media: tda18250: support for new silicon tuner

NXP TDA18250 silicon tuner driver.

Version 4 includes some checkpatch fixes.

Signed-off-by: Olli Salonen <olli.salonen@iki.fi>
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
This commit is contained in:
Olli Salonen 2017-11-23 03:24:45 -05:00 committed by Mauro Carvalho Chehab
parent 82ba8132de
commit 148abd3b5b
6 changed files with 1115 additions and 0 deletions

View File

@ -13250,6 +13250,15 @@ T: git git://linuxtv.org/anttip/media_tree.git
S: Maintained
F: drivers/media/tuners/tda18218*
TDA18250 MEDIA DRIVER
M: Olli Salonen <olli.salonen@iki.fi>
L: linux-media@vger.kernel.org
W: https://linuxtv.org
Q: http://patchwork.linuxtv.org/project/linux-media/list/
T: git git://linuxtv.org/media_tree.git
S: Maintained
F: drivers/media/tuners/tda18250*
TDA18271 MEDIA DRIVER
M: Michael Krufky <mkrufky@linuxtv.org>
L: linux-media@vger.kernel.org

View File

@ -26,6 +26,13 @@ config MEDIA_TUNER_SIMPLE
help
Say Y here to include support for various simple tuners.
config MEDIA_TUNER_TDA18250
tristate "NXP TDA18250 silicon tuner"
depends on MEDIA_SUPPORT && I2C
default m if !MEDIA_SUBDRV_AUTOSELECT
help
Say Y here to include support for TDA18250 tuner.
config MEDIA_TUNER_TDA8290
tristate "TDA 8290/8295 + 8275(a)/18271 tuner combo"
depends on MEDIA_SUPPORT && I2C

View File

@ -42,6 +42,7 @@ obj-$(CONFIG_MEDIA_TUNER_R820T) += r820t.o
obj-$(CONFIG_MEDIA_TUNER_MXL301RF) += mxl301rf.o
obj-$(CONFIG_MEDIA_TUNER_QM1D1C0042) += qm1d1c0042.o
obj-$(CONFIG_MEDIA_TUNER_M88RS6000T) += m88rs6000t.o
obj-$(CONFIG_MEDIA_TUNER_TDA18250) += tda18250.o
ccflags-y += -I$(srctree)/drivers/media/dvb-core
ccflags-y += -I$(srctree)/drivers/media/dvb-frontends

View File

@ -0,0 +1,902 @@
/*
* NXP TDA18250 silicon tuner driver
*
* Copyright (C) 2017 Olli Salonen <olli.salonen@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include "tda18250_priv.h"
#include <linux/regmap.h>
static const struct dvb_tuner_ops tda18250_ops;
static int tda18250_power_control(struct dvb_frontend *fe,
unsigned int power_state)
{
struct i2c_client *client = fe->tuner_priv;
struct tda18250_dev *dev = i2c_get_clientdata(client);
int ret;
unsigned int utmp;
dev_dbg(&client->dev, "power state: %d", power_state);
switch (power_state) {
case TDA18250_POWER_NORMAL:
ret = regmap_write_bits(dev->regmap, R06_POWER2, 0x07, 0x00);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap, R25_REF, 0xc0, 0xc0);
if (ret)
goto err;
break;
case TDA18250_POWER_STANDBY:
if (dev->loopthrough) {
ret = regmap_write_bits(dev->regmap,
R25_REF, 0xc0, 0x80);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap,
R06_POWER2, 0x07, 0x02);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap,
R10_LT1, 0x80, 0x00);
if (ret)
goto err;
} else {
ret = regmap_write_bits(dev->regmap,
R25_REF, 0xc0, 0x80);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap,
R06_POWER2, 0x07, 0x01);
if (ret)
goto err;
ret = regmap_read(dev->regmap,
R0D_AGC12, &utmp);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap,
R0D_AGC12, 0x03, 0x03);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap,
R10_LT1, 0x80, 0x80);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap,
R0D_AGC12, 0x03, utmp & 0x03);
if (ret)
goto err;
}
break;
default:
ret = -EINVAL;
goto err;
}
return 0;
err:
return ret;
}
static int tda18250_wait_for_irq(struct dvb_frontend *fe,
int maxwait, int step, u8 irq)
{
struct i2c_client *client = fe->tuner_priv;
struct tda18250_dev *dev = i2c_get_clientdata(client);
int ret;
unsigned long timeout;
bool triggered;
unsigned int utmp;
triggered = false;
timeout = jiffies + msecs_to_jiffies(maxwait);
while (!time_after(jiffies, timeout)) {
// check for the IRQ
ret = regmap_read(dev->regmap, R08_IRQ1, &utmp);
if (ret)
goto err;
if ((utmp & irq) == irq) {
triggered = true;
break;
}
msleep(step);
}
dev_dbg(&client->dev, "waited IRQ (0x%02x) %d ms, triggered: %s", irq,
jiffies_to_msecs(jiffies) -
(jiffies_to_msecs(timeout) - maxwait),
triggered ? "true" : "false");
if (!triggered)
return -ETIMEDOUT;
return 0;
err:
return ret;
}
static int tda18250_init(struct dvb_frontend *fe)
{
struct i2c_client *client = fe->tuner_priv;
struct tda18250_dev *dev = i2c_get_clientdata(client);
int ret, i;
/* default values for various regs */
static const u8 init_regs[][2] = {
{ R0C_AGC11, 0xc7 },
{ R0D_AGC12, 0x5d },
{ R0E_AGC13, 0x40 },
{ R0F_AGC14, 0x0e },
{ R10_LT1, 0x47 },
{ R11_LT2, 0x4e },
{ R12_AGC21, 0x26 },
{ R13_AGC22, 0x60 },
{ R18_AGC32, 0x37 },
{ R19_AGC33, 0x09 },
{ R1A_AGCK, 0x00 },
{ R1E_WI_FI, 0x29 },
{ R1F_RF_BPF, 0x06 },
{ R20_IR_MIX, 0xc6 },
{ R21_IF_AGC, 0x00 },
{ R2C_PS1, 0x75 },
{ R2D_PS2, 0x06 },
{ R2E_PS3, 0x07 },
{ R30_RSSI2, 0x0e },
{ R31_IRQ_CTRL, 0x00 },
{ R39_SD5, 0x00 },
{ R3B_REGU, 0x55 },
{ R3C_RCCAL1, 0xa7 },
{ R3F_IRCAL2, 0x85 },
{ R40_IRCAL3, 0x87 },
{ R41_IRCAL4, 0xc0 },
{ R43_PD1, 0x40 },
{ R44_PD2, 0xc0 },
{ R46_CPUMP, 0x0c },
{ R47_LNAPOL, 0x64 },
{ R4B_XTALOSC1, 0x30 },
{ R59_AGC2_UP2, 0x05 },
{ R5B_AGC_AUTO, 0x07 },
{ R5C_AGC_DEBUG, 0x00 },
};
/* crystal related regs depend on frequency */
static const u8 xtal_regs[][5] = {
/* reg: 4d 4e 4f 50 51 */
[TDA18250_XTAL_FREQ_16MHZ] = { 0x3e, 0x80, 0x50, 0x00, 0x20 },
[TDA18250_XTAL_FREQ_24MHZ] = { 0x5d, 0xc0, 0xec, 0x00, 0x18 },
[TDA18250_XTAL_FREQ_25MHZ] = { 0x61, 0xa8, 0xec, 0x80, 0x19 },
[TDA18250_XTAL_FREQ_27MHZ] = { 0x69, 0x78, 0x8d, 0x80, 0x1b },
[TDA18250_XTAL_FREQ_30MHZ] = { 0x75, 0x30, 0x8f, 0x00, 0x1e },
};
dev_dbg(&client->dev, "\n");
ret = tda18250_power_control(fe, TDA18250_POWER_NORMAL);
if (ret)
goto err;
msleep(20);
if (dev->warm)
goto warm;
/* set initial register values */
for (i = 0; i < ARRAY_SIZE(init_regs); i++) {
ret = regmap_write(dev->regmap, init_regs[i][0],
init_regs[i][1]);
if (ret)
goto err;
}
/* set xtal related regs */
ret = regmap_bulk_write(dev->regmap, R4D_XTALFLX1,
xtal_regs[dev->xtal_freq], 5);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap, R10_LT1, 0x80,
dev->loopthrough ? 0x00 : 0x80);
if (ret)
goto err;
/* clear IRQ */
ret = regmap_write(dev->regmap, R0A_IRQ3, TDA18250_IRQ_HW_INIT);
if (ret)
goto err;
/* start HW init */
ret = regmap_write(dev->regmap, R2A_MSM1, 0x70);
if (ret)
goto err;
ret = regmap_write(dev->regmap, R2B_MSM2, 0x01);
if (ret)
goto err;
ret = tda18250_wait_for_irq(fe, 500, 10, TDA18250_IRQ_HW_INIT);
if (ret)
goto err;
/* tuner calibration */
ret = regmap_write(dev->regmap, R2A_MSM1, 0x02);
if (ret)
goto err;
ret = regmap_write(dev->regmap, R2B_MSM2, 0x01);
if (ret)
goto err;
ret = tda18250_wait_for_irq(fe, 500, 10, TDA18250_IRQ_CAL);
if (ret)
goto err;
dev->warm = true;
warm:
/* power up LNA */
ret = regmap_write_bits(dev->regmap, R0C_AGC11, 0x80, 0x00);
if (ret)
goto err;
return 0;
err:
dev_dbg(&client->dev, "failed=%d", ret);
return ret;
}
static int tda18250_set_agc(struct dvb_frontend *fe)
{
struct i2c_client *client = fe->tuner_priv;
struct tda18250_dev *dev = i2c_get_clientdata(client);
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int ret;
u8 utmp, utmp2;
dev_dbg(&client->dev, "\n");
ret = regmap_write_bits(dev->regmap, R1F_RF_BPF, 0x87, 0x06);
if (ret)
goto err;
utmp = ((c->frequency < 100000000) &&
((c->delivery_system == SYS_DVBC_ANNEX_A) ||
(c->delivery_system == SYS_DVBC_ANNEX_C)) &&
(c->bandwidth_hz == 6000000)) ? 0x80 : 0x00;
ret = regmap_write(dev->regmap, R5A_H3H5, utmp);
if (ret)
goto err;
/* AGC1 */
switch (c->delivery_system) {
case SYS_ATSC:
case SYS_DVBT:
case SYS_DVBT2:
utmp = 4;
break;
default: /* DVB-C/QAM */
switch (c->bandwidth_hz) {
case 6000000:
utmp = (c->frequency < 800000000) ? 6 : 4;
break;
default: /* 7.935 and 8 MHz */
utmp = (c->frequency < 100000000) ? 2 : 3;
break;
}
break;
}
ret = regmap_write_bits(dev->regmap, R0C_AGC11, 0x07, utmp);
if (ret)
goto err;
/* AGC2 */
switch (c->delivery_system) {
case SYS_ATSC:
case SYS_DVBT:
case SYS_DVBT2:
utmp = (c->frequency < 320000000) ? 20 : 16;
utmp2 = (c->frequency < 320000000) ? 22 : 18;
break;
default: /* DVB-C/QAM */
switch (c->bandwidth_hz) {
case 6000000:
if (c->frequency < 600000000) {
utmp = 18;
utmp2 = 22;
} else if (c->frequency < 800000000) {
utmp = 16;
utmp2 = 20;
} else {
utmp = 14;
utmp2 = 16;
}
break;
default: /* 7.935 and 8 MHz */
utmp = (c->frequency < 320000000) ? 16 : 18;
utmp2 = (c->frequency < 320000000) ? 18 : 20;
break;
}
break;
}
ret = regmap_write_bits(dev->regmap, R58_AGC2_UP1, 0x1f, utmp2+8);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap, R13_AGC22, 0x1f, utmp);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap, R14_AGC23, 0x1f, utmp2);
if (ret)
goto err;
switch (c->delivery_system) {
case SYS_ATSC:
case SYS_DVBT:
case SYS_DVBT2:
utmp = 98;
break;
default: /* DVB-C/QAM */
utmp = 90;
break;
}
ret = regmap_write_bits(dev->regmap, R16_AGC25, 0xf8, utmp);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap, R12_AGC21, 0x60,
(c->frequency > 800000000) ? 0x40 : 0x20);
if (ret)
goto err;
/* AGC3 */
switch (c->delivery_system) {
case SYS_ATSC:
case SYS_DVBT:
case SYS_DVBT2:
utmp = (c->frequency < 320000000) ? 5 : 7;
utmp2 = (c->frequency < 320000000) ? 10 : 12;
break;
default: /* DVB-C/QAM */
utmp = 7;
utmp2 = 12;
break;
}
ret = regmap_write(dev->regmap, R17_AGC31, (utmp << 4) | utmp2);
if (ret)
goto err;
/* S2D */
switch (c->delivery_system) {
case SYS_ATSC:
case SYS_DVBT:
case SYS_DVBT2:
if (c->bandwidth_hz == 8000000)
utmp = 0x04;
else
utmp = (c->frequency < 320000000) ? 0x04 : 0x02;
break;
default: /* DVB-C/QAM */
if (c->bandwidth_hz == 6000000)
utmp = ((c->frequency > 172544000) &&
(c->frequency < 320000000)) ? 0x04 : 0x02;
else /* 7.935 and 8 MHz */
utmp = ((c->frequency > 320000000) &&
(c->frequency < 600000000)) ? 0x02 : 0x04;
break;
}
ret = regmap_write_bits(dev->regmap, R20_IR_MIX, 0x06, utmp);
if (ret)
goto err;
switch (c->delivery_system) {
case SYS_ATSC:
case SYS_DVBT:
case SYS_DVBT2:
utmp = 0;
break;
default: /* DVB-C/QAM */
utmp = (c->frequency < 600000000) ? 0 : 3;
break;
}
ret = regmap_write_bits(dev->regmap, R16_AGC25, 0x03, utmp);
if (ret)
goto err;
utmp = 0x09;
switch (c->delivery_system) {
case SYS_ATSC:
case SYS_DVBT:
case SYS_DVBT2:
if (c->bandwidth_hz == 8000000)
utmp = 0x0c;
break;
default: /* DVB-C/QAM */
utmp = 0x0c;
break;
}
ret = regmap_write_bits(dev->regmap, R0F_AGC14, 0x3f, utmp);
if (ret)
goto err;
return 0;
err:
dev_dbg(&client->dev, "failed=%d", ret);
return ret;
}
static int tda18250_pll_calc(struct dvb_frontend *fe, u8 *rdiv,
u8 *ndiv, u8 *icp)
{
struct i2c_client *client = fe->tuner_priv;
struct tda18250_dev *dev = i2c_get_clientdata(client);
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int ret;
unsigned int uval, exp, lopd, scale;
unsigned long fvco;
ret = regmap_read(dev->regmap, R34_MD1, &uval);
if (ret)
goto err;
exp = (uval & 0x70) >> 4;
if (exp > 5)
exp = 0;
lopd = 1 << (exp - 1);
scale = uval & 0x0f;
fvco = lopd * scale * ((c->frequency / 1000) + dev->if_frequency);
switch (dev->xtal_freq) {
case TDA18250_XTAL_FREQ_16MHZ:
*rdiv = 1;
*ndiv = 0;
*icp = (fvco < 6622000) ? 0x05 : 0x02;
break;
case TDA18250_XTAL_FREQ_24MHZ:
case TDA18250_XTAL_FREQ_25MHZ:
*rdiv = 3;
*ndiv = 1;
*icp = (fvco < 6622000) ? 0x05 : 0x02;
break;
case TDA18250_XTAL_FREQ_27MHZ:
if (fvco < 6643000) {
*rdiv = 2;
*ndiv = 0;
*icp = 0x05;
} else if (fvco < 6811000) {
*rdiv = 2;
*ndiv = 0;
*icp = 0x06;
} else {
*rdiv = 3;
*ndiv = 1;
*icp = 0x02;
}
break;
case TDA18250_XTAL_FREQ_30MHZ:
*rdiv = 2;
*ndiv = 0;
*icp = (fvco < 6811000) ? 0x05 : 0x02;
break;
default:
return -EINVAL;
}
dev_dbg(&client->dev,
"lopd=%d scale=%u fvco=%lu, rdiv=%d ndiv=%d icp=%d",
lopd, scale, fvco, *rdiv, *ndiv, *icp);
return 0;
err:
return ret;
}
static int tda18250_set_params(struct dvb_frontend *fe)
{
struct i2c_client *client = fe->tuner_priv;
struct tda18250_dev *dev = i2c_get_clientdata(client);
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
u32 if_khz;
int ret;
unsigned int i, j;
u8 utmp;
u8 buf[3];
#define REG 0
#define MASK 1
#define DVBT_6 2
#define DVBT_7 3
#define DVBT_8 4
#define DVBC_6 5
#define DVBC_8 6
#define ATSC 7
static const u8 delsys_params[][16] = {
[REG] = { 0x22, 0x23, 0x24, 0x21, 0x0d, 0x0c, 0x0f, 0x14,
0x0e, 0x12, 0x58, 0x59, 0x1a, 0x19, 0x1e, 0x30 },
[MASK] = { 0x77, 0xff, 0xff, 0x87, 0xf0, 0x78, 0x07, 0xe0,
0x60, 0x0f, 0x60, 0x0f, 0x33, 0x30, 0x80, 0x06 },
[DVBT_6] = { 0x51, 0x03, 0x83, 0x82, 0x40, 0x48, 0x01, 0xe0,
0x60, 0x0f, 0x60, 0x05, 0x03, 0x10, 0x00, 0x04 },
[DVBT_7] = { 0x52, 0x03, 0x85, 0x82, 0x40, 0x48, 0x01, 0xe0,
0x60, 0x0f, 0x60, 0x05, 0x03, 0x10, 0x00, 0x04 },
[DVBT_8] = { 0x53, 0x03, 0x87, 0x82, 0x40, 0x48, 0x06, 0xe0,
0x60, 0x07, 0x60, 0x05, 0x03, 0x10, 0x00, 0x04 },
[DVBC_6] = { 0x32, 0x05, 0x86, 0x82, 0x50, 0x00, 0x06, 0x60,
0x40, 0x0e, 0x60, 0x05, 0x33, 0x10, 0x00, 0x04 },
[DVBC_8] = { 0x53, 0x03, 0x88, 0x82, 0x50, 0x00, 0x06, 0x60,
0x40, 0x0e, 0x60, 0x05, 0x33, 0x10, 0x00, 0x04 },
[ATSC] = { 0x51, 0x03, 0x83, 0x82, 0x40, 0x48, 0x01, 0xe0,
0x40, 0x0e, 0x60, 0x05, 0x03, 0x00, 0x80, 0x04 },
};
dev_dbg(&client->dev,
"delivery_system=%d frequency=%u bandwidth_hz=%u",
c->delivery_system, c->frequency, c->bandwidth_hz);
switch (c->delivery_system) {
case SYS_ATSC:
j = ATSC;
if_khz = dev->if_atsc;
break;
case SYS_DVBT:
case SYS_DVBT2:
if (c->bandwidth_hz == 0) {
ret = -EINVAL;
goto err;
} else if (c->bandwidth_hz <= 6000000) {
j = DVBT_6;
if_khz = dev->if_dvbt_6;
} else if (c->bandwidth_hz <= 7000000) {
j = DVBT_7;
if_khz = dev->if_dvbt_7;
} else if (c->bandwidth_hz <= 8000000) {
j = DVBT_8;
if_khz = dev->if_dvbt_8;
} else {
ret = -EINVAL;
goto err;
}
break;
case SYS_DVBC_ANNEX_A:
case SYS_DVBC_ANNEX_C:
if (c->bandwidth_hz == 0) {
ret = -EINVAL;
goto err;
} else if (c->bandwidth_hz <= 6000000) {
j = DVBC_6;
if_khz = dev->if_dvbc_6;
} else if (c->bandwidth_hz <= 8000000) {
j = DVBC_8;
if_khz = dev->if_dvbc_8;
} else {
ret = -EINVAL;
goto err;
}
break;
default:
ret = -EINVAL;
dev_err(&client->dev, "unsupported delivery system=%d",
c->delivery_system);
goto err;
}
/* set delivery system dependent registers */
for (i = 0; i < 16; i++) {
ret = regmap_write_bits(dev->regmap, delsys_params[REG][i],
delsys_params[MASK][i], delsys_params[j][i]);
if (ret)
goto err;
}
/* set IF if needed */
if (dev->if_frequency != if_khz) {
utmp = DIV_ROUND_CLOSEST(if_khz, 50);
ret = regmap_write(dev->regmap, R26_IF, utmp);
if (ret)
goto err;
dev->if_frequency = if_khz;
dev_dbg(&client->dev, "set IF=%u kHz", if_khz);
}
ret = tda18250_set_agc(fe);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap, R1A_AGCK, 0x03, 0x01);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap, R14_AGC23, 0x40, 0x00);
if (ret)
goto err;
/* set frequency */
buf[0] = ((c->frequency / 1000) >> 16) & 0xff;
buf[1] = ((c->frequency / 1000) >> 8) & 0xff;
buf[2] = ((c->frequency / 1000) >> 0) & 0xff;
ret = regmap_bulk_write(dev->regmap, R27_RF1, buf, 3);
if (ret)
goto err;
ret = regmap_write(dev->regmap, R0A_IRQ3, TDA18250_IRQ_TUNE);
if (ret)
goto err;
/* initial tune */
ret = regmap_write(dev->regmap, R2A_MSM1, 0x01);
if (ret)
goto err;
ret = regmap_write(dev->regmap, R2B_MSM2, 0x01);
if (ret)
goto err;
ret = tda18250_wait_for_irq(fe, 500, 10, TDA18250_IRQ_TUNE);
if (ret)
goto err;
/* calc ndiv and rdiv */
ret = tda18250_pll_calc(fe, &buf[0], &buf[1], &buf[2]);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap, R4F_XTALFLX3, 0xe0,
(buf[0] << 6) | (buf[1] << 5));
if (ret)
goto err;
/* clear IRQ */
ret = regmap_write(dev->regmap, R0A_IRQ3, TDA18250_IRQ_TUNE);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap, R46_CPUMP, 0x07, 0x00);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap, R39_SD5, 0x03, 0x00);
if (ret)
goto err;
/* tune again */
ret = regmap_write(dev->regmap, R2A_MSM1, 0x01); /* tune */
if (ret)
goto err;
ret = regmap_write(dev->regmap, R2B_MSM2, 0x01); /* go */
if (ret)
goto err;
ret = tda18250_wait_for_irq(fe, 500, 10, TDA18250_IRQ_TUNE);
if (ret)
goto err;
/* pll locking */
msleep(20);
ret = regmap_write_bits(dev->regmap, R2B_MSM2, 0x04, 0x04);
if (ret)
goto err;
msleep(20);
/* restore AGCK */
ret = regmap_write_bits(dev->regmap, R1A_AGCK, 0x03, 0x03);
if (ret)
goto err;
ret = regmap_write_bits(dev->regmap, R14_AGC23, 0x40, 0x40);
if (ret)
goto err;
/* charge pump */
ret = regmap_write_bits(dev->regmap, R46_CPUMP, 0x07, buf[2]);
return 0;
err:
return ret;
}
static int tda18250_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct i2c_client *client = fe->tuner_priv;
struct tda18250_dev *dev = i2c_get_clientdata(client);
*frequency = dev->if_frequency * 1000;
return 0;
}
static int tda18250_sleep(struct dvb_frontend *fe)
{
struct i2c_client *client = fe->tuner_priv;
struct tda18250_dev *dev = i2c_get_clientdata(client);
int ret;
dev_dbg(&client->dev, "\n");
/* power down LNA */
ret = regmap_write_bits(dev->regmap, R0C_AGC11, 0x80, 0x00);
if (ret)
return ret;
/* set if freq to 0 in order to make sure it's set after wake up */
dev->if_frequency = 0;
ret = tda18250_power_control(fe, TDA18250_POWER_STANDBY);
return ret;
}
static const struct dvb_tuner_ops tda18250_ops = {
.info = {
.name = "NXP TDA18250",
.frequency_min = 42000000,
.frequency_max = 870000000,
},
.init = tda18250_init,
.set_params = tda18250_set_params,
.get_if_frequency = tda18250_get_if_frequency,
.sleep = tda18250_sleep,
};
static int tda18250_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct tda18250_config *cfg = client->dev.platform_data;
struct dvb_frontend *fe = cfg->fe;
struct tda18250_dev *dev;
int ret;
unsigned char chip_id[3];
/* some registers are always read from HW */
static const struct regmap_range tda18250_yes_ranges[] = {
regmap_reg_range(R05_POWER1, R0B_IRQ4),
regmap_reg_range(R21_IF_AGC, R21_IF_AGC),
regmap_reg_range(R2A_MSM1, R2B_MSM2),
regmap_reg_range(R2F_RSSI1, R31_IRQ_CTRL),
};
static const struct regmap_access_table tda18250_volatile_table = {
.yes_ranges = tda18250_yes_ranges,
.n_yes_ranges = ARRAY_SIZE(tda18250_yes_ranges),
};
static const struct regmap_config tda18250_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = TDA18250_NUM_REGS - 1,
.volatile_table = &tda18250_volatile_table,
};
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
ret = -ENOMEM;
goto err;
}
i2c_set_clientdata(client, dev);
dev->fe = cfg->fe;
dev->loopthrough = cfg->loopthrough;
if (cfg->xtal_freq < TDA18250_XTAL_FREQ_MAX) {
dev->xtal_freq = cfg->xtal_freq;
} else {
ret = -EINVAL;
dev_err(&client->dev, "xtal_freq invalid=%d", cfg->xtal_freq);
goto err_kfree;
}
dev->if_dvbt_6 = cfg->if_dvbt_6;
dev->if_dvbt_7 = cfg->if_dvbt_7;
dev->if_dvbt_8 = cfg->if_dvbt_8;
dev->if_dvbc_6 = cfg->if_dvbc_6;
dev->if_dvbc_8 = cfg->if_dvbc_8;
dev->if_atsc = cfg->if_atsc;
dev->if_frequency = 0;
dev->warm = false;
dev->regmap = devm_regmap_init_i2c(client, &tda18250_regmap_config);
if (IS_ERR(dev->regmap)) {
ret = PTR_ERR(dev->regmap);
goto err_kfree;
}
/* read the three chip ID registers */
regmap_bulk_read(dev->regmap, R00_ID1, &chip_id, 3);
dev_dbg(&client->dev, "chip_id=%02x:%02x:%02x",
chip_id[0], chip_id[1], chip_id[2]);
switch (chip_id[0]) {
case 0xc7:
dev->slave = false;
break;
case 0x47:
dev->slave = true;
break;
default:
ret = -ENODEV;
goto err_kfree;
}
if (chip_id[1] != 0x4a) {
ret = -ENODEV;
goto err_kfree;
}
switch (chip_id[2]) {
case 0x20:
dev_info(&client->dev,
"NXP TDA18250AHN/%s successfully identified",
dev->slave ? "S" : "M");
break;
case 0x21:
dev_info(&client->dev,
"NXP TDA18250BHN/%s successfully identified",
dev->slave ? "S" : "M");
break;
default:
ret = -ENODEV;
goto err_kfree;
}
fe->tuner_priv = client;
memcpy(&fe->ops.tuner_ops, &tda18250_ops,
sizeof(struct dvb_tuner_ops));
/* put the tuner in standby */
tda18250_power_control(fe, TDA18250_POWER_STANDBY);
return 0;
err_kfree:
kfree(dev);
err:
dev_dbg(&client->dev, "failed=%d", ret);
return ret;
}
static int tda18250_remove(struct i2c_client *client)
{
struct tda18250_dev *dev = i2c_get_clientdata(client);
struct dvb_frontend *fe = dev->fe;
dev_dbg(&client->dev, "\n");
memset(&fe->ops.tuner_ops, 0, sizeof(struct dvb_tuner_ops));
fe->tuner_priv = NULL;
kfree(dev);
return 0;
}
static const struct i2c_device_id tda18250_id_table[] = {
{"tda18250", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, tda18250_id_table);
static struct i2c_driver tda18250_driver = {
.driver = {
.name = "tda18250",
},
.probe = tda18250_probe,
.remove = tda18250_remove,
.id_table = tda18250_id_table,
};
module_i2c_driver(tda18250_driver);
MODULE_DESCRIPTION("NXP TDA18250 silicon tuner driver");
MODULE_AUTHOR("Olli Salonen <olli.salonen@iki.fi>");
MODULE_LICENSE("GPL");

View File

@ -0,0 +1,51 @@
/*
* NXP TDA18250BHN silicon tuner driver
*
* Copyright (C) 2017 Olli Salonen <olli.salonen@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef TDA18250_H
#define TDA18250_H
#include <linux/kconfig.h>
#include <media/media-device.h>
#include "dvb_frontend.h"
#define TDA18250_XTAL_FREQ_16MHZ 0
#define TDA18250_XTAL_FREQ_24MHZ 1
#define TDA18250_XTAL_FREQ_25MHZ 2
#define TDA18250_XTAL_FREQ_27MHZ 3
#define TDA18250_XTAL_FREQ_30MHZ 4
#define TDA18250_XTAL_FREQ_MAX 5
struct tda18250_config {
u16 if_dvbt_6;
u16 if_dvbt_7;
u16 if_dvbt_8;
u16 if_dvbc_6;
u16 if_dvbc_8;
u16 if_atsc;
u8 xtal_freq;
bool loopthrough;
/*
* frontend
*/
struct dvb_frontend *fe;
#if defined(CONFIG_MEDIA_CONTROLLER)
struct media_device *mdev;
#endif
};
#endif

View File

@ -0,0 +1,145 @@
/*
* NXP TDA18250BHN silicon tuner driver
*
* Copyright (C) 2017 Olli Salonen <olli.salonen@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef TDA18250_PRIV_H
#define TDA18250_PRIV_H
#include "tda18250.h"
#define R00_ID1 0x00 /* ID byte 1 */
#define R01_ID2 0x01 /* ID byte 2 */
#define R02_ID3 0x02 /* ID byte 3 */
#define R03_THERMO1 0x03 /* Thermo byte 1 */
#define R04_THERMO2 0x04 /* Thermo byte 2 */
#define R05_POWER1 0x05 /* Power byte 1 */
#define R06_POWER2 0x06 /* Power byte 2 */
#define R07_GPIO 0x07 /* GPIO */
#define R08_IRQ1 0x08 /* IRQ */
#define R09_IRQ2 0x09 /* IRQ */
#define R0A_IRQ3 0x0a /* IRQ */
#define R0B_IRQ4 0x0b /* IRQ */
#define R0C_AGC11 0x0c /* AGC1 byte 1 */
#define R0D_AGC12 0x0d /* AGC1 byte 2 */
#define R0E_AGC13 0x0e /* AGC1 byte 3 */
#define R0F_AGC14 0x0f /* AGC1 byte 4 */
#define R10_LT1 0x10 /* LT byte 1 */
#define R11_LT2 0x11 /* LT byte 2 */
#define R12_AGC21 0x12 /* AGC2 byte 1 */
#define R13_AGC22 0x13 /* AGC2 byte 2 */
#define R14_AGC23 0x14 /* AGC2 byte 3 */
#define R15_AGC24 0x15 /* AGC2 byte 4 */
#define R16_AGC25 0x16 /* AGC2 byte 5 */
#define R17_AGC31 0x17 /* AGC3 byte 1 */
#define R18_AGC32 0x18 /* AGC3 byte 2 */
#define R19_AGC33 0x19 /* AGC3 byte 3 */
#define R1A_AGCK 0x1a
#define R1B_GAIN1 0x1b
#define R1C_GAIN2 0x1c
#define R1D_GAIN3 0x1d
#define R1E_WI_FI 0x1e /* Wireless Filter */
#define R1F_RF_BPF 0x1f /* RF Band Pass Filter */
#define R20_IR_MIX 0x20 /* IR Mixer */
#define R21_IF_AGC 0x21
#define R22_IF1 0x22 /* IF byte 1 */
#define R23_IF2 0x23 /* IF byte 2 */
#define R24_IF3 0x24 /* IF byte 3 */
#define R25_REF 0x25 /* reference byte */
#define R26_IF 0x26 /* IF frequency */
#define R27_RF1 0x27 /* RF frequency byte 1 */
#define R28_RF2 0x28 /* RF frequency byte 2 */
#define R29_RF3 0x29 /* RF frequency byte 3 */
#define R2A_MSM1 0x2a
#define R2B_MSM2 0x2b
#define R2C_PS1 0x2c /* power saving mode byte 1 */
#define R2D_PS2 0x2d /* power saving mode byte 2 */
#define R2E_PS3 0x2e /* power saving mode byte 3 */
#define R2F_RSSI1 0x2f
#define R30_RSSI2 0x30
#define R31_IRQ_CTRL 0x31
#define R32_DUMMY 0x32
#define R33_TEST 0x33
#define R34_MD1 0x34
#define R35_SD1 0x35
#define R36_SD2 0x36
#define R37_SD3 0x37
#define R38_SD4 0x38
#define R39_SD5 0x39
#define R3A_SD_TEST 0x3a
#define R3B_REGU 0x3b
#define R3C_RCCAL1 0x3c
#define R3D_RCCAL2 0x3d
#define R3E_IRCAL1 0x3e
#define R3F_IRCAL2 0x3f
#define R40_IRCAL3 0x40
#define R41_IRCAL4 0x41
#define R42_IRCAL5 0x42
#define R43_PD1 0x43 /* power down byte 1 */
#define R44_PD2 0x44 /* power down byte 2 */
#define R45_PD 0x45 /* power down */
#define R46_CPUMP 0x46 /* charge pump */
#define R47_LNAPOL 0x47 /* LNA polar casc */
#define R48_SMOOTH1 0x48 /* smooth test byte 1 */
#define R49_SMOOTH2 0x49 /* smooth test byte 2 */
#define R4A_SMOOTH3 0x4a /* smooth test byte 3 */
#define R4B_XTALOSC1 0x4b
#define R4C_XTALOSC2 0x4c
#define R4D_XTALFLX1 0x4d
#define R4E_XTALFLX2 0x4e
#define R4F_XTALFLX3 0x4f
#define R50_XTALFLX4 0x50
#define R51_XTALFLX5 0x51
#define R52_IRLOOP0 0x52
#define R53_IRLOOP1 0x53
#define R54_IRLOOP2 0x54
#define R55_IRLOOP3 0x55
#define R56_IRLOOP4 0x56
#define R57_PLL_LOG 0x57
#define R58_AGC2_UP1 0x58
#define R59_AGC2_UP2 0x59
#define R5A_H3H5 0x5a
#define R5B_AGC_AUTO 0x5b
#define R5C_AGC_DEBUG 0x5c
#define TDA18250_NUM_REGS 93
#define TDA18250_POWER_STANDBY 0
#define TDA18250_POWER_NORMAL 1
#define TDA18250_IRQ_CAL 0x81
#define TDA18250_IRQ_HW_INIT 0x82
#define TDA18250_IRQ_TUNE 0x88
struct tda18250_dev {
struct mutex i2c_mutex;
struct dvb_frontend *fe;
struct i2c_adapter *i2c;
struct regmap *regmap;
u8 xtal_freq;
/* IF in kHz */
u16 if_dvbt_6;
u16 if_dvbt_7;
u16 if_dvbt_8;
u16 if_dvbc_6;
u16 if_dvbc_8;
u16 if_atsc;
u16 if_frequency;
bool slave;
bool loopthrough;
bool warm;
u8 regs[TDA18250_NUM_REGS];
};
#endif