KVM: x86/mmu: Remove MMU auditing

Remove mmu_audit.c and all its collateral, the auditing code has suffered
severe bitrot, ironically partly due to shadow paging being more stable
and thus not benefiting as much from auditing, but mostly due to TDP
supplanting shadow paging for non-nested guests and shadowing of nested
TDP not heavily stressing the logic that is being audited.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Sean Christopherson 2022-02-18 09:43:05 -08:00 committed by Paolo Bonzini
parent 5be2226f41
commit 1bbc60d0c7
6 changed files with 0 additions and 345 deletions

View File

@ -2368,10 +2368,6 @@
kvm.enable_vmware_backdoor=[KVM] Support VMware backdoor PV interface. kvm.enable_vmware_backdoor=[KVM] Support VMware backdoor PV interface.
Default is false (don't support). Default is false (don't support).
kvm.mmu_audit= [KVM] This is a R/W parameter which allows audit
KVM MMU at runtime.
Default is 0 (off)
kvm.nx_huge_pages= kvm.nx_huge_pages=
[KVM] Controls the software workaround for the [KVM] Controls the software workaround for the
X86_BUG_ITLB_MULTIHIT bug. X86_BUG_ITLB_MULTIHIT bug.

View File

@ -1128,10 +1128,6 @@ struct kvm_arch {
struct kvm_hv hyperv; struct kvm_hv hyperv;
struct kvm_xen xen; struct kvm_xen xen;
#ifdef CONFIG_KVM_MMU_AUDIT
int audit_point;
#endif
bool backwards_tsc_observed; bool backwards_tsc_observed;
bool boot_vcpu_runs_old_kvmclock; bool boot_vcpu_runs_old_kvmclock;
u32 bsp_vcpu_id; u32 bsp_vcpu_id;

View File

@ -126,13 +126,6 @@ config KVM_XEN
If in doubt, say "N". If in doubt, say "N".
config KVM_MMU_AUDIT
bool "Audit KVM MMU"
depends on KVM && TRACEPOINTS
help
This option adds a R/W kVM module parameter 'mmu_audit', which allows
auditing of KVM MMU events at runtime.
config KVM_EXTERNAL_WRITE_TRACKING config KVM_EXTERNAL_WRITE_TRACKING
bool bool

View File

@ -104,15 +104,6 @@ static int max_huge_page_level __read_mostly;
static int tdp_root_level __read_mostly; static int tdp_root_level __read_mostly;
static int max_tdp_level __read_mostly; static int max_tdp_level __read_mostly;
enum {
AUDIT_PRE_PAGE_FAULT,
AUDIT_POST_PAGE_FAULT,
AUDIT_PRE_PTE_WRITE,
AUDIT_POST_PTE_WRITE,
AUDIT_PRE_SYNC,
AUDIT_POST_SYNC
};
#ifdef MMU_DEBUG #ifdef MMU_DEBUG
bool dbg = 0; bool dbg = 0;
module_param(dbg, bool, 0644); module_param(dbg, bool, 0644);
@ -1904,13 +1895,6 @@ static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
return true; return true;
} }
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{ {
if (sp->role.invalid) if (sp->role.invalid)
@ -3670,17 +3654,12 @@ void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
return; return;
write_lock(&vcpu->kvm->mmu_lock); write_lock(&vcpu->kvm->mmu_lock);
kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
mmu_sync_children(vcpu, sp, true); mmu_sync_children(vcpu, sp, true);
kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
write_unlock(&vcpu->kvm->mmu_lock); write_unlock(&vcpu->kvm->mmu_lock);
return; return;
} }
write_lock(&vcpu->kvm->mmu_lock); write_lock(&vcpu->kvm->mmu_lock);
kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
for (i = 0; i < 4; ++i) { for (i = 0; i < 4; ++i) {
hpa_t root = vcpu->arch.mmu->pae_root[i]; hpa_t root = vcpu->arch.mmu->pae_root[i];
@ -3692,7 +3671,6 @@ void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
} }
} }
kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
write_unlock(&vcpu->kvm->mmu_lock); write_unlock(&vcpu->kvm->mmu_lock);
} }
@ -5241,7 +5219,6 @@ static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
++vcpu->kvm->stat.mmu_pte_write; ++vcpu->kvm->stat.mmu_pte_write;
kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
if (detect_write_misaligned(sp, gpa, bytes) || if (detect_write_misaligned(sp, gpa, bytes) ||
@ -5266,7 +5243,6 @@ static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
} }
} }
kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
write_unlock(&vcpu->kvm->mmu_lock); write_unlock(&vcpu->kvm->mmu_lock);
} }
@ -6212,7 +6188,6 @@ void kvm_mmu_module_exit(void)
mmu_destroy_caches(); mmu_destroy_caches();
percpu_counter_destroy(&kvm_total_used_mmu_pages); percpu_counter_destroy(&kvm_total_used_mmu_pages);
unregister_shrinker(&mmu_shrinker); unregister_shrinker(&mmu_shrinker);
mmu_audit_disable();
} }
/* /*

View File

@ -1,303 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* mmu_audit.c:
*
* Audit code for KVM MMU
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
* Marcelo Tosatti <mtosatti@redhat.com>
* Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
*/
#include <linux/ratelimit.h>
static char const *audit_point_name[] = {
"pre page fault",
"post page fault",
"pre pte write",
"post pte write",
"pre sync",
"post sync"
};
#define audit_printk(kvm, fmt, args...) \
printk(KERN_ERR "audit: (%s) error: " \
fmt, audit_point_name[kvm->arch.audit_point], ##args)
typedef void (*inspect_spte_fn) (struct kvm_vcpu *vcpu, u64 *sptep, int level);
static void __mmu_spte_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
inspect_spte_fn fn, int level)
{
int i;
for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
u64 *ent = sp->spt;
fn(vcpu, ent + i, level);
if (is_shadow_present_pte(ent[i]) &&
!is_last_spte(ent[i], level)) {
struct kvm_mmu_page *child;
child = to_shadow_page(ent[i] & PT64_BASE_ADDR_MASK);
__mmu_spte_walk(vcpu, child, fn, level - 1);
}
}
}
static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
{
int i;
struct kvm_mmu_page *sp;
if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
return;
if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
hpa_t root = vcpu->arch.mmu->root_hpa;
sp = to_shadow_page(root);
__mmu_spte_walk(vcpu, sp, fn, vcpu->arch.mmu->root_level);
return;
}
for (i = 0; i < 4; ++i) {
hpa_t root = vcpu->arch.mmu->pae_root[i];
if (IS_VALID_PAE_ROOT(root)) {
root &= PT64_BASE_ADDR_MASK;
sp = to_shadow_page(root);
__mmu_spte_walk(vcpu, sp, fn, 2);
}
}
return;
}
typedef void (*sp_handler) (struct kvm *kvm, struct kvm_mmu_page *sp);
static void walk_all_active_sps(struct kvm *kvm, sp_handler fn)
{
struct kvm_mmu_page *sp;
list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link)
fn(kvm, sp);
}
static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level)
{
struct kvm_mmu_page *sp;
gfn_t gfn;
kvm_pfn_t pfn;
hpa_t hpa;
sp = sptep_to_sp(sptep);
if (sp->unsync) {
if (level != PG_LEVEL_4K) {
audit_printk(vcpu->kvm, "unsync sp: %p "
"level = %d\n", sp, level);
return;
}
}
if (!is_shadow_present_pte(*sptep) || !is_last_spte(*sptep, level))
return;
gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
pfn = kvm_vcpu_gfn_to_pfn_atomic(vcpu, gfn);
if (is_error_pfn(pfn))
return;
hpa = pfn << PAGE_SHIFT;
if ((*sptep & PT64_BASE_ADDR_MASK) != hpa)
audit_printk(vcpu->kvm, "levels %d pfn %llx hpa %llx "
"ent %llxn", vcpu->arch.mmu->root_level, pfn,
hpa, *sptep);
}
static void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
{
static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
struct kvm_rmap_head *rmap_head;
struct kvm_mmu_page *rev_sp;
struct kvm_memslots *slots;
struct kvm_memory_slot *slot;
gfn_t gfn;
rev_sp = sptep_to_sp(sptep);
gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
slots = kvm_memslots_for_spte_role(kvm, rev_sp->role);
slot = __gfn_to_memslot(slots, gfn);
if (!slot) {
if (!__ratelimit(&ratelimit_state))
return;
audit_printk(kvm, "no memslot for gfn %llx\n", gfn);
audit_printk(kvm, "index %ld of sp (gfn=%llx)\n",
(long int)(sptep - rev_sp->spt), rev_sp->gfn);
dump_stack();
return;
}
rmap_head = gfn_to_rmap(gfn, rev_sp->role.level, slot);
if (!rmap_head->val) {
if (!__ratelimit(&ratelimit_state))
return;
audit_printk(kvm, "no rmap for writable spte %llx\n",
*sptep);
dump_stack();
}
}
static void audit_sptes_have_rmaps(struct kvm_vcpu *vcpu, u64 *sptep, int level)
{
if (is_shadow_present_pte(*sptep) && is_last_spte(*sptep, level))
inspect_spte_has_rmap(vcpu->kvm, sptep);
}
static void audit_spte_after_sync(struct kvm_vcpu *vcpu, u64 *sptep)
{
struct kvm_mmu_page *sp = sptep_to_sp(sptep);
if (vcpu->kvm->arch.audit_point == AUDIT_POST_SYNC && sp->unsync)
audit_printk(vcpu->kvm, "meet unsync sp(%p) after sync "
"root.\n", sp);
}
static void check_mappings_rmap(struct kvm *kvm, struct kvm_mmu_page *sp)
{
int i;
if (sp->role.level != PG_LEVEL_4K)
return;
for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
if (!is_shadow_present_pte(sp->spt[i]))
continue;
inspect_spte_has_rmap(kvm, sp->spt + i);
}
}
static void audit_write_protection(struct kvm *kvm, struct kvm_mmu_page *sp)
{
struct kvm_rmap_head *rmap_head;
u64 *sptep;
struct rmap_iterator iter;
struct kvm_memslots *slots;
struct kvm_memory_slot *slot;
if (sp->role.direct || sp->unsync || sp->role.invalid)
return;
slots = kvm_memslots_for_spte_role(kvm, sp->role);
slot = __gfn_to_memslot(slots, sp->gfn);
rmap_head = gfn_to_rmap(sp->gfn, PG_LEVEL_4K, slot);
for_each_rmap_spte(rmap_head, &iter, sptep) {
if (is_writable_pte(*sptep))
audit_printk(kvm, "shadow page has writable "
"mappings: gfn %llx role %x\n",
sp->gfn, sp->role.word);
}
}
static void audit_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
check_mappings_rmap(kvm, sp);
audit_write_protection(kvm, sp);
}
static void audit_all_active_sps(struct kvm *kvm)
{
walk_all_active_sps(kvm, audit_sp);
}
static void audit_spte(struct kvm_vcpu *vcpu, u64 *sptep, int level)
{
audit_sptes_have_rmaps(vcpu, sptep, level);
audit_mappings(vcpu, sptep, level);
audit_spte_after_sync(vcpu, sptep);
}
static void audit_vcpu_spte(struct kvm_vcpu *vcpu)
{
mmu_spte_walk(vcpu, audit_spte);
}
static bool mmu_audit;
static DEFINE_STATIC_KEY_FALSE(mmu_audit_key);
static void __kvm_mmu_audit(struct kvm_vcpu *vcpu, int point)
{
static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
if (!__ratelimit(&ratelimit_state))
return;
vcpu->kvm->arch.audit_point = point;
audit_all_active_sps(vcpu->kvm);
audit_vcpu_spte(vcpu);
}
static inline void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point)
{
if (static_branch_unlikely((&mmu_audit_key)))
__kvm_mmu_audit(vcpu, point);
}
static void mmu_audit_enable(void)
{
if (mmu_audit)
return;
static_branch_inc(&mmu_audit_key);
mmu_audit = true;
}
static void mmu_audit_disable(void)
{
if (!mmu_audit)
return;
static_branch_dec(&mmu_audit_key);
mmu_audit = false;
}
static int mmu_audit_set(const char *val, const struct kernel_param *kp)
{
int ret;
unsigned long enable;
ret = kstrtoul(val, 10, &enable);
if (ret < 0)
return -EINVAL;
switch (enable) {
case 0:
mmu_audit_disable();
break;
case 1:
mmu_audit_enable();
break;
default:
return -EINVAL;
}
return 0;
}
static const struct kernel_param_ops audit_param_ops = {
.set = mmu_audit_set,
.get = param_get_bool,
};
arch_param_cb(mmu_audit, &audit_param_ops, &mmu_audit, 0644);

View File

@ -904,12 +904,10 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault
if (is_page_fault_stale(vcpu, fault, mmu_seq)) if (is_page_fault_stale(vcpu, fault, mmu_seq))
goto out_unlock; goto out_unlock;
kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
r = make_mmu_pages_available(vcpu); r = make_mmu_pages_available(vcpu);
if (r) if (r)
goto out_unlock; goto out_unlock;
r = FNAME(fetch)(vcpu, fault, &walker); r = FNAME(fetch)(vcpu, fault, &walker);
kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
out_unlock: out_unlock:
write_unlock(&vcpu->kvm->mmu_lock); write_unlock(&vcpu->kvm->mmu_lock);