mirror of
https://github.com/torvalds/linux.git
synced 2024-11-30 08:01:59 +00:00
sched: Handle priority boosted tasks proper in setscheduler()
Ronny reported that the following scenario is not handled correctly: T1 (prio = 10) lock(rtmutex); T2 (prio = 20) lock(rtmutex) boost T1 T1 (prio = 20) sys_set_scheduler(prio = 30) T1 prio = 30 .... sys_set_scheduler(prio = 10) T1 prio = 30 The last step is wrong as T1 should now be back at prio 20. Commitc365c292d0
("sched: Consider pi boosting in setscheduler()") only handles the case where a boosted tasks tries to lower its priority. Fix it by taking the new effective priority into account for the decision whether a change of the priority is required. Reported-by: Ronny Meeus <ronny.meeus@gmail.com> Tested-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: <stable@vger.kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Fixes:c365c292d0
("sched: Consider pi boosting in setscheduler()") Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1505051806060.4225@nanos Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
3e0283a53f
commit
0782e63bc6
@ -18,7 +18,7 @@ static inline int rt_task(struct task_struct *p)
|
||||
#ifdef CONFIG_RT_MUTEXES
|
||||
extern int rt_mutex_getprio(struct task_struct *p);
|
||||
extern void rt_mutex_setprio(struct task_struct *p, int prio);
|
||||
extern int rt_mutex_check_prio(struct task_struct *task, int newprio);
|
||||
extern int rt_mutex_get_effective_prio(struct task_struct *task, int newprio);
|
||||
extern struct task_struct *rt_mutex_get_top_task(struct task_struct *task);
|
||||
extern void rt_mutex_adjust_pi(struct task_struct *p);
|
||||
static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
|
||||
@ -31,9 +31,10 @@ static inline int rt_mutex_getprio(struct task_struct *p)
|
||||
return p->normal_prio;
|
||||
}
|
||||
|
||||
static inline int rt_mutex_check_prio(struct task_struct *task, int newprio)
|
||||
static inline int rt_mutex_get_effective_prio(struct task_struct *task,
|
||||
int newprio)
|
||||
{
|
||||
return 0;
|
||||
return newprio;
|
||||
}
|
||||
|
||||
static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
|
||||
|
@ -265,15 +265,17 @@ struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
|
||||
}
|
||||
|
||||
/*
|
||||
* Called by sched_setscheduler() to check whether the priority change
|
||||
* is overruled by a possible priority boosting.
|
||||
* Called by sched_setscheduler() to get the priority which will be
|
||||
* effective after the change.
|
||||
*/
|
||||
int rt_mutex_check_prio(struct task_struct *task, int newprio)
|
||||
int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
|
||||
{
|
||||
if (!task_has_pi_waiters(task))
|
||||
return 0;
|
||||
return newprio;
|
||||
|
||||
return task_top_pi_waiter(task)->task->prio <= newprio;
|
||||
if (task_top_pi_waiter(task)->task->prio <= newprio)
|
||||
return task_top_pi_waiter(task)->task->prio;
|
||||
return newprio;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -3300,15 +3300,18 @@ static void __setscheduler_params(struct task_struct *p,
|
||||
|
||||
/* Actually do priority change: must hold pi & rq lock. */
|
||||
static void __setscheduler(struct rq *rq, struct task_struct *p,
|
||||
const struct sched_attr *attr)
|
||||
const struct sched_attr *attr, bool keep_boost)
|
||||
{
|
||||
__setscheduler_params(p, attr);
|
||||
|
||||
/*
|
||||
* If we get here, there was no pi waiters boosting the
|
||||
* task. It is safe to use the normal prio.
|
||||
* Keep a potential priority boosting if called from
|
||||
* sched_setscheduler().
|
||||
*/
|
||||
p->prio = normal_prio(p);
|
||||
if (keep_boost)
|
||||
p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
|
||||
else
|
||||
p->prio = normal_prio(p);
|
||||
|
||||
if (dl_prio(p->prio))
|
||||
p->sched_class = &dl_sched_class;
|
||||
@ -3408,7 +3411,7 @@ static int __sched_setscheduler(struct task_struct *p,
|
||||
int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
|
||||
MAX_RT_PRIO - 1 - attr->sched_priority;
|
||||
int retval, oldprio, oldpolicy = -1, queued, running;
|
||||
int policy = attr->sched_policy;
|
||||
int new_effective_prio, policy = attr->sched_policy;
|
||||
unsigned long flags;
|
||||
const struct sched_class *prev_class;
|
||||
struct rq *rq;
|
||||
@ -3590,15 +3593,14 @@ change:
|
||||
oldprio = p->prio;
|
||||
|
||||
/*
|
||||
* Special case for priority boosted tasks.
|
||||
*
|
||||
* If the new priority is lower or equal (user space view)
|
||||
* than the current (boosted) priority, we just store the new
|
||||
* Take priority boosted tasks into account. If the new
|
||||
* effective priority is unchanged, we just store the new
|
||||
* normal parameters and do not touch the scheduler class and
|
||||
* the runqueue. This will be done when the task deboost
|
||||
* itself.
|
||||
*/
|
||||
if (rt_mutex_check_prio(p, newprio)) {
|
||||
new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
|
||||
if (new_effective_prio == oldprio) {
|
||||
__setscheduler_params(p, attr);
|
||||
task_rq_unlock(rq, p, &flags);
|
||||
return 0;
|
||||
@ -3612,7 +3614,7 @@ change:
|
||||
put_prev_task(rq, p);
|
||||
|
||||
prev_class = p->sched_class;
|
||||
__setscheduler(rq, p, attr);
|
||||
__setscheduler(rq, p, attr, true);
|
||||
|
||||
if (running)
|
||||
p->sched_class->set_curr_task(rq);
|
||||
@ -7346,7 +7348,7 @@ static void normalize_task(struct rq *rq, struct task_struct *p)
|
||||
queued = task_on_rq_queued(p);
|
||||
if (queued)
|
||||
dequeue_task(rq, p, 0);
|
||||
__setscheduler(rq, p, &attr);
|
||||
__setscheduler(rq, p, &attr, false);
|
||||
if (queued) {
|
||||
enqueue_task(rq, p, 0);
|
||||
resched_curr(rq);
|
||||
|
Loading…
Reference in New Issue
Block a user