys/kernel/debug/wimax:wmx0/i2400m/dl_rfkill
/sys/kernel/debug/wimax:wmx0/i2400m/dl_netdev
/sys/kernel/debug/wimax:wmx0/i2400m/dl_fw
/sys/kernel/debug/wimax:wmx0/i2400m/dl_debugfs
/sys/kernel/debug/wimax:wmx0/i2400m/dl_driver
/sys/kernel/debug/wimax:wmx0/i2400m/dl_control
/sys/kernel/debug/wimax:wmx0/wimax_dl_stack
/sys/kernel/debug/wimax:wmx0/wimax_dl_op_rfkill
/sys/kernel/debug/wimax:wmx0/wimax_dl_op_reset
/sys/kernel/debug/wimax:wmx0/wimax_dl_op_msg
/sys/kernel/debug/wimax:wmx0/wimax_dl_id_table
/sys/kernel/debug/wimax:wmx0/wimax_dl_debugfs
By reading the file you can obtain the current value of said debug
level; by writing to it, you can set it.
To increase the debug level of, for example, the i2400m's generic TX
engine, just write:
$ echo 3 > /sys/kernel/debug/wimax:wmx0/i2400m/dl_tx
Increasing numbers yield increasing debug information; for details of
what is printed and the available levels, check the source. The code
uses 0 for disabled and increasing values until 8.
5.2.2. RX and TX statistics
The i2400m/rx_stats and i2400m/tx_stats provide statistics about the
data reception/delivery from the device:
$ cat /sys/kernel/debug/wimax:wmx0/i2400m/rx_stats
45 1 3 34 3104 48 480
The numbers reported are
* packets/RX-buffer: total, min, max
* RX-buffers: total RX buffers received, accumulated RX buffer size
in bytes, min size received, max size received
Thus, to find the average buffer size received, divide accumulated
RX-buffer / total RX-buffers.
To clear the statistics back to 0, write anything to the rx_stats file:
$ echo 1 > /sys/kernel/debug/wimax:wmx0/i2400m_rx_stats
Likewise for TX.
Note the packets this debug file refers to are not network packet, but
packets in the sense of the device-specific protocol for communication
to the host. See drivers/net/wimax/i2400m/tx.c.
5.2.3. Tracing messages received from user space
To echo messages received from user space into the trace pipe that the
i2400m driver creates, set the debug file i2400m/trace_msg_from_user to
1:
*
$ echo 1 > /sys/kernel/debug/wimax:wmx0/i2400m/trace_msg_from_user
5.2.4. Performing a device reset
By writing a 0, a 1 or a 2 to the file
/sys/kernel/debug/wimax:wmx0/reset, the driver performs a warm (without
disconnecting from the bus), cold (disconnecting from the bus) or bus
(bus specific) reset on the device.
5.2.5. Asking the device to enter power saving mode
By writing any value to the /sys/kernel/debug/wimax:wmx0 file, the
device will attempt to enter power saving mode.
6. Troubleshooting
6.1. Driver complains about 'i2400m-fw-usb-1.2.sbcf: request failed'
If upon connecting the device, the following is output in the kernel
log:
i2400m_usb 5-4:1.0: fw i2400m-fw-usb-1.3.sbcf: request failed: -2
This means that the driver cannot locate the firmware file named
/lib/firmware/i2400m-fw-usb-1.2.sbcf. Check that the file is present in
the right location.

View File

@ -0,0 +1,81 @@
Linux kernel WiMAX stack
(C) 2008 Intel Corporation < linux-wimax@intel.com >
This provides a basic Linux kernel WiMAX stack to provide a common
control API for WiMAX devices, usable from kernel and user space.
1. Design
The WiMAX stack is designed to provide for common WiMAX control
services to current and future WiMAX devices from any vendor.
Because currently there is only one and we don't know what would be the
common services, the APIs it currently provides are very minimal.
However, it is done in such a way that it is easily extensible to
accommodate future requirements.
The stack works by embedding a struct wimax_dev in your device's
control structures. This provides a set of callbacks that the WiMAX
stack will call in order to implement control operations requested by
the user. As well, the stack provides API functions that the driver
calls to notify about changes of state in the device.
The stack exports the API calls needed to control the device to user
space using generic netlink as a marshalling mechanism. You can access
them using your own code or use the wrappers provided for your
convenience in libwimax (in the wimax-tools package).
For detailed information on the stack, please see
include/linux/wimax.h.
2. Usage
For usage in a driver (registration, API, etc) please refer to the
instructions in the header file include/linux/wimax.h.
When a device is registered with the WiMAX stack, a set of debugfs
files will appear in /sys/kernel/debug/wimax:wmxX can tweak for
control.
2.1. Obtaining debug information: debugfs entries
The WiMAX stack is compiled, by default, with debug messages that can
be used to diagnose issues. By default, said messages are disabled.
The drivers will register debugfs entries that allow the user to tweak
debug settings.
Each driver, when registering with the stack, will cause a debugfs
directory named wimax:DEVICENAME to be created; optionally, it might
create more subentries below it.
2.1.1. Increasing debug output
The files named *dl_* indicate knobs for controlling the debug output
of different submodules of the WiMAX stack:
*
# find /sys/kernel/debug/wimax\:wmx0 -name \*dl_\*
/sys/kernel/debug/wimax:wmx0/wimax_dl_stack
/sys/kernel/debug/wimax:wmx0/wimax_dl_op_rfkill
/sys/kernel/debug/wimax:wmx0/wimax_dl_op_reset
/sys/kernel/debug/wimax:wmx0/wimax_dl_op_msg
/sys/kernel/debug/wimax:wmx0/wimax_dl_id_table
/sys/kernel/debug/wimax:wmx0/wimax_dl_debugfs
/sys/kernel/debug/wimax:wmx0/.... # other driver specific files
NOTE: Of course, if debugfs is mounted in a directory other than
/sys/kernel/debug, those paths will change.
By reading the file you can obtain the current value of said debug
level; by writing to it, you can set it.
To increase the debug level of, for example, the id-table submodule,
just write:
$ echo 3 > /sys/kernel/debug/wimax:wmx0/wimax_dl_id_table
Increasing numbers yield increasing debug information; for details of
what is printed and the available levels, check the source. The code
uses 0 for disabled and increasing values until 8.

View File

@ -3,7 +3,7 @@ protocol of kernel. These should be filled by bootloader or 16-bit
real-mode setup code of the kernel. References/settings to it mainly
are in:
include/asm-x86/bootparam.h
arch/x86/include/asm/bootparam.h
Offset Proto Name Meaning

View File

@ -616,7 +616,7 @@ M: mkpetch@internode.on.net
S: Maintained
ARM/TOSA MACHINE SUPPORT
P: Dmitry Baryshkov
P: Dmitry Eremin-Solenikov
M: dbaryshkov@gmail.com
P: Dirk Opfer
M: dirk@opfer-online.de
@ -1024,16 +1024,17 @@ S: Maintained
BTTV VIDEO4LINUX DRIVER
P: Mauro Carvalho Chehab
M: mchehab@infradead.org
M: v4l-dvb-maintainer@linuxtv.org
L: linux-media@vger.kernel.org
L: video4linux-list@redhat.com
W: http://linuxtv.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvb.git
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
S: Maintained
CAFE CMOS INTEGRATED CAMERA CONTROLLER DRIVER
P: Jonathan Corbet
M: corbet@lwn.net
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
S: Maintained
CALGARY x86-64 IOMMU
@ -1092,11 +1093,8 @@ S: Maintained
CHECKPATCH
P: Andy Whitcroft
M: apw@shadowen.org
P: Randy Dunlap
M: rdunlap@xenotime.net
P: Joel Schopp
M: jschopp@austin.ibm.com
M: apw@canonical.com
L: linux-kernel@vger.kernel.org
S: Supported
CISCO 10G ETHERNET DRIVER
@ -1264,7 +1262,8 @@ P: Hans Verkuil, Andy Walls
M: hverkuil@xs4all.nl, awalls@radix.net
L: ivtv-devel@ivtvdriver.org
L: ivtv-users@ivtvdriver.org
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
W: http://linuxtv.org
S: Maintained
@ -1490,10 +1489,10 @@ S: Maintained
DVB SUBSYSTEM AND DRIVERS
P: LinuxTV.org Project
M: v4l-dvb-maintainer@linuxtv.org
M: linux-media@vger.kernel.org
L: linux-dvb@linuxtv.org (subscription required)
W: http://linuxtv.org/
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvb.git
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
S: Maintained
DZ DECSTATION DZ11 SERIAL DRIVER
@ -1885,32 +1884,37 @@ S: Maintained
GSPCA FINEPIX SUBDRIVER
P: Frank Zago
M: frank@zago.net
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
S: Maintained
GSPCA M5602 SUBDRIVER
P: Erik Andren
M: erik.andren@gmail.com
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
S: Maintained
GSPCA PAC207 SONIXB SUBDRIVER
P: Hans de Goede
M: hdegoede@redhat.com
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
S: Maintained
GSPCA T613 SUBDRIVER
P: Leandro Costantino
M: lcostantino@gmail.com
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
S: Maintained
GSPCA USB WEBCAM DRIVER
P: Jean-Francois Moine
M: moinejf@free.fr
W: http://moinejf.free.fr
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
S: Maintained
HARDWARE MONITORING
@ -2049,6 +2053,12 @@ M: mikulas@artax.karlin.mff.cuni.cz
W: http://artax.karlin.mff.cuni.cz/~mikulas/vyplody/hpfs/index-e.cgi
S: Maintained
HSO 3G Modem Driver (hso.c)
P: Denis Joseph Barrow
M: d.barow@option.com
W: http://www.pharscape.org
S: Maintained
HTCPEN TOUCHSCREEN DRIVER
P: Pau Oliva Fora
M: pof@eslack.org
@ -2146,11 +2156,6 @@ M: Gadi Oxman <gadio@netvision.net.il>
L: linux-kernel@vger.kernel.org
S: Maintained
IDE-SCSI DRIVER
L: linux-ide@vger.kernel.org
L: linux-scsi@vger.kernel.org
S: Orphan
IDLE-I7300
P: Andy Henroid
M: andrew.d.henroid@intel.com
@ -2307,6 +2312,14 @@ W: http://lists.sourceforge.net/mailman/listinfo/ipw2100-devel
W: http://ipw2200.sourceforge.net
S: Supported
INTEL WIRELESS WIMAX CONNECTION 2400
P: Inaky Perez-Gonzalez
M: inaky.perez-gonzalez@intel.com
M: linux-wimax@intel.com
L: wimax@linuxwimax.org
S: Supported
W: http://linuxwimax.org
INTEL WIRELESS WIFI LINK (iwlwifi)
P: Zhu Yi
M: yi.zhu@intel.com
@ -2431,7 +2444,8 @@ P: Hans Verkuil
M: hverkuil@xs4all.nl
L: ivtv-devel@ivtvdriver.org
L: ivtv-users@ivtvdriver.org
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
W: http://www.ivtvdriver.org
S: Maintained
@ -2541,8 +2555,6 @@ W: http://kvm.qumranet.com
S: Supported
KERNEL VIRTUAL MACHINE For Itanium (KVM/IA64)
P: Anthony Xu
M: anthony.xu@intel.com
P: Xiantao Zhang
M: xiantao.zhang@intel.com
L: kvm-ia64@vger.kernel.org
@ -2635,13 +2647,13 @@ W: http://www.hansenpartnership.com/voyager
S: Maintained
LINUX FOR POWERPC (32-BIT AND 64-BIT)
P: Paul Mackerras
M: paulus@samba.org
P: Benjamin Herrenschmidt
M: benh@kernel.crashing.org
P: Paul Mackerras
M: paulus@samba.org
W: http://www.penguinppc.org/
L: linuxppc-dev@ozlabs.org
T: git kernel.org:/pub/scm/linux/kernel/git/paulus/powerpc.git
T: git kernel.org:/pub/scm/linux/kernel/git/benh/powerpc.git
S: Supported
LINUX FOR POWER MACINTOSH
@ -2986,6 +2998,7 @@ MUSB MULTIPOINT HIGH SPEED DUAL-ROLE CONTROLLER
P: Felipe Balbi
M: felipe.balbi@nokia.com
L: linux-usb@vger.kernel.org
T: git gitorious.org:/musb/mainline.git
S: Maintained
MYRICOM MYRI-10G 10GbE DRIVER (MYRI10GE)
@ -3192,7 +3205,8 @@ S: Maintained
OMNIVISION OV7670 SENSOR DRIVER
P: Jonathan Corbet
M: corbet@lwn.net
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
S: Maintained
ONENAND FLASH DRIVER
@ -3474,8 +3488,9 @@ PVRUSB2 VIDEO4LINUX DRIVER
P: Mike Isely
M: isely@pobox.com
L: pvrusb2@isely.net (subscribers-only)
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
W: http://www.isely.net/pvrusb2/
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
S: Maintained
PXA2xx/PXA3xx SUPPORT
@ -3695,6 +3710,8 @@ S: Supported
SAA7146 VIDEO4LINUX-2 DRIVER
P: Michael Hunold
M: michael@mihu.de
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
W: http://www.mihu.de/linux/saa7146
S: Maintained
@ -3958,7 +3975,8 @@ S: Maintained
SOC-CAMERA V4L2 SUBSYSTEM
P: Guennadi Liakhovetski
M: g.liakhovetski@gmx.de
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
S: Maintained
SOEKRIS NET48XX LED SUPPORT
@ -4016,10 +4034,12 @@ L: alsa-devel@alsa-project.org (subscribers-only)
W: http://alsa-project.org/main/index.php/ASoC
S: Supported
SPARC (sparc32)
P: William L. Irwin
M: wli@holomorphy.com
SPARC + UltraSPARC (sparc/sparc64)
P: David S. Miller
M: davem@davemloft.net
L: sparclinux@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6.git
T: git kernel.org:/pub/scm/linux/kernel/git/davem/sparc-next-2.6.git
S: Maintained
SPECIALIX IO8+ MULTIPORT SERIAL CARD DRIVER
@ -4231,9 +4251,10 @@ L: tpmdd-devel@lists.sourceforge.net (moderated for non-subscribers)
S: Maintained
TRIVIAL PATCHES
P: Jesper Juhl
P: Jiri Kosina
M: trivial@kernel.org
L: linux-kernel@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/jikos/trivial.git
S: Maintained
TTY LAYER
@ -4303,13 +4324,6 @@ M: dushistov@mail.ru
L: linux-kernel@vger.kernel.org
S: Maintained
UltraSPARC (sparc64)
P: David S. Miller
M: davem@davemloft.net
L: sparclinux@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6.git
S: Maintained
ULTRA-WIDEBAND (UWB) SUBSYSTEM:
P: David Vrabel
M: david.vrabel@csr.com
@ -4381,7 +4395,8 @@ USB ET61X[12]51 DRIVER
P: Luca Risolia
M: luca.risolia@studio.unibo.it
L: linux-usb@vger.kernel.org
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
W: http://www.linux-projects.org
S: Maintained
@ -4530,7 +4545,8 @@ USB SN9C1xx DRIVER
P: Luca Risolia
M: luca.risolia@studio.unibo.it
L: linux-usb@vger.kernel.org
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
W: http://www.linux-projects.org
S: Maintained
@ -4559,7 +4575,8 @@ USB VIDEO CLASS
P: Laurent Pinchart
M: laurent.pinchart@skynet.be
L: linux-uvc-devel@lists.berlios.de (subscribers-only)
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
W: http://linux-uvc.berlios.de
S: Maintained
@ -4567,7 +4584,8 @@ USB W996[87]CF DRIVER
P: Luca Risolia
M: luca.risolia@studio.unibo.it
L: linux-usb@vger.kernel.org
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
W: http://www.linux-projects.org
S: Maintained
@ -4581,7 +4599,8 @@ USB ZC0301 DRIVER
P: Luca Risolia
M: luca.risolia@studio.unibo.it
L: linux-usb@vger.kernel.org
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
W: http://www.linux-projects.org
S: Maintained
@ -4596,7 +4615,8 @@ USB ZR364XX DRIVER
P: Antoine Jacquet
M: royale@zerezo.com
L: linux-usb@vger.kernel.org
L: video4linux-list@redhat.com
L: linux-media@vger.kernel.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
W: http://royale.zerezo.com/zr364xx/
S: Maintained
@ -4665,10 +4685,10 @@ S: Maintained
VIDEO FOR LINUX (V4L)
P: Mauro Carvalho Chehab
M: mchehab@infradead.org
M: v4l-dvb-maintainer@linuxtv.org
L: linux-media@vger.kernel.org
L: video4linux-list@redhat.com
W: http://linuxtv.org
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvb.git
T: git kernel.org:/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
S: Maintained
VLAN (802.1Q)
@ -4741,6 +4761,14 @@ M: zaga@fly.cc.fer.hr
L: linux-scsi@vger.kernel.org
S: Maintained
WIMAX STACK
P: Inaky Perez-Gonzalez
M: inaky.perez-gonzalez@intel.com
M: linux-wimax@intel.com
L: wimax@linuxwimax.org
S: Supported
W: http://linuxwimax.org
WIMEDIA LLC PROTOCOL (WLP) SUBSYSTEM
P: David Vrabel
M: david.vrabel@csr.com

View File

@ -321,7 +321,8 @@ KALLSYMS = scripts/kallsyms
PERL = perl
CHECK = sparse
CHECKFLAGS := -D__linux__ -Dlinux -D__STDC__ -Dunix -D__unix__ -Wbitwise $(CF)
CHECKFLAGS := -D__linux__ -Dlinux -D__STDC__ -Dunix -D__unix__ \
-Wbitwise -Wno-return-void $(CF)
MODFLAGS = -DMODULE
CFLAGS_MODULE = $(MODFLAGS)
AFLAGS_MODULE = $(MODFLAGS)
@ -964,6 +965,7 @@ ifneq ($(KBUILD_SRC),)
mkdir -p include2; \
ln -fsn $(srctree)/include/asm-$(SRCARCH) include2/asm; \
fi
ln -fsn $(srctree) source
endif
# prepare2 creates a makefile if using a separate output directory
@ -1007,7 +1009,7 @@ define check-symlink
endef
# We create the target directory of the symlink if it does
# not exist so the test in chack-symlink works and we have a
# not exist so the test in check-symlink works and we have a
# directory for generated filesas used by some architectures.
define create-symlink
if [ ! -L include/asm ]; then \

32
README
View File

@ -52,11 +52,11 @@ DOCUMENTATION:
- The Documentation/DocBook/ subdirectory contains several guides for
kernel developers and users. These guides can be rendered in a
number of formats: PostScript (.ps), PDF, and HTML, among others.
After installation, "make psdocs", "make pdfdocs", or "make htmldocs"
will render the documentation in the requested format.
number of formats: PostScript (.ps), PDF, HTML, & man-pages, among others.
After installation, "make psdocs", "make pdfdocs", "make htmldocs",
or "make mandocs" will render the documentation in the requested format.
INSTALLING the kernel:
INSTALLING the kernel source:
- If you install the full sources, put the kernel tarball in a
directory where you have permissions (eg. your home directory) and
@ -187,14 +187,9 @@ CONFIGURING the kernel:
"make randconfig" Create a ./.config file by setting symbol
values to random values.
The allyesconfig/allmodconfig/allnoconfig/randconfig variants can
also use the environment variable KCONFIG_ALLCONFIG to specify a
filename that contains config options that the user requires to be
set to a specific value. If KCONFIG_ALLCONFIG=filename is not used,
"make *config" checks for a file named "all{yes/mod/no/random}.config"
for symbol values that are to be forced. If this file is not found,
it checks for a file named "all.config" to contain forced values.
You can find more information on using the Linux kernel config tools
in Documentation/kbuild/make-configs.txt.
NOTES on "make config":
- having unnecessary drivers will make the kernel bigger, and can
under some circumstances lead to problems: probing for a
@ -231,6 +226,19 @@ COMPILING the kernel:
- If you configured any of the parts of the kernel as `modules', you
will also have to do "make modules_install".
- Verbose kernel compile/build output:
Normally the kernel build system runs in a fairly quiet mode (but not
totally silent). However, sometimes you or other kernel developers need
to see compile, link, or other commands exactly as they are executed.
For this, use "verbose" build mode. This is done by inserting
"V=1" in the "make" command. E.g.:
make V=1 all
To have the build system also tell the reason for the rebuild of each
target, use "V=2". The default is "V=0".
- Keep a backup kernel handy in case something goes wrong. This is
especially true for the development releases, since each new release
contains new code which has not been debugged. Make sure you keep a

View File

@ -9,3 +9,4 @@ unifdef-y += console.h
unifdef-y += fpu.h
unifdef-y += sysinfo.h
unifdef-y += compiler.h
unifdef-y += swab.h

View File

@ -1,6 +1,7 @@
#ifndef _ALPHA_ATOMIC_H
#define _ALPHA_ATOMIC_H
#include <linux/types.h>
#include <asm/barrier.h>
#include <asm/system.h>
@ -13,14 +14,6 @@
*/
/*
* Counter is volatile to make sure gcc doesn't try to be clever
* and move things around on us. We need to use _exactly_ the address
* the user gave us, not some alias that contains the same information.
*/
typedef struct { volatile int counter; } atomic_t;
typedef struct { volatile long counter; } atomic64_t;
#define ATOMIC_INIT(i) ( (atomic_t) { (i) } )
#define ATOMIC64_INIT(i) ( (atomic64_t) { (i) } )

View File

@ -1,47 +1,7 @@
#ifndef _ALPHA_BYTEORDER_H
#define _ALPHA_BYTEORDER_H
#include <asm/types.h>
#include <linux/compiler.h>
#include <asm/compiler.h>
#ifdef __GNUC__
static inline __attribute_const__ __u32 __arch__swab32(__u32 x)
{
/*
* Unfortunately, we can't use the 6 instruction sequence
* on ev6 since the latency of the UNPKBW is 3, which is
* pretty hard to hide. Just in case a future implementation
* has a lower latency, here's the sequence (also by Mike Burrows)
*
* UNPKBW a0, v0 v0: 00AA00BB00CC00DD
* SLL v0, 24, a0 a0: BB00CC00DD000000
* BIS v0, a0, a0 a0: BBAACCBBDDCC00DD
* EXTWL a0, 6, v0 v0: 000000000000BBAA
* ZAP a0, 0xf3, a0 a0: 00000000DDCC0000
* ADDL a0, v0, v0 v0: ssssssssDDCCBBAA
*/
__u64 t0, t1, t2, t3;
t0 = __kernel_inslh(x, 7); /* t0 : 0000000000AABBCC */
t1 = __kernel_inswl(x, 3); /* t1 : 000000CCDD000000 */
t1 |= t0; /* t1 : 000000CCDDAABBCC */
t2 = t1 >> 16; /* t2 : 0000000000CCDDAA */
t0 = t1 & 0xFF00FF00; /* t0 : 00000000DD00BB00 */
t3 = t2 & 0x00FF00FF; /* t3 : 0000000000CC00AA */
t1 = t0 + t3; /* t1 : ssssssssDDCCBBAA */
return t1;
}
#define __arch__swab32 __arch__swab32
#endif /* __GNUC__ */
#define __BYTEORDER_HAS_U64__
#include <asm/swab.h>
#include <linux/byteorder/little_endian.h>
#endif /* _ALPHA_BYTEORDER_H */

View File

@ -45,7 +45,6 @@ extern struct cpuinfo_alpha cpu_data[NR_CPUS];
#define raw_smp_processor_id() (current_thread_info()->cpu)
extern int smp_num_cpus;
#define cpu_possible_map cpu_present_map
extern void arch_send_call_function_single_ipi(int cpu);
extern void arch_send_call_function_ipi(cpumask_t mask);

View File

@ -0,0 +1,42 @@
#ifndef _ALPHA_SWAB_H
#define _ALPHA_SWAB_H
#include <asm/types.h>
#include <linux/compiler.h>
#include <asm/compiler.h>
#ifdef __GNUC__
static inline __attribute_const__ __u32 __arch_swab32(__u32 x)
{
/*
* Unfortunately, we can't use the 6 instruction sequence
* on ev6 since the latency of the UNPKBW is 3, which is
* pretty hard to hide. Just in case a future implementation
* has a lower latency, here's the sequence (also by Mike Burrows)
*
* UNPKBW a0, v0 v0: 00AA00BB00CC00DD
* SLL v0, 24, a0 a0: BB00CC00DD000000
* BIS v0, a0, a0 a0: BBAACCBBDDCC00DD
* EXTWL a0, 6, v0 v0: 000000000000BBAA
* ZAP a0, 0xf3, a0 a0: 00000000DDCC0000
* ADDL a0, v0, v0 v0: ssssssssDDCCBBAA
*/
__u64 t0, t1, t2, t3;
t0 = __kernel_inslh(x, 7); /* t0 : 0000000000AABBCC */
t1 = __kernel_inswl(x, 3); /* t1 : 000000CCDD000000 */
t1 |= t0; /* t1 : 000000CCDDAABBCC */
t2 = t1 >> 16; /* t2 : 0000000000CCDDAA */
t0 = t1 & 0xFF00FF00; /* t0 : 00000000DD00BB00 */
t3 = t2 & 0x00FF00FF; /* t3 : 0000000000CC00AA */
t1 = t0 + t3; /* t1 : ssssssssDDCCBBAA */
return t1;
}
#define __arch_swab32 __arch_swab32
#endif /* __GNUC__ */
#endif /* _ALPHA_SWAB_H */

View File

@ -39,7 +39,24 @@ static inline cpumask_t node_to_cpumask(int node)
return node_cpu_mask;
}
extern struct cpumask node_to_cpumask_map[];
/* FIXME: This is dumb, recalculating every time. But simple. */
static const struct cpumask *cpumask_of_node(int node)
{
int cpu;
cpumask_clear(&node_to_cpumask_map[node]);
for_each_online_cpu(cpu) {
if (cpu_to_node(cpu) == node)
cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
}
return &node_to_cpumask_map[node];
}
#define pcibus_to_cpumask(bus) (cpu_online_map)
#define cpumask_of_pcibus(bus) (cpu_online_mask)
#endif /* !CONFIG_NUMA */
# include <asm-generic/topology.h>

View File

@ -8,7 +8,7 @@ EXTRA_CFLAGS := -Werror -Wno-sign-compare
obj-y := entry.o traps.o process.o init_task.o osf_sys.o irq.o \
irq_alpha.o signal.o setup.o ptrace.o time.o \
alpha_ksyms.o systbls.o err_common.o io.o
alpha_ksyms.o systbls.o err_common.o io.o binfmt_loader.o
obj-$(CONFIG_VGA_HOSE) += console.o
obj-$(CONFIG_SMP) += smp.o

View File

@ -0,0 +1,51 @@
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/mm_types.h>
#include <linux/binfmts.h>
#include <linux/a.out.h>
static int load_binary(struct linux_binprm *bprm, struct pt_regs *regs)
{
struct exec *eh = (struct exec *)bprm->buf;
unsigned long loader;
struct file *file;
int retval;
if (eh->fh.f_magic != 0x183 || (eh->fh.f_flags & 0x3000) != 0x3000)
return -ENOEXEC;
if (bprm->loader)
return -ENOEXEC;
allow_write_access(bprm->file);
fput(bprm->file);
bprm->file = NULL;
loader = bprm->vma->vm_end - sizeof(void *);
file = open_exec("/sbin/loader");
retval = PTR_ERR(file);
if (IS_ERR(file))
return retval;
/* Remember if the application is TASO. */
bprm->taso = eh->ah.entry < 0x100000000UL;
bprm->file = file;
bprm->loader = loader;
retval = prepare_binprm(bprm);
if (retval < 0)
return retval;
return search_binary_handler(bprm,regs);
}
static struct linux_binfmt loader_format = {
.load_binary = load_binary,
};
static int __init init_loader_binfmt(void)
{
return register_binfmt(&loader_format);
}
arch_initcall(init_loader_binfmt);

View File

@ -50,12 +50,13 @@ int irq_select_affinity(unsigned int irq)
if (!irq_desc[irq].chip->set_affinity || irq_user_affinity[irq])
return 1;
while (!cpu_possible(cpu) || !cpu_isset(cpu, irq_default_affinity))
while (!cpu_possible(cpu) ||
!cpumask_test_cpu(cpu, irq_default_affinity))
cpu = (cpu < (NR_CPUS-1) ? cpu + 1 : 0);
last_cpu = cpu;
irq_desc[irq].affinity = cpumask_of_cpu(cpu);
irq_desc[irq].chip->set_affinity(irq, cpumask_of_cpu(cpu));
irq_desc[irq].chip->set_affinity(irq, cpumask_of(cpu));
return 0;
}
#endif /* CONFIG_SMP */

View File

@ -320,24 +320,6 @@ pcibios_update_irq(struct pci_dev *dev, int irq)
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
}
/* Most Alphas have straight-forward swizzling needs. */
u8 __init
common_swizzle(struct pci_dev *dev, u8 *pinp)
{
u8 pin = *pinp;
while (dev->bus->parent) {
pin = bridge_swizzle(pin, PCI_SLOT(dev->devfn));
/* Move up the chain of bridges. */
dev = dev->bus->self;
}
*pinp = pin;
/* The slot is the slot of the last bridge. */
return PCI_SLOT(dev->devfn);
}
void
pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region,
struct resource *res)

View File

@ -106,16 +106,11 @@ struct pci_iommu_arena;
* Where A = pin 1, B = pin 2 and so on and pin=0 = default = A.
* Thus, each swizzle is ((pin-1) + (device#-4)) % 4
*
* The following code swizzles for exactly one bridge. The routine
* common_swizzle below handles multiple bridges. But there are a
* couple boards that do strange things, so we define this here.
* pci_swizzle_interrupt_pin() swizzles for exactly one bridge. The routine
* pci_common_swizzle() handles multiple bridges. But there are a
* couple boards that do strange things.
*/
static inline u8 bridge_swizzle(u8 pin, u8 slot)
{
return (((pin-1) + slot) % 4) + 1;
}
/* The following macro is used to implement the table-based irq mapping
function for all single-bus Alphas. */
@ -184,7 +179,7 @@ extern int pci_probe_only;
extern unsigned long alpha_agpgart_size;
extern void common_init_pci(void);
extern u8 common_swizzle(struct pci_dev *, u8 *);
#define common_swizzle pci_common_swizzle
extern struct pci_controller *alloc_pci_controller(void);
extern struct resource *alloc_resource(void);

View File

@ -94,6 +94,7 @@ common_shutdown_1(void *generic_ptr)
flags |= 0x00040000UL; /* "remain halted" */
*pflags = flags;
cpu_clear(cpuid, cpu_present_map);
cpu_clear(cpuid, cpu_possible_map);
halt();
}
#endif
@ -120,6 +121,7 @@ common_shutdown_1(void *generic_ptr)
#ifdef CONFIG_SMP
/* Wait for the secondaries to halt. */
cpu_clear(boot_cpuid, cpu_present_map);
cpu_clear(boot_cpuid, cpu_possible_map);
while (cpus_weight(cpu_present_map))
barrier();
#endif

View File

@ -79,6 +79,11 @@ int alpha_l3_cacheshape;
unsigned long alpha_verbose_mcheck = CONFIG_VERBOSE_MCHECK_ON;
#endif
#ifdef CONFIG_NUMA
struct cpumask node_to_cpumask_map[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_to_cpumask_map);
#endif
/* Which processor we booted from. */
int boot_cpuid;

View File

@ -70,11 +70,6 @@ enum ipi_message_type {
/* Set to a secondary's cpuid when it comes online. */
static int smp_secondary_alive __devinitdata = 0;
/* Which cpus ids came online. */
cpumask_t cpu_online_map;
EXPORT_SYMBOL(cpu_online_map);
int smp_num_probed; /* Internal processor count */
int smp_num_cpus = 1; /* Number that came online. */
EXPORT_SYMBOL(smp_num_cpus);
@ -440,6 +435,7 @@ setup_smp(void)
((char *)cpubase + i*hwrpb->processor_size);
if ((cpu->flags & 0x1cc) == 0x1cc) {
smp_num_probed++;
cpu_set(i, cpu_possible_map);
cpu_set(i, cpu_present_map);
cpu->pal_revision = boot_cpu_palrev;
}
@ -473,6 +469,7 @@ smp_prepare_cpus(unsigned int max_cpus)
/* Nothing to do on a UP box, or when told not to. */
if (smp_num_probed == 1 || max_cpus == 0) {
cpu_possible_map = cpumask_of_cpu(boot_cpuid);
cpu_present_map = cpumask_of_cpu(boot_cpuid);
printk(KERN_INFO "SMP mode deactivated.\n");
return;

View File

@ -177,19 +177,19 @@ cpu_set_irq_affinity(unsigned int irq, cpumask_t affinity)
}
static void
dp264_set_affinity(unsigned int irq, cpumask_t affinity)
dp264_set_affinity(unsigned int irq, const struct cpumask *affinity)
{
spin_lock(&dp264_irq_lock);
cpu_set_irq_affinity(irq, affinity);
cpu_set_irq_affinity(irq, *affinity);
tsunami_update_irq_hw(cached_irq_mask);
spin_unlock(&dp264_irq_lock);
}
static void
clipper_set_affinity(unsigned int irq, cpumask_t affinity)
clipper_set_affinity(unsigned int irq, const struct cpumask *affinity)
{
spin_lock(&dp264_irq_lock);
cpu_set_irq_affinity(irq - 16, affinity);
cpu_set_irq_affinity(irq - 16, *affinity);
tsunami_update_irq_hw(cached_irq_mask);
spin_unlock(&dp264_irq_lock);
}
@ -481,7 +481,7 @@ monet_swizzle(struct pci_dev *dev, u8 *pinp)
slot = PCI_SLOT(dev->devfn);
break;
}
pin = bridge_swizzle(pin, PCI_SLOT(dev->devfn)) ;
pin = pci_swizzle_interrupt_pin(dev, pin);
/* Move up the chain of bridges. */
dev = dev->bus->self;

View File

@ -204,7 +204,7 @@ eiger_swizzle(struct pci_dev *dev, u8 *pinp)
break;
}
/* Must be a card-based bridge. */
pin = bridge_swizzle(pin, PCI_SLOT(dev->devfn));
pin = pci_swizzle_interrupt_pin(dev, pin);
/* Move up the chain of bridges. */
dev = dev->bus->self;

View File

@ -219,7 +219,7 @@ miata_swizzle(struct pci_dev *dev, u8 *pinp)
slot = PCI_SLOT(dev->devfn) + 9;
break;
}
pin = bridge_swizzle(pin, PCI_SLOT(dev->devfn));
pin = pci_swizzle_interrupt_pin(dev, pin);
/* Move up the chain of bridges. */
dev = dev->bus->self;

View File

@ -257,7 +257,7 @@ noritake_swizzle(struct pci_dev *dev, u8 *pinp)
slot = PCI_SLOT(dev->devfn) + 15;
break;
}
pin = bridge_swizzle(pin, PCI_SLOT(dev->devfn)) ;
pin = pci_swizzle_interrupt_pin(dev, pin);
/* Move up the chain of bridges. */
dev = dev->bus->self;

View File

@ -160,7 +160,7 @@ ruffian_swizzle(struct pci_dev *dev, u8 *pinp)
slot = PCI_SLOT(dev->devfn) + 10;
break;
}
pin = bridge_swizzle(pin, PCI_SLOT(dev->devfn));
pin = pci_swizzle_interrupt_pin(dev, pin);
/* Move up the chain of bridges. */
dev = dev->bus->self;

View File

@ -425,7 +425,7 @@ lynx_swizzle(struct pci_dev *dev, u8 *pinp)
slot = PCI_SLOT(dev->devfn) + 11;
break;
}
pin = bridge_swizzle(pin, PCI_SLOT(dev->devfn)) ;
pin = pci_swizzle_interrupt_pin(dev, pin);
/* Move up the chain of bridges. */
dev = dev->bus->self;

View File

@ -158,10 +158,10 @@ titan_cpu_set_irq_affinity(unsigned int irq, cpumask_t affinity)
}
static void
titan_set_irq_affinity(unsigned int irq, cpumask_t affinity)
titan_set_irq_affinity(unsigned int irq, const struct cpumask *affinity)
{
spin_lock(&titan_irq_lock);
titan_cpu_set_irq_affinity(irq - 16, affinity);
titan_cpu_set_irq_affinity(irq - 16, *affinity);
titan_update_irq_hw(titan_cached_irq_mask);
spin_unlock(&titan_irq_lock);
}

View File

@ -1325,6 +1325,8 @@ source "drivers/regulator/Kconfig"
source "drivers/uio/Kconfig"
source "drivers/staging/Kconfig"
endmenu
source "fs/Kconfig"

View File

@ -109,11 +109,11 @@ static void gic_unmask_irq(unsigned int irq)
}
#ifdef CONFIG_SMP
static void gic_set_cpu(unsigned int irq, cpumask_t mask_val)
static void gic_set_cpu(unsigned int irq, const struct cpumask *mask_val)
{
void __iomem *reg = gic_dist_base(irq) + GIC_DIST_TARGET + (gic_irq(irq) & ~3);
unsigned int shift = (irq % 4) * 8;
unsigned int cpu = first_cpu(mask_val);
unsigned int cpu = cpumask_first(mask_val);
u32 val;
spin_lock(&irq_controller_lock);

View File

@ -1,3 +1,4 @@
include include/asm-generic/Kbuild.asm
unifdef-y += hwcap.h
unifdef-y += swab.h

View File

@ -12,10 +12,9 @@
#define __ASM_ARM_ATOMIC_H
#include <linux/compiler.h>
#include <linux/types.h>
#include <asm/system.h>
typedef struct { volatile int counter; } atomic_t;
#define ATOMIC_INIT(i) { (i) }
#ifdef __KERNEL__

View File

@ -15,38 +15,7 @@
#ifndef __ASM_ARM_BYTEORDER_H
#define __ASM_ARM_BYTEORDER_H
#include <linux/compiler.h>
#include <asm/types.h>
static inline __attribute_const__ __u32 ___arch__swab32(__u32 x)
{
__u32 t;
#ifndef __thumb__
if (!__builtin_constant_p(x)) {
/*
* The compiler needs a bit of a hint here to always do the
* right thing and not screw it up to different degrees
* depending on the gcc version.
*/
asm ("eor\t%0, %1, %1, ror #16" : "=r" (t) : "r" (x));
} else
#endif
t = x ^ ((x << 16) | (x >> 16)); /* eor r1,r0,r0,ror #16 */
x = (x << 24) | (x >> 8); /* mov r0,r0,ror #8 */
t &= ~0x00FF0000; /* bic r1,r1,#0x00FF0000 */
x ^= (t >> 8); /* eor r0,r0,r1,lsr #8 */
return x;
}
#define __arch__swab32(x) ___arch__swab32(x)
#if !defined(__STRICT_ANSI__) || defined(__KERNEL__)
# define __BYTEORDER_HAS_U64__
# define __SWAB_64_THRU_32__
#endif
#include <asm/swab.h>
#ifdef __ARMEB__
#include <linux/byteorder/big_endian.h>

View File

@ -42,7 +42,7 @@ struct pci_sys_data {
/*
* This is the standard PCI-PCI bridge swizzling algorithm.
*/
u8 pci_std_swizzle(struct pci_dev *dev, u8 *pinp);
#define pci_std_swizzle pci_common_swizzle
/*
* Call this with your hw_pci struct to initialise the PCI system.

View File

@ -0,0 +1,50 @@
/*
* arch/arm/include/asm/byteorder.h
*
* ARM Endian-ness. In little endian mode, the data bus is connected such
* that byte accesses appear as:
* 0 = d0...d7, 1 = d8...d15, 2 = d16...d23, 3 = d24...d31
* and word accesses (data or instruction) appear as:
* d0...d31
*
* When in big endian mode, byte accesses appear as:
* 0 = d24...d31, 1 = d16...d23, 2 = d8...d15, 3 = d0...d7
* and word accesses (data or instruction) appear as:
* d0...d31
*/
#ifndef __ASM_ARM_SWAB_H
#define __ASM_ARM_SWAB_H
#include <linux/compiler.h>
#include <asm/types.h>
#if !defined(__STRICT_ANSI__) || defined(__KERNEL__)
# define __SWAB_64_THRU_32__
#endif
static inline __attribute_const__ __u32 __arch_swab32(__u32 x)
{
__u32 t;
#ifndef __thumb__
if (!__builtin_constant_p(x)) {
/*
* The compiler needs a bit of a hint here to always do the
* right thing and not screw it up to different degrees
* depending on the gcc version.
*/
asm ("eor\t%0, %1, %1, ror #16" : "=r" (t) : "r" (x));
} else
#endif
t = x ^ ((x << 16) | (x >> 16)); /* eor r1,r0,r0,ror #16 */
x = (x << 24) | (x >> 8); /* mov r0,r0,ror #8 */
t &= ~0x00FF0000; /* bic r1,r1,#0x00FF0000 */
x ^= (t >> 8); /* eor r0,r0,r1,lsr #8 */
return x;
}
#define __arch_swab32 __arch_swab32
#endif

View File

@ -479,33 +479,6 @@ EXPORT_SYMBOL(pcibios_resource_to_bus);
EXPORT_SYMBOL(pcibios_bus_to_resource);
#endif
/*
* This is the standard PCI-PCI bridge swizzling algorithm:
*
* Dev: 0 1 2 3
* A A B C D
* B B C D A
* C C D A B
* D D A B C
* ^^^^^^^^^^ irq pin on bridge
*/
u8 __devinit pci_std_swizzle(struct pci_dev *dev, u8 *pinp)
{
int pin = *pinp - 1;
while (dev->bus->self) {
pin = (pin + PCI_SLOT(dev->devfn)) & 3;
/*
* move up the chain of bridges,
* swizzling as we go.
*/
dev = dev->bus->self;
}
*pinp = pin + 1;
return PCI_SLOT(dev->devfn);
}
/*
* Swizzle the device pin each time we cross a bridge.
* This might update pin and returns the slot number.

View File

@ -817,7 +817,7 @@ static struct expansion_card *__init ecard_alloc_card(int type, int slot)
ec->dma = NO_DMA;
ec->ops = &ecard_default_ops;
snprintf(ec->dev.bus_id, sizeof(ec->dev.bus_id), "ecard%d", slot);
dev_set_name(&ec->dev, "ecard%d", slot);
ec->dev.parent = NULL;
ec->dev.bus = &ecard_bus_type;
ec->dev.dma_mask = &ec->dma_mask;

View File

@ -174,7 +174,7 @@ static void route_irq(struct irq_desc *desc, unsigned int irq, unsigned int cpu)
pr_debug("IRQ%u: moving from cpu%u to cpu%u\n", irq, desc->cpu, cpu);
spin_lock_irq(&desc->lock);
desc->chip->set_affinity(irq, cpumask_of_cpu(cpu));
desc->chip->set_affinity(irq, cpumask_of(cpu));
spin_unlock_irq(&desc->lock);
}

View File

@ -92,9 +92,7 @@ void __kprobes arch_disarm_kprobe(struct kprobe *p)
void __kprobes arch_remove_kprobe(struct kprobe *p)
{
if (p->ainsn.insn) {
mutex_lock(&kprobe_mutex);
free_insn_slot(p->ainsn.insn, 0);
mutex_unlock(&kprobe_mutex);
p->ainsn.insn = NULL;
}
}

View File

@ -33,16 +33,6 @@
#include <asm/tlbflush.h>
#include <asm/ptrace.h>
/*
* bitmask of present and online CPUs.
* The present bitmask indicates that the CPU is physically present.
* The online bitmask indicates that the CPU is up and running.
*/
cpumask_t cpu_possible_map;
EXPORT_SYMBOL(cpu_possible_map);
cpumask_t cpu_online_map;
EXPORT_SYMBOL(cpu_online_map);
/*
* as from 2.5, kernels no longer have an init_tasks structure
* so we need some other way of telling a new secondary core

View File

@ -212,7 +212,7 @@ static struct clcd_board clcd_plat_data = {
static struct amba_device clcd_device = {
.dev = {
.bus_id = "mb:16",
.init_name = "mb:16",
.coherent_dma_mask = ~0,
.platform_data = &clcd_plat_data,
},

View File

@ -178,7 +178,6 @@ static struct clock_event_device clkevt = {
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.shift = 32,
.rating = 150,
.cpumask = CPU_MASK_CPU0,
.set_next_event = clkevt32k_next_event,
.set_mode = clkevt32k_mode,
};
@ -206,7 +205,7 @@ void __init at91rm9200_timer_init(void)
clkevt.mult = div_sc(AT91_SLOW_CLOCK, NSEC_PER_SEC, clkevt.shift);
clkevt.max_delta_ns = clockevent_delta2ns(AT91_ST_ALMV, &clkevt);
clkevt.min_delta_ns = clockevent_delta2ns(2, &clkevt) + 1;
clkevt.cpumask = cpumask_of_cpu(0);
clkevt.cpumask = cpumask_of(0);
clockevents_register_device(&clkevt);
/* register clocksource */

View File

@ -91,7 +91,6 @@ static struct clock_event_device pit_clkevt = {
.features = CLOCK_EVT_FEAT_PERIODIC,
.shift = 32,
.rating = 100,
.cpumask = CPU_MASK_CPU0,
.set_mode = pit_clkevt_mode,
};
@ -173,6 +172,7 @@ static void __init at91sam926x_pit_init(void)
/* Set up and register clockevents */
pit_clkevt.mult = div_sc(pit_rate, NSEC_PER_SEC, pit_clkevt.shift);
pit_clkevt.cpumask = cpumask_of(0);
clockevents_register_device(&pit_clkevt);
}

Some files were not shown because too many files have changed in this diff Show More