linux/fs/crypto/fscrypt_private.h

622 lines
18 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* fscrypt_private.h
*
* Copyright (C) 2015, Google, Inc.
*
* Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
* Heavily modified since then.
*/
#ifndef _FSCRYPT_PRIVATE_H
#define _FSCRYPT_PRIVATE_H
#include <linux/fscrypt.h>
fscrypt: derive dirhash key for casefolded directories When we allow indexed directories to use both encryption and casefolding, for the dirhash we can't just hash the ciphertext filenames that are stored on-disk (as is done currently) because the dirhash must be case insensitive, but the stored names are case-preserving. Nor can we hash the plaintext names with an unkeyed hash (or a hash keyed with a value stored on-disk like ext4's s_hash_seed), since that would leak information about the names that encryption is meant to protect. Instead, if we can accept a dirhash that's only computable when the fscrypt key is available, we can hash the plaintext names with a keyed hash using a secret key derived from the directory's fscrypt master key. We'll use SipHash-2-4 for this purpose. Prepare for this by deriving a SipHash key for each casefolded encrypted directory. Make sure to handle deriving the key not only when setting up the directory's fscrypt_info, but also in the case where the casefold flag is enabled after the fscrypt_info was already set up. (We could just always derive the key regardless of casefolding, but that would introduce unnecessary overhead for people not using casefolding.) Signed-off-by: Daniel Rosenberg <drosen@google.com> [EB: improved commit message, updated fscrypt.rst, squashed with change that avoids unnecessarily deriving the key, and many other cleanups] Link: https://lore.kernel.org/r/20200120223201.241390-3-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-01-20 22:31:57 +00:00
#include <linux/siphash.h>
#include <crypto/hash.h>
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 01:56:05 +00:00
#include <linux/blk-crypto.h>
fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
#define CONST_STRLEN(str) (sizeof(str) - 1)
#define FSCRYPT_FILE_NONCE_SIZE 16
#define FSCRYPT_MIN_KEY_SIZE 16
fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
#define FSCRYPT_CONTEXT_V1 1
#define FSCRYPT_CONTEXT_V2 2
fscrypt: remove kernel-internal constants from UAPI header There isn't really any valid reason to use __FSCRYPT_MODE_MAX or FSCRYPT_POLICY_FLAGS_VALID in a userspace program. These constants are only meant to be used by the kernel internally, and they are defined in the UAPI header next to the mode numbers and flags only so that kernel developers don't forget to update them when adding new modes or flags. In https://lkml.kernel.org/r/20201005074133.1958633-2-satyat@google.com there was an example of someone wanting to use __FSCRYPT_MODE_MAX in a user program, and it was wrong because the program would have broken if __FSCRYPT_MODE_MAX were ever increased. So having this definition available is harmful. FSCRYPT_POLICY_FLAGS_VALID has the same problem. So, remove these definitions from the UAPI header. Replace FSCRYPT_POLICY_FLAGS_VALID with just listing the valid flags explicitly in the one kernel function that needs it. Move __FSCRYPT_MODE_MAX to fscrypt_private.h, remove the double underscores (which were only present to discourage use by userspace), and add a BUILD_BUG_ON() and comments to (hopefully) ensure it is kept in sync. Keep the old name FS_POLICY_FLAGS_VALID, since it's been around for longer and there's a greater chance that removing it would break source compatibility with some program. Indeed, mtd-utils is using it in an #ifdef, and removing it would introduce compiler warnings (about FS_POLICY_FLAGS_PAD_* being redefined) into the mtd-utils build. However, reduce its value to 0x07 so that it only includes the flags with old names (the ones present before Linux 5.4), and try to make it clear that it's now "frozen" and no new flags should be added to it. Fixes: 2336d0deb2d4 ("fscrypt: use FSCRYPT_ prefix for uapi constants") Cc: <stable@vger.kernel.org> # v5.4+ Link: https://lore.kernel.org/r/20201024005132.495952-1-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-10-24 00:51:31 +00:00
/* Keep this in sync with include/uapi/linux/fscrypt.h */
#define FSCRYPT_MODE_MAX FSCRYPT_MODE_ADIANTUM
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
struct fscrypt_context_v1 {
u8 version; /* FSCRYPT_CONTEXT_V1 */
u8 contents_encryption_mode;
u8 filenames_encryption_mode;
u8 flags;
u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
};
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
struct fscrypt_context_v2 {
u8 version; /* FSCRYPT_CONTEXT_V2 */
u8 contents_encryption_mode;
u8 filenames_encryption_mode;
u8 flags;
u8 __reserved[4];
u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
};
/*
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
* fscrypt_context - the encryption context of an inode
*
* This is the on-disk equivalent of an fscrypt_policy, stored alongside each
* encrypted file usually in a hidden extended attribute. It contains the
* fields from the fscrypt_policy, in order to identify the encryption algorithm
* and key with which the file is encrypted. It also contains a nonce that was
* randomly generated by fscrypt itself; this is used as KDF input or as a tweak
* to cause different files to be encrypted differently.
*/
union fscrypt_context {
u8 version;
struct fscrypt_context_v1 v1;
struct fscrypt_context_v2 v2;
};
/*
* Return the size expected for the given fscrypt_context based on its version
* number, or 0 if the context version is unrecognized.
*/
static inline int fscrypt_context_size(const union fscrypt_context *ctx)
{
switch (ctx->version) {
case FSCRYPT_CONTEXT_V1:
BUILD_BUG_ON(sizeof(ctx->v1) != 28);
return sizeof(ctx->v1);
case FSCRYPT_CONTEXT_V2:
BUILD_BUG_ON(sizeof(ctx->v2) != 40);
return sizeof(ctx->v2);
}
return 0;
}
/* Check whether an fscrypt_context has a recognized version number and size */
static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
int ctx_size)
{
return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
}
/* Retrieve the context's nonce, assuming the context was already validated */
static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
{
switch (ctx->version) {
case FSCRYPT_CONTEXT_V1:
return ctx->v1.nonce;
case FSCRYPT_CONTEXT_V2:
return ctx->v2.nonce;
}
WARN_ON(1);
return NULL;
}
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
union fscrypt_policy {
u8 version;
struct fscrypt_policy_v1 v1;
struct fscrypt_policy_v2 v2;
};
/*
* Return the size expected for the given fscrypt_policy based on its version
* number, or 0 if the policy version is unrecognized.
*/
static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
{
switch (policy->version) {
case FSCRYPT_POLICY_V1:
return sizeof(policy->v1);
case FSCRYPT_POLICY_V2:
return sizeof(policy->v2);
}
return 0;
}
/* Return the contents encryption mode of a valid encryption policy */
static inline u8
fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
{
switch (policy->version) {
case FSCRYPT_POLICY_V1:
return policy->v1.contents_encryption_mode;
case FSCRYPT_POLICY_V2:
return policy->v2.contents_encryption_mode;
}
BUG();
}
/* Return the filenames encryption mode of a valid encryption policy */
static inline u8
fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
{
switch (policy->version) {
case FSCRYPT_POLICY_V1:
return policy->v1.filenames_encryption_mode;
case FSCRYPT_POLICY_V2:
return policy->v2.filenames_encryption_mode;
}
BUG();
}
/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
static inline u8
fscrypt_policy_flags(const union fscrypt_policy *policy)
{
switch (policy->version) {
case FSCRYPT_POLICY_V1:
return policy->v1.flags;
case FSCRYPT_POLICY_V2:
return policy->v2.flags;
}
BUG();
}
/*
* For encrypted symlinks, the ciphertext length is stored at the beginning
* of the string in little-endian format.
*/
struct fscrypt_symlink_data {
__le16 len;
char encrypted_path[1];
} __packed;
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 01:56:05 +00:00
/**
* struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
* @tfm: crypto API transform object
* @blk_key: key for blk-crypto
*
* Normally only one of the fields will be non-NULL.
*/
struct fscrypt_prepared_key {
struct crypto_skcipher *tfm;
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
struct fscrypt_blk_crypto_key *blk_key;
#endif
};
/*
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 13:36:21 +00:00
* fscrypt_info - the "encryption key" for an inode
*
* When an encrypted file's key is made available, an instance of this struct is
* allocated and stored in ->i_crypt_info. Once created, it remains until the
* inode is evicted.
*/
struct fscrypt_info {
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 13:36:21 +00:00
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 01:56:05 +00:00
/* The key in a form prepared for actual encryption/decryption */
struct fscrypt_prepared_key ci_enc_key;
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 13:36:21 +00:00
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 01:56:05 +00:00
/* True if ci_enc_key should be freed when this fscrypt_info is freed */
fscrypt: add support for IV_INO_LBLK_64 policies Inline encryption hardware compliant with the UFS v2.1 standard or with the upcoming version of the eMMC standard has the following properties: (1) Per I/O request, the encryption key is specified by a previously loaded keyslot. There might be only a small number of keyslots. (2) Per I/O request, the starting IV is specified by a 64-bit "data unit number" (DUN). IV bits 64-127 are assumed to be 0. The hardware automatically increments the DUN for each "data unit" of configurable size in the request, e.g. for each filesystem block. Property (1) makes it inefficient to use the traditional fscrypt per-file keys. Property (2) precludes the use of the existing DIRECT_KEY fscrypt policy flag, which needs at least 192 IV bits. Therefore, add a new fscrypt policy flag IV_INO_LBLK_64 which causes the encryption to modified as follows: - The encryption keys are derived from the master key, encryption mode number, and filesystem UUID. - The IVs are chosen as (inode_number << 32) | file_logical_block_num. For filenames encryption, file_logical_block_num is 0. Since the file nonces aren't used in the key derivation, many files may share the same encryption key. This is much more efficient on the target hardware. Including the inode number in the IVs and mixing the filesystem UUID into the keys ensures that data in different files is nevertheless still encrypted differently. Additionally, limiting the inode and block numbers to 32 bits and placing the block number in the low bits maintains compatibility with the 64-bit DUN convention (property (2) above). Since this scheme assumes that inode numbers are stable (which may preclude filesystem shrinking) and that inode and file logical block numbers are at most 32-bit, IV_INO_LBLK_64 will only be allowed on filesystems that meet these constraints. These are acceptable limitations for the cases where this format would actually be used. Note that IV_INO_LBLK_64 is an on-disk format, not an implementation. This patch just adds support for it using the existing filesystem layer encryption. A later patch will add support for inline encryption. Reviewed-by: Paul Crowley <paulcrowley@google.com> Co-developed-by: Satya Tangirala <satyat@google.com> Signed-off-by: Satya Tangirala <satyat@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-10-24 21:54:36 +00:00
bool ci_owns_key;
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 01:56:05 +00:00
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
/*
* True if this inode will use inline encryption (blk-crypto) instead of
* the traditional filesystem-layer encryption.
*/
bool ci_inlinecrypt;
#endif
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 13:36:21 +00:00
/*
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
* Encryption mode used for this inode. It corresponds to either the
* contents or filenames encryption mode, depending on the inode type.
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 13:36:21 +00:00
*/
struct fscrypt_mode *ci_mode;
/* Back-pointer to the inode */
struct inode *ci_inode;
fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_REMOVE_ENCRYPTION_KEY. This ioctl removes an encryption key that was added by FS_IOC_ADD_ENCRYPTION_KEY. It wipes the secret key itself, then "locks" the encrypted files and directories that had been unlocked using that key -- implemented by evicting the relevant dentries and inodes from the VFS caches. The problem this solves is that many fscrypt users want the ability to remove encryption keys, causing the corresponding encrypted directories to appear "locked" (presented in ciphertext form) again. Moreover, users want removing an encryption key to *really* remove it, in the sense that the removed keys cannot be recovered even if kernel memory is compromised, e.g. by the exploit of a kernel security vulnerability or by a physical attack. This is desirable after a user logs out of the system, for example. In many cases users even already assume this to be the case and are surprised to hear when it's not. It is not sufficient to simply unlink the master key from the keyring (or to revoke or invalidate it), since the actual encryption transform objects are still pinned in memory by their inodes. Therefore, to really remove a key we must also evict the relevant inodes. Currently one workaround is to run 'sync && echo 2 > /proc/sys/vm/drop_caches'. But, that evicts all unused inodes in the system rather than just the inodes associated with the key being removed, causing severe performance problems. Moreover, it requires root privileges, so regular users can't "lock" their encrypted files. Another workaround, used in Chromium OS kernels, is to add a new VFS-level ioctl FS_IOC_DROP_CACHE which is a more restricted version of drop_caches that operates on a single super_block. It does: shrink_dcache_sb(sb); invalidate_inodes(sb, false); But it's still a hack. Yet, the major users of filesystem encryption want this feature badly enough that they are actually using these hacks. To properly solve the problem, start maintaining a list of the inodes which have been "unlocked" using each master key. Originally this wasn't possible because the kernel didn't keep track of in-use master keys at all. But, with the ->s_master_keys keyring it is now possible. Then, add an ioctl FS_IOC_REMOVE_ENCRYPTION_KEY. It finds the specified master key in ->s_master_keys, then wipes the secret key itself, which prevents any additional inodes from being unlocked with the key. Then, it syncs the filesystem and evicts the inodes in the key's list. The normal inode eviction code will free and wipe the per-file keys (in ->i_crypt_info). Note that freeing ->i_crypt_info without evicting the inodes was also considered, but would have been racy. Some inodes may still be in use when a master key is removed, and we can't simply revoke random file descriptors, mmap's, etc. Thus, the ioctl simply skips in-use inodes, and returns -EBUSY to indicate that some inodes weren't evicted. The master key *secret* is still removed, but the fscrypt_master_key struct remains to keep track of the remaining inodes. Userspace can then retry the ioctl to evict the remaining inodes. Alternatively, if userspace adds the key again, the refreshed secret will be associated with the existing list of inodes so they remain correctly tracked for future key removals. The ioctl doesn't wipe pagecache pages. Thus, we tolerate that after a kernel compromise some portions of plaintext file contents may still be recoverable from memory. This can be solved by enabling page poisoning system-wide, which security conscious users may choose to do. But it's very difficult to solve otherwise, e.g. note that plaintext file contents may have been read in other places than pagecache pages. Like FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY is initially restricted to privileged users only. This is sufficient for some use cases, but not all. A later patch will relax this restriction, but it will require introducing key hashes, among other changes. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
/*
* The master key with which this inode was unlocked (decrypted). This
* will be NULL if the master key was found in a process-subscribed
* keyring rather than in the filesystem-level keyring.
*/
struct key *ci_master_key;
/*
* Link in list of inodes that were unlocked with the master key.
* Only used when ->ci_master_key is set.
*/
struct list_head ci_master_key_link;
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 13:36:21 +00:00
/*
* If non-NULL, then encryption is done using the master key directly
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 01:56:05 +00:00
* and ci_enc_key will equal ci_direct_key->dk_key.
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 13:36:21 +00:00
*/
struct fscrypt_direct_key *ci_direct_key;
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 13:36:21 +00:00
fscrypt: derive dirhash key for casefolded directories When we allow indexed directories to use both encryption and casefolding, for the dirhash we can't just hash the ciphertext filenames that are stored on-disk (as is done currently) because the dirhash must be case insensitive, but the stored names are case-preserving. Nor can we hash the plaintext names with an unkeyed hash (or a hash keyed with a value stored on-disk like ext4's s_hash_seed), since that would leak information about the names that encryption is meant to protect. Instead, if we can accept a dirhash that's only computable when the fscrypt key is available, we can hash the plaintext names with a keyed hash using a secret key derived from the directory's fscrypt master key. We'll use SipHash-2-4 for this purpose. Prepare for this by deriving a SipHash key for each casefolded encrypted directory. Make sure to handle deriving the key not only when setting up the directory's fscrypt_info, but also in the case where the casefold flag is enabled after the fscrypt_info was already set up. (We could just always derive the key regardless of casefolding, but that would introduce unnecessary overhead for people not using casefolding.) Signed-off-by: Daniel Rosenberg <drosen@google.com> [EB: improved commit message, updated fscrypt.rst, squashed with change that avoids unnecessarily deriving the key, and many other cleanups] Link: https://lore.kernel.org/r/20200120223201.241390-3-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-01-20 22:31:57 +00:00
/*
* This inode's hash key for filenames. This is a 128-bit SipHash-2-4
* key. This is only set for directories that use a keyed dirhash over
* the plaintext filenames -- currently just casefolded directories.
*/
siphash_key_t ci_dirhash_key;
bool ci_dirhash_key_initialized;
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
/* The encryption policy used by this inode */
union fscrypt_policy ci_policy;
/* This inode's nonce, copied from the fscrypt_context */
u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
fscrypt: add support for IV_INO_LBLK_32 policies The eMMC inline crypto standard will only specify 32 DUN bits (a.k.a. IV bits), unlike UFS's 64. IV_INO_LBLK_64 is therefore not applicable, but an encryption format which uses one key per policy and permits the moving of encrypted file contents (as f2fs's garbage collector requires) is still desirable. To support such hardware, add a new encryption format IV_INO_LBLK_32 that makes the best use of the 32 bits: the IV is set to 'SipHash-2-4(inode_number) + file_logical_block_number mod 2^32', where the SipHash key is derived from the fscrypt master key. We hash only the inode number and not also the block number, because we need to maintain contiguity of DUNs to merge bios. Unlike with IV_INO_LBLK_64, with this format IV reuse is possible; this is unavoidable given the size of the DUN. This means this format should only be used where the requirements of the first paragraph apply. However, the hash spreads out the IVs in the whole usable range, and the use of a keyed hash makes it difficult for an attacker to determine which files use which IVs. Besides the above differences, this flag works like IV_INO_LBLK_64 in that on ext4 it is only allowed if the stable_inodes feature has been enabled to prevent inode numbers and the filesystem UUID from changing. Link: https://lore.kernel.org/r/20200515204141.251098-1-ebiggers@kernel.org Reviewed-by: Theodore Ts'o <tytso@mit.edu> Reviewed-by: Paul Crowley <paulcrowley@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-05-15 20:41:41 +00:00
/* Hashed inode number. Only set for IV_INO_LBLK_32 */
u32 ci_hashed_ino;
};
typedef enum {
FS_DECRYPT = 0,
FS_ENCRYPT,
} fscrypt_direction_t;
/* crypto.c */
extern struct kmem_cache *fscrypt_info_cachep;
int fscrypt_initialize(unsigned int cop_flags);
int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
u64 lblk_num, struct page *src_page,
struct page *dest_page, unsigned int len,
unsigned int offs, gfp_t gfp_flags);
struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
void __printf(3, 4) __cold
fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
#define fscrypt_warn(inode, fmt, ...) \
fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
#define fscrypt_err(inode, fmt, ...) \
fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 13:36:21 +00:00
#define FSCRYPT_MAX_IV_SIZE 32
union fscrypt_iv {
struct {
/* logical block number within the file */
__le64 lblk_num;
/* per-file nonce; only set in DIRECT_KEY mode */
u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 13:36:21 +00:00
};
u8 raw[FSCRYPT_MAX_IV_SIZE];
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 01:56:05 +00:00
__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 13:36:21 +00:00
};
void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
const struct fscrypt_info *ci);
fscrypt: new helper functions for ->symlink() Currently, filesystems supporting fscrypt need to implement some tricky logic when creating encrypted symlinks, including handling a peculiar on-disk format (struct fscrypt_symlink_data) and correctly calculating the size of the encrypted symlink. Introduce helper functions to make things a bit easier: - fscrypt_prepare_symlink() computes and validates the size the symlink target will require on-disk. - fscrypt_encrypt_symlink() creates the encrypted target if needed. The new helpers actually fix some subtle bugs. First, when checking whether the symlink target was too long, filesystems didn't account for the fact that the NUL padding is meant to be truncated if it would cause the maximum length to be exceeded, as is done for filenames in directories. Consequently users would receive ENAMETOOLONG when creating symlinks close to what is supposed to be the maximum length. For example, with EXT4 with a 4K block size, the maximum symlink target length in an encrypted directory is supposed to be 4093 bytes (in comparison to 4095 in an unencrypted directory), but in FS_POLICY_FLAGS_PAD_32-mode only up to 4064 bytes were accepted. Second, symlink targets of "." and ".." were not being encrypted, even though they should be, as these names are special in *directory entries* but not in symlink targets. Fortunately, we can fix this simply by starting to encrypt them, as old kernels already accept them in encrypted form. Third, the output string length the filesystems were providing when doing the actual encryption was incorrect, as it was forgotten to exclude 'sizeof(struct fscrypt_symlink_data)'. Fortunately though, this bug didn't make a difference. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-01-05 18:45:01 +00:00
/* fname.c */
int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
u8 *out, unsigned int olen);
fscrypt: handle test_dummy_encryption in more logical way The behavior of the test_dummy_encryption mount option is that when a new file (or directory or symlink) is created in an unencrypted directory, it's automatically encrypted using a dummy encryption policy. That's it; in particular, the encryption (or lack thereof) of existing files (or directories or symlinks) doesn't change. Unfortunately the implementation of test_dummy_encryption is a bit weird and confusing. When test_dummy_encryption is enabled and a file is being created in an unencrypted directory, we set up an encryption key (->i_crypt_info) for the directory. This isn't actually used to do any encryption, however, since the directory is still unencrypted! Instead, ->i_crypt_info is only used for inheriting the encryption policy. One consequence of this is that the filesystem ends up providing a "dummy context" (policy + nonce) instead of a "dummy policy". In commit ed318a6cc0b6 ("fscrypt: support test_dummy_encryption=v2"), I mistakenly thought this was required. However, actually the nonce only ends up being used to derive a key that is never used. Another consequence of this implementation is that it allows for 'inode->i_crypt_info != NULL && !IS_ENCRYPTED(inode)', which is an edge case that can be forgotten about. For example, currently FS_IOC_GET_ENCRYPTION_POLICY on an unencrypted directory may return the dummy encryption policy when the filesystem is mounted with test_dummy_encryption. That seems like the wrong thing to do, since again, the directory itself is not actually encrypted. Therefore, switch to a more logical and maintainable implementation where the dummy encryption policy inheritance is done without setting up keys for unencrypted directories. This involves: - Adding a function fscrypt_policy_to_inherit() which returns the encryption policy to inherit from a directory. This can be a real policy, a dummy policy, or no policy. - Replacing struct fscrypt_dummy_context, ->get_dummy_context(), etc. with struct fscrypt_dummy_policy, ->get_dummy_policy(), etc. - Making fscrypt_fname_encrypted_size() take an fscrypt_policy instead of an inode. Acked-by: Jaegeuk Kim <jaegeuk@kernel.org> Acked-by: Jeff Layton <jlayton@kernel.org> Link: https://lore.kernel.org/r/20200917041136.178600-13-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-09-17 04:11:35 +00:00
bool fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
u32 orig_len, u32 max_len,
u32 *encrypted_len_ret);
fscrypt: new helper functions for ->symlink() Currently, filesystems supporting fscrypt need to implement some tricky logic when creating encrypted symlinks, including handling a peculiar on-disk format (struct fscrypt_symlink_data) and correctly calculating the size of the encrypted symlink. Introduce helper functions to make things a bit easier: - fscrypt_prepare_symlink() computes and validates the size the symlink target will require on-disk. - fscrypt_encrypt_symlink() creates the encrypted target if needed. The new helpers actually fix some subtle bugs. First, when checking whether the symlink target was too long, filesystems didn't account for the fact that the NUL padding is meant to be truncated if it would cause the maximum length to be exceeded, as is done for filenames in directories. Consequently users would receive ENAMETOOLONG when creating symlinks close to what is supposed to be the maximum length. For example, with EXT4 with a 4K block size, the maximum symlink target length in an encrypted directory is supposed to be 4093 bytes (in comparison to 4095 in an unencrypted directory), but in FS_POLICY_FLAGS_PAD_32-mode only up to 4064 bytes were accepted. Second, symlink targets of "." and ".." were not being encrypted, even though they should be, as these names are special in *directory entries* but not in symlink targets. Fortunately, we can fix this simply by starting to encrypt them, as old kernels already accept them in encrypted form. Third, the output string length the filesystems were providing when doing the actual encryption was incorrect, as it was forgotten to exclude 'sizeof(struct fscrypt_symlink_data)'. Fortunately though, this bug didn't make a difference. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-01-05 18:45:01 +00:00
fscrypt: add an HKDF-SHA512 implementation Add an implementation of HKDF (RFC 5869) to fscrypt, for the purpose of deriving additional key material from the fscrypt master keys for v2 encryption policies. HKDF is a key derivation function built on top of HMAC. We choose SHA-512 for the underlying unkeyed hash, and use an "hmac(sha512)" transform allocated from the crypto API. We'll be using this to replace the AES-ECB based KDF currently used to derive the per-file encryption keys. While the AES-ECB based KDF is believed to meet the original security requirements, it is nonstandard and has problems that don't exist in modern KDFs such as HKDF: 1. It's reversible. Given a derived key and nonce, an attacker can easily compute the master key. This is okay if the master key and derived keys are equally hard to compromise, but now we'd like to be more robust against threats such as a derived key being compromised through a timing attack, or a derived key for an in-use file being compromised after the master key has already been removed. 2. It doesn't evenly distribute the entropy from the master key; each 16 input bytes only affects the corresponding 16 output bytes. 3. It isn't easily extensible to deriving other values or keys, such as a public hash for securely identifying the key, or per-mode keys. Per-mode keys will be immediately useful for Adiantum encryption, for which fscrypt currently uses the master key directly, introducing unnecessary usage constraints. Per-mode keys will also be useful for hardware inline encryption, which is currently being worked on. HKDF solves all the above problems. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
/* hkdf.c */
struct fscrypt_hkdf {
struct crypto_shash *hmac_tfm;
};
int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
unsigned int master_key_size);
fscrypt: add an HKDF-SHA512 implementation Add an implementation of HKDF (RFC 5869) to fscrypt, for the purpose of deriving additional key material from the fscrypt master keys for v2 encryption policies. HKDF is a key derivation function built on top of HMAC. We choose SHA-512 for the underlying unkeyed hash, and use an "hmac(sha512)" transform allocated from the crypto API. We'll be using this to replace the AES-ECB based KDF currently used to derive the per-file encryption keys. While the AES-ECB based KDF is believed to meet the original security requirements, it is nonstandard and has problems that don't exist in modern KDFs such as HKDF: 1. It's reversible. Given a derived key and nonce, an attacker can easily compute the master key. This is okay if the master key and derived keys are equally hard to compromise, but now we'd like to be more robust against threats such as a derived key being compromised through a timing attack, or a derived key for an in-use file being compromised after the master key has already been removed. 2. It doesn't evenly distribute the entropy from the master key; each 16 input bytes only affects the corresponding 16 output bytes. 3. It isn't easily extensible to deriving other values or keys, such as a public hash for securely identifying the key, or per-mode keys. Per-mode keys will be immediately useful for Adiantum encryption, for which fscrypt currently uses the master key directly, introducing unnecessary usage constraints. Per-mode keys will also be useful for hardware inline encryption, which is currently being worked on. HKDF solves all the above problems. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
/*
* The list of contexts in which fscrypt uses HKDF. These values are used as
* the first byte of the HKDF application-specific info string to guarantee that
* info strings are never repeated between contexts. This ensures that all HKDF
* outputs are unique and cryptographically isolated, i.e. knowledge of one
* output doesn't reveal another.
*/
#define HKDF_CONTEXT_KEY_IDENTIFIER 1 /* info=<empty> */
#define HKDF_CONTEXT_PER_FILE_ENC_KEY 2 /* info=file_nonce */
#define HKDF_CONTEXT_DIRECT_KEY 3 /* info=mode_num */
#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4 /* info=mode_num||fs_uuid */
#define HKDF_CONTEXT_DIRHASH_KEY 5 /* info=file_nonce */
#define HKDF_CONTEXT_IV_INO_LBLK_32_KEY 6 /* info=mode_num||fs_uuid */
#define HKDF_CONTEXT_INODE_HASH_KEY 7 /* info=<empty> */
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
const u8 *info, unsigned int infolen,
u8 *okm, unsigned int okmlen);
fscrypt: add an HKDF-SHA512 implementation Add an implementation of HKDF (RFC 5869) to fscrypt, for the purpose of deriving additional key material from the fscrypt master keys for v2 encryption policies. HKDF is a key derivation function built on top of HMAC. We choose SHA-512 for the underlying unkeyed hash, and use an "hmac(sha512)" transform allocated from the crypto API. We'll be using this to replace the AES-ECB based KDF currently used to derive the per-file encryption keys. While the AES-ECB based KDF is believed to meet the original security requirements, it is nonstandard and has problems that don't exist in modern KDFs such as HKDF: 1. It's reversible. Given a derived key and nonce, an attacker can easily compute the master key. This is okay if the master key and derived keys are equally hard to compromise, but now we'd like to be more robust against threats such as a derived key being compromised through a timing attack, or a derived key for an in-use file being compromised after the master key has already been removed. 2. It doesn't evenly distribute the entropy from the master key; each 16 input bytes only affects the corresponding 16 output bytes. 3. It isn't easily extensible to deriving other values or keys, such as a public hash for securely identifying the key, or per-mode keys. Per-mode keys will be immediately useful for Adiantum encryption, for which fscrypt currently uses the master key directly, introducing unnecessary usage constraints. Per-mode keys will also be useful for hardware inline encryption, which is currently being worked on. HKDF solves all the above problems. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
fscrypt: add an HKDF-SHA512 implementation Add an implementation of HKDF (RFC 5869) to fscrypt, for the purpose of deriving additional key material from the fscrypt master keys for v2 encryption policies. HKDF is a key derivation function built on top of HMAC. We choose SHA-512 for the underlying unkeyed hash, and use an "hmac(sha512)" transform allocated from the crypto API. We'll be using this to replace the AES-ECB based KDF currently used to derive the per-file encryption keys. While the AES-ECB based KDF is believed to meet the original security requirements, it is nonstandard and has problems that don't exist in modern KDFs such as HKDF: 1. It's reversible. Given a derived key and nonce, an attacker can easily compute the master key. This is okay if the master key and derived keys are equally hard to compromise, but now we'd like to be more robust against threats such as a derived key being compromised through a timing attack, or a derived key for an in-use file being compromised after the master key has already been removed. 2. It doesn't evenly distribute the entropy from the master key; each 16 input bytes only affects the corresponding 16 output bytes. 3. It isn't easily extensible to deriving other values or keys, such as a public hash for securely identifying the key, or per-mode keys. Per-mode keys will be immediately useful for Adiantum encryption, for which fscrypt currently uses the master key directly, introducing unnecessary usage constraints. Per-mode keys will also be useful for hardware inline encryption, which is currently being worked on. HKDF solves all the above problems. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 01:56:05 +00:00
/* inline_crypt.c */
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
int fscrypt_select_encryption_impl(struct fscrypt_info *ci);
static inline bool
fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
{
return ci->ci_inlinecrypt;
}
int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
const u8 *raw_key,
const struct fscrypt_info *ci);
void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key);
/*
* Check whether the crypto transform or blk-crypto key has been allocated in
* @prep_key, depending on which encryption implementation the file will use.
*/
static inline bool
fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
const struct fscrypt_info *ci)
{
/*
* The two smp_load_acquire()'s here pair with the smp_store_release()'s
* in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
* I.e., in some cases (namely, if this prep_key is a per-mode
* encryption key) another task can publish blk_key or tfm concurrently,
* executing a RELEASE barrier. We need to use smp_load_acquire() here
* to safely ACQUIRE the memory the other task published.
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 01:56:05 +00:00
*/
if (fscrypt_using_inline_encryption(ci))
return smp_load_acquire(&prep_key->blk_key) != NULL;
return smp_load_acquire(&prep_key->tfm) != NULL;
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 01:56:05 +00:00
}
#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
{
return 0;
}
static inline bool
fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
{
return false;
}
static inline int
fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
const u8 *raw_key,
const struct fscrypt_info *ci)
{
WARN_ON(1);
return -EOPNOTSUPP;
}
static inline void
fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
{
}
static inline bool
fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
const struct fscrypt_info *ci)
{
return smp_load_acquire(&prep_key->tfm) != NULL;
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 01:56:05 +00:00
}
#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
/* keyring.c */
/*
* fscrypt_master_key_secret - secret key material of an in-use master key
*/
struct fscrypt_master_key_secret {
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
/*
* For v2 policy keys: HKDF context keyed by this master key.
* For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
*/
struct fscrypt_hkdf hkdf;
/* Size of the raw key in bytes. Set even if ->raw isn't set. */
fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
u32 size;
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
/* For v1 policy keys: the raw key. Wiped for v2 policy keys. */
fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
u8 raw[FSCRYPT_MAX_KEY_SIZE];
} __randomize_layout;
/*
* fscrypt_master_key - an in-use master key
*
* This represents a master encryption key which has been added to the
* filesystem and can be used to "unlock" the encrypted files which were
* encrypted with it.
*/
struct fscrypt_master_key {
fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_REMOVE_ENCRYPTION_KEY. This ioctl removes an encryption key that was added by FS_IOC_ADD_ENCRYPTION_KEY. It wipes the secret key itself, then "locks" the encrypted files and directories that had been unlocked using that key -- implemented by evicting the relevant dentries and inodes from the VFS caches. The problem this solves is that many fscrypt users want the ability to remove encryption keys, causing the corresponding encrypted directories to appear "locked" (presented in ciphertext form) again. Moreover, users want removing an encryption key to *really* remove it, in the sense that the removed keys cannot be recovered even if kernel memory is compromised, e.g. by the exploit of a kernel security vulnerability or by a physical attack. This is desirable after a user logs out of the system, for example. In many cases users even already assume this to be the case and are surprised to hear when it's not. It is not sufficient to simply unlink the master key from the keyring (or to revoke or invalidate it), since the actual encryption transform objects are still pinned in memory by their inodes. Therefore, to really remove a key we must also evict the relevant inodes. Currently one workaround is to run 'sync && echo 2 > /proc/sys/vm/drop_caches'. But, that evicts all unused inodes in the system rather than just the inodes associated with the key being removed, causing severe performance problems. Moreover, it requires root privileges, so regular users can't "lock" their encrypted files. Another workaround, used in Chromium OS kernels, is to add a new VFS-level ioctl FS_IOC_DROP_CACHE which is a more restricted version of drop_caches that operates on a single super_block. It does: shrink_dcache_sb(sb); invalidate_inodes(sb, false); But it's still a hack. Yet, the major users of filesystem encryption want this feature badly enough that they are actually using these hacks. To properly solve the problem, start maintaining a list of the inodes which have been "unlocked" using each master key. Originally this wasn't possible because the kernel didn't keep track of in-use master keys at all. But, with the ->s_master_keys keyring it is now possible. Then, add an ioctl FS_IOC_REMOVE_ENCRYPTION_KEY. It finds the specified master key in ->s_master_keys, then wipes the secret key itself, which prevents any additional inodes from being unlocked with the key. Then, it syncs the filesystem and evicts the inodes in the key's list. The normal inode eviction code will free and wipe the per-file keys (in ->i_crypt_info). Note that freeing ->i_crypt_info without evicting the inodes was also considered, but would have been racy. Some inodes may still be in use when a master key is removed, and we can't simply revoke random file descriptors, mmap's, etc. Thus, the ioctl simply skips in-use inodes, and returns -EBUSY to indicate that some inodes weren't evicted. The master key *secret* is still removed, but the fscrypt_master_key struct remains to keep track of the remaining inodes. Userspace can then retry the ioctl to evict the remaining inodes. Alternatively, if userspace adds the key again, the refreshed secret will be associated with the existing list of inodes so they remain correctly tracked for future key removals. The ioctl doesn't wipe pagecache pages. Thus, we tolerate that after a kernel compromise some portions of plaintext file contents may still be recoverable from memory. This can be solved by enabling page poisoning system-wide, which security conscious users may choose to do. But it's very difficult to solve otherwise, e.g. note that plaintext file contents may have been read in other places than pagecache pages. Like FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY is initially restricted to privileged users only. This is sufficient for some use cases, but not all. A later patch will relax this restriction, but it will require introducing key hashes, among other changes. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
/*
* The secret key material. After FS_IOC_REMOVE_ENCRYPTION_KEY is
* executed, this is wiped and no new inodes can be unlocked with this
* key; however, there may still be inodes in ->mk_decrypted_inodes
* which could not be evicted. As long as some inodes still remain,
* FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
* FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
*
* Locking: protected by this master key's key->sem.
fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_REMOVE_ENCRYPTION_KEY. This ioctl removes an encryption key that was added by FS_IOC_ADD_ENCRYPTION_KEY. It wipes the secret key itself, then "locks" the encrypted files and directories that had been unlocked using that key -- implemented by evicting the relevant dentries and inodes from the VFS caches. The problem this solves is that many fscrypt users want the ability to remove encryption keys, causing the corresponding encrypted directories to appear "locked" (presented in ciphertext form) again. Moreover, users want removing an encryption key to *really* remove it, in the sense that the removed keys cannot be recovered even if kernel memory is compromised, e.g. by the exploit of a kernel security vulnerability or by a physical attack. This is desirable after a user logs out of the system, for example. In many cases users even already assume this to be the case and are surprised to hear when it's not. It is not sufficient to simply unlink the master key from the keyring (or to revoke or invalidate it), since the actual encryption transform objects are still pinned in memory by their inodes. Therefore, to really remove a key we must also evict the relevant inodes. Currently one workaround is to run 'sync && echo 2 > /proc/sys/vm/drop_caches'. But, that evicts all unused inodes in the system rather than just the inodes associated with the key being removed, causing severe performance problems. Moreover, it requires root privileges, so regular users can't "lock" their encrypted files. Another workaround, used in Chromium OS kernels, is to add a new VFS-level ioctl FS_IOC_DROP_CACHE which is a more restricted version of drop_caches that operates on a single super_block. It does: shrink_dcache_sb(sb); invalidate_inodes(sb, false); But it's still a hack. Yet, the major users of filesystem encryption want this feature badly enough that they are actually using these hacks. To properly solve the problem, start maintaining a list of the inodes which have been "unlocked" using each master key. Originally this wasn't possible because the kernel didn't keep track of in-use master keys at all. But, with the ->s_master_keys keyring it is now possible. Then, add an ioctl FS_IOC_REMOVE_ENCRYPTION_KEY. It finds the specified master key in ->s_master_keys, then wipes the secret key itself, which prevents any additional inodes from being unlocked with the key. Then, it syncs the filesystem and evicts the inodes in the key's list. The normal inode eviction code will free and wipe the per-file keys (in ->i_crypt_info). Note that freeing ->i_crypt_info without evicting the inodes was also considered, but would have been racy. Some inodes may still be in use when a master key is removed, and we can't simply revoke random file descriptors, mmap's, etc. Thus, the ioctl simply skips in-use inodes, and returns -EBUSY to indicate that some inodes weren't evicted. The master key *secret* is still removed, but the fscrypt_master_key struct remains to keep track of the remaining inodes. Userspace can then retry the ioctl to evict the remaining inodes. Alternatively, if userspace adds the key again, the refreshed secret will be associated with the existing list of inodes so they remain correctly tracked for future key removals. The ioctl doesn't wipe pagecache pages. Thus, we tolerate that after a kernel compromise some portions of plaintext file contents may still be recoverable from memory. This can be solved by enabling page poisoning system-wide, which security conscious users may choose to do. But it's very difficult to solve otherwise, e.g. note that plaintext file contents may have been read in other places than pagecache pages. Like FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY is initially restricted to privileged users only. This is sufficient for some use cases, but not all. A later patch will relax this restriction, but it will require introducing key hashes, among other changes. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
*/
fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
struct fscrypt_master_key_secret mk_secret;
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
/*
* For v1 policy keys: an arbitrary key descriptor which was assigned by
* userspace (->descriptor).
*
* For v2 policy keys: a cryptographic hash of this key (->identifier).
*/
fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
struct fscrypt_key_specifier mk_spec;
fscrypt: allow unprivileged users to add/remove keys for v2 policies Allow the FS_IOC_ADD_ENCRYPTION_KEY and FS_IOC_REMOVE_ENCRYPTION_KEY ioctls to be used by non-root users to add and remove encryption keys from the filesystem-level crypto keyrings, subject to limitations. Motivation: while privileged fscrypt key management is sufficient for some users (e.g. Android and Chromium OS, where a privileged process manages all keys), the old API by design also allows non-root users to set up and use encrypted directories, and we don't want to regress on that. Especially, we don't want to force users to continue using the old API, running into the visibility mismatch between files and keyrings and being unable to "lock" encrypted directories. Intuitively, the ioctls have to be privileged since they manipulate filesystem-level state. However, it's actually safe to make them unprivileged if we very carefully enforce some specific limitations. First, each key must be identified by a cryptographic hash so that a user can't add the wrong key for another user's files. For v2 encryption policies, we use the key_identifier for this. v1 policies don't have this, so managing keys for them remains privileged. Second, each key a user adds is charged to their quota for the keyrings service. Thus, a user can't exhaust memory by adding a huge number of keys. By default each non-root user is allowed up to 200 keys; this can be changed using the existing sysctl 'kernel.keys.maxkeys'. Third, if multiple users add the same key, we keep track of those users of the key (of which there remains a single copy), and won't really remove the key, i.e. "lock" the encrypted files, until all those users have removed it. This prevents denial of service attacks that would be possible under simpler schemes, such allowing the first user who added a key to remove it -- since that could be a malicious user who has compromised the key. Of course, encryption keys should be kept secret, but the idea is that using encryption should never be *less* secure than not using encryption, even if your key was compromised. We tolerate that a user will be unable to really remove a key, i.e. unable to "lock" their encrypted files, if another user has added the same key. But in a sense, this is actually a good thing because it will avoid providing a false notion of security where a key appears to have been removed when actually it's still in memory, available to any attacker who compromises the operating system kernel. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
/*
* Keyring which contains a key of type 'key_type_fscrypt_user' for each
* user who has added this key. Normally each key will be added by just
* one user, but it's possible that multiple users share a key, and in
* that case we need to keep track of those users so that one user can't
* remove the key before the others want it removed too.
*
* This is NULL for v1 policy keys; those can only be added by root.
*
* Locking: in addition to this keyring's own semaphore, this is
* protected by this master key's key->sem, so we can do atomic
fscrypt: allow unprivileged users to add/remove keys for v2 policies Allow the FS_IOC_ADD_ENCRYPTION_KEY and FS_IOC_REMOVE_ENCRYPTION_KEY ioctls to be used by non-root users to add and remove encryption keys from the filesystem-level crypto keyrings, subject to limitations. Motivation: while privileged fscrypt key management is sufficient for some users (e.g. Android and Chromium OS, where a privileged process manages all keys), the old API by design also allows non-root users to set up and use encrypted directories, and we don't want to regress on that. Especially, we don't want to force users to continue using the old API, running into the visibility mismatch between files and keyrings and being unable to "lock" encrypted directories. Intuitively, the ioctls have to be privileged since they manipulate filesystem-level state. However, it's actually safe to make them unprivileged if we very carefully enforce some specific limitations. First, each key must be identified by a cryptographic hash so that a user can't add the wrong key for another user's files. For v2 encryption policies, we use the key_identifier for this. v1 policies don't have this, so managing keys for them remains privileged. Second, each key a user adds is charged to their quota for the keyrings service. Thus, a user can't exhaust memory by adding a huge number of keys. By default each non-root user is allowed up to 200 keys; this can be changed using the existing sysctl 'kernel.keys.maxkeys'. Third, if multiple users add the same key, we keep track of those users of the key (of which there remains a single copy), and won't really remove the key, i.e. "lock" the encrypted files, until all those users have removed it. This prevents denial of service attacks that would be possible under simpler schemes, such allowing the first user who added a key to remove it -- since that could be a malicious user who has compromised the key. Of course, encryption keys should be kept secret, but the idea is that using encryption should never be *less* secure than not using encryption, even if your key was compromised. We tolerate that a user will be unable to really remove a key, i.e. unable to "lock" their encrypted files, if another user has added the same key. But in a sense, this is actually a good thing because it will avoid providing a false notion of security where a key appears to have been removed when actually it's still in memory, available to any attacker who compromises the operating system kernel. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
* search+insert. It can also be searched without taking any locks, but
* in that case the returned key may have already been removed.
*/
struct key *mk_users;
fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_REMOVE_ENCRYPTION_KEY. This ioctl removes an encryption key that was added by FS_IOC_ADD_ENCRYPTION_KEY. It wipes the secret key itself, then "locks" the encrypted files and directories that had been unlocked using that key -- implemented by evicting the relevant dentries and inodes from the VFS caches. The problem this solves is that many fscrypt users want the ability to remove encryption keys, causing the corresponding encrypted directories to appear "locked" (presented in ciphertext form) again. Moreover, users want removing an encryption key to *really* remove it, in the sense that the removed keys cannot be recovered even if kernel memory is compromised, e.g. by the exploit of a kernel security vulnerability or by a physical attack. This is desirable after a user logs out of the system, for example. In many cases users even already assume this to be the case and are surprised to hear when it's not. It is not sufficient to simply unlink the master key from the keyring (or to revoke or invalidate it), since the actual encryption transform objects are still pinned in memory by their inodes. Therefore, to really remove a key we must also evict the relevant inodes. Currently one workaround is to run 'sync && echo 2 > /proc/sys/vm/drop_caches'. But, that evicts all unused inodes in the system rather than just the inodes associated with the key being removed, causing severe performance problems. Moreover, it requires root privileges, so regular users can't "lock" their encrypted files. Another workaround, used in Chromium OS kernels, is to add a new VFS-level ioctl FS_IOC_DROP_CACHE which is a more restricted version of drop_caches that operates on a single super_block. It does: shrink_dcache_sb(sb); invalidate_inodes(sb, false); But it's still a hack. Yet, the major users of filesystem encryption want this feature badly enough that they are actually using these hacks. To properly solve the problem, start maintaining a list of the inodes which have been "unlocked" using each master key. Originally this wasn't possible because the kernel didn't keep track of in-use master keys at all. But, with the ->s_master_keys keyring it is now possible. Then, add an ioctl FS_IOC_REMOVE_ENCRYPTION_KEY. It finds the specified master key in ->s_master_keys, then wipes the secret key itself, which prevents any additional inodes from being unlocked with the key. Then, it syncs the filesystem and evicts the inodes in the key's list. The normal inode eviction code will free and wipe the per-file keys (in ->i_crypt_info). Note that freeing ->i_crypt_info without evicting the inodes was also considered, but would have been racy. Some inodes may still be in use when a master key is removed, and we can't simply revoke random file descriptors, mmap's, etc. Thus, the ioctl simply skips in-use inodes, and returns -EBUSY to indicate that some inodes weren't evicted. The master key *secret* is still removed, but the fscrypt_master_key struct remains to keep track of the remaining inodes. Userspace can then retry the ioctl to evict the remaining inodes. Alternatively, if userspace adds the key again, the refreshed secret will be associated with the existing list of inodes so they remain correctly tracked for future key removals. The ioctl doesn't wipe pagecache pages. Thus, we tolerate that after a kernel compromise some portions of plaintext file contents may still be recoverable from memory. This can be solved by enabling page poisoning system-wide, which security conscious users may choose to do. But it's very difficult to solve otherwise, e.g. note that plaintext file contents may have been read in other places than pagecache pages. Like FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY is initially restricted to privileged users only. This is sufficient for some use cases, but not all. A later patch will relax this restriction, but it will require introducing key hashes, among other changes. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
/*
* Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
* Once this goes to 0, the master key is removed from ->s_master_keys.
* The 'struct fscrypt_master_key' will continue to live as long as the
* 'struct key' whose payload it is, but we won't let this reference
* count rise again.
*/
refcount_t mk_refcount;
/*
* List of inodes that were unlocked using this key. This allows the
* inodes to be evicted efficiently if the key is removed.
*/
struct list_head mk_decrypted_inodes;
spinlock_t mk_decrypted_inodes_lock;
fscrypt: add support for IV_INO_LBLK_64 policies Inline encryption hardware compliant with the UFS v2.1 standard or with the upcoming version of the eMMC standard has the following properties: (1) Per I/O request, the encryption key is specified by a previously loaded keyslot. There might be only a small number of keyslots. (2) Per I/O request, the starting IV is specified by a 64-bit "data unit number" (DUN). IV bits 64-127 are assumed to be 0. The hardware automatically increments the DUN for each "data unit" of configurable size in the request, e.g. for each filesystem block. Property (1) makes it inefficient to use the traditional fscrypt per-file keys. Property (2) precludes the use of the existing DIRECT_KEY fscrypt policy flag, which needs at least 192 IV bits. Therefore, add a new fscrypt policy flag IV_INO_LBLK_64 which causes the encryption to modified as follows: - The encryption keys are derived from the master key, encryption mode number, and filesystem UUID. - The IVs are chosen as (inode_number << 32) | file_logical_block_num. For filenames encryption, file_logical_block_num is 0. Since the file nonces aren't used in the key derivation, many files may share the same encryption key. This is much more efficient on the target hardware. Including the inode number in the IVs and mixing the filesystem UUID into the keys ensures that data in different files is nevertheless still encrypted differently. Additionally, limiting the inode and block numbers to 32 bits and placing the block number in the low bits maintains compatibility with the 64-bit DUN convention (property (2) above). Since this scheme assumes that inode numbers are stable (which may preclude filesystem shrinking) and that inode and file logical block numbers are at most 32-bit, IV_INO_LBLK_64 will only be allowed on filesystems that meet these constraints. These are acceptable limitations for the cases where this format would actually be used. Note that IV_INO_LBLK_64 is an on-disk format, not an implementation. This patch just adds support for it using the existing filesystem layer encryption. A later patch will add support for inline encryption. Reviewed-by: Paul Crowley <paulcrowley@google.com> Co-developed-by: Satya Tangirala <satyat@google.com> Signed-off-by: Satya Tangirala <satyat@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-10-24 21:54:36 +00:00
/*
fscrypt: add support for IV_INO_LBLK_32 policies The eMMC inline crypto standard will only specify 32 DUN bits (a.k.a. IV bits), unlike UFS's 64. IV_INO_LBLK_64 is therefore not applicable, but an encryption format which uses one key per policy and permits the moving of encrypted file contents (as f2fs's garbage collector requires) is still desirable. To support such hardware, add a new encryption format IV_INO_LBLK_32 that makes the best use of the 32 bits: the IV is set to 'SipHash-2-4(inode_number) + file_logical_block_number mod 2^32', where the SipHash key is derived from the fscrypt master key. We hash only the inode number and not also the block number, because we need to maintain contiguity of DUNs to merge bios. Unlike with IV_INO_LBLK_64, with this format IV reuse is possible; this is unavoidable given the size of the DUN. This means this format should only be used where the requirements of the first paragraph apply. However, the hash spreads out the IVs in the whole usable range, and the use of a keyed hash makes it difficult for an attacker to determine which files use which IVs. Besides the above differences, this flag works like IV_INO_LBLK_64 in that on ext4 it is only allowed if the stable_inodes feature has been enabled to prevent inode numbers and the filesystem UUID from changing. Link: https://lore.kernel.org/r/20200515204141.251098-1-ebiggers@kernel.org Reviewed-by: Theodore Ts'o <tytso@mit.edu> Reviewed-by: Paul Crowley <paulcrowley@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-05-15 20:41:41 +00:00
* Per-mode encryption keys for the various types of encryption policies
* that use them. Allocated and derived on-demand.
fscrypt: add support for IV_INO_LBLK_64 policies Inline encryption hardware compliant with the UFS v2.1 standard or with the upcoming version of the eMMC standard has the following properties: (1) Per I/O request, the encryption key is specified by a previously loaded keyslot. There might be only a small number of keyslots. (2) Per I/O request, the starting IV is specified by a 64-bit "data unit number" (DUN). IV bits 64-127 are assumed to be 0. The hardware automatically increments the DUN for each "data unit" of configurable size in the request, e.g. for each filesystem block. Property (1) makes it inefficient to use the traditional fscrypt per-file keys. Property (2) precludes the use of the existing DIRECT_KEY fscrypt policy flag, which needs at least 192 IV bits. Therefore, add a new fscrypt policy flag IV_INO_LBLK_64 which causes the encryption to modified as follows: - The encryption keys are derived from the master key, encryption mode number, and filesystem UUID. - The IVs are chosen as (inode_number << 32) | file_logical_block_num. For filenames encryption, file_logical_block_num is 0. Since the file nonces aren't used in the key derivation, many files may share the same encryption key. This is much more efficient on the target hardware. Including the inode number in the IVs and mixing the filesystem UUID into the keys ensures that data in different files is nevertheless still encrypted differently. Additionally, limiting the inode and block numbers to 32 bits and placing the block number in the low bits maintains compatibility with the 64-bit DUN convention (property (2) above). Since this scheme assumes that inode numbers are stable (which may preclude filesystem shrinking) and that inode and file logical block numbers are at most 32-bit, IV_INO_LBLK_64 will only be allowed on filesystems that meet these constraints. These are acceptable limitations for the cases where this format would actually be used. Note that IV_INO_LBLK_64 is an on-disk format, not an implementation. This patch just adds support for it using the existing filesystem layer encryption. A later patch will add support for inline encryption. Reviewed-by: Paul Crowley <paulcrowley@google.com> Co-developed-by: Satya Tangirala <satyat@google.com> Signed-off-by: Satya Tangirala <satyat@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-10-24 21:54:36 +00:00
*/
fscrypt: remove kernel-internal constants from UAPI header There isn't really any valid reason to use __FSCRYPT_MODE_MAX or FSCRYPT_POLICY_FLAGS_VALID in a userspace program. These constants are only meant to be used by the kernel internally, and they are defined in the UAPI header next to the mode numbers and flags only so that kernel developers don't forget to update them when adding new modes or flags. In https://lkml.kernel.org/r/20201005074133.1958633-2-satyat@google.com there was an example of someone wanting to use __FSCRYPT_MODE_MAX in a user program, and it was wrong because the program would have broken if __FSCRYPT_MODE_MAX were ever increased. So having this definition available is harmful. FSCRYPT_POLICY_FLAGS_VALID has the same problem. So, remove these definitions from the UAPI header. Replace FSCRYPT_POLICY_FLAGS_VALID with just listing the valid flags explicitly in the one kernel function that needs it. Move __FSCRYPT_MODE_MAX to fscrypt_private.h, remove the double underscores (which were only present to discourage use by userspace), and add a BUILD_BUG_ON() and comments to (hopefully) ensure it is kept in sync. Keep the old name FS_POLICY_FLAGS_VALID, since it's been around for longer and there's a greater chance that removing it would break source compatibility with some program. Indeed, mtd-utils is using it in an #ifdef, and removing it would introduce compiler warnings (about FS_POLICY_FLAGS_PAD_* being redefined) into the mtd-utils build. However, reduce its value to 0x07 so that it only includes the flags with old names (the ones present before Linux 5.4), and try to make it clear that it's now "frozen" and no new flags should be added to it. Fixes: 2336d0deb2d4 ("fscrypt: use FSCRYPT_ prefix for uapi constants") Cc: <stable@vger.kernel.org> # v5.4+ Link: https://lore.kernel.org/r/20201024005132.495952-1-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-10-24 00:51:31 +00:00
struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1];
struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1];
struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1];
fscrypt: add support for IV_INO_LBLK_32 policies The eMMC inline crypto standard will only specify 32 DUN bits (a.k.a. IV bits), unlike UFS's 64. IV_INO_LBLK_64 is therefore not applicable, but an encryption format which uses one key per policy and permits the moving of encrypted file contents (as f2fs's garbage collector requires) is still desirable. To support such hardware, add a new encryption format IV_INO_LBLK_32 that makes the best use of the 32 bits: the IV is set to 'SipHash-2-4(inode_number) + file_logical_block_number mod 2^32', where the SipHash key is derived from the fscrypt master key. We hash only the inode number and not also the block number, because we need to maintain contiguity of DUNs to merge bios. Unlike with IV_INO_LBLK_64, with this format IV reuse is possible; this is unavoidable given the size of the DUN. This means this format should only be used where the requirements of the first paragraph apply. However, the hash spreads out the IVs in the whole usable range, and the use of a keyed hash makes it difficult for an attacker to determine which files use which IVs. Besides the above differences, this flag works like IV_INO_LBLK_64 in that on ext4 it is only allowed if the stable_inodes feature has been enabled to prevent inode numbers and the filesystem UUID from changing. Link: https://lore.kernel.org/r/20200515204141.251098-1-ebiggers@kernel.org Reviewed-by: Theodore Ts'o <tytso@mit.edu> Reviewed-by: Paul Crowley <paulcrowley@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-05-15 20:41:41 +00:00
/* Hash key for inode numbers. Initialized only when needed. */
siphash_key_t mk_ino_hash_key;
bool mk_ino_hash_key_initialized;
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
} __randomize_layout;
fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_REMOVE_ENCRYPTION_KEY. This ioctl removes an encryption key that was added by FS_IOC_ADD_ENCRYPTION_KEY. It wipes the secret key itself, then "locks" the encrypted files and directories that had been unlocked using that key -- implemented by evicting the relevant dentries and inodes from the VFS caches. The problem this solves is that many fscrypt users want the ability to remove encryption keys, causing the corresponding encrypted directories to appear "locked" (presented in ciphertext form) again. Moreover, users want removing an encryption key to *really* remove it, in the sense that the removed keys cannot be recovered even if kernel memory is compromised, e.g. by the exploit of a kernel security vulnerability or by a physical attack. This is desirable after a user logs out of the system, for example. In many cases users even already assume this to be the case and are surprised to hear when it's not. It is not sufficient to simply unlink the master key from the keyring (or to revoke or invalidate it), since the actual encryption transform objects are still pinned in memory by their inodes. Therefore, to really remove a key we must also evict the relevant inodes. Currently one workaround is to run 'sync && echo 2 > /proc/sys/vm/drop_caches'. But, that evicts all unused inodes in the system rather than just the inodes associated with the key being removed, causing severe performance problems. Moreover, it requires root privileges, so regular users can't "lock" their encrypted files. Another workaround, used in Chromium OS kernels, is to add a new VFS-level ioctl FS_IOC_DROP_CACHE which is a more restricted version of drop_caches that operates on a single super_block. It does: shrink_dcache_sb(sb); invalidate_inodes(sb, false); But it's still a hack. Yet, the major users of filesystem encryption want this feature badly enough that they are actually using these hacks. To properly solve the problem, start maintaining a list of the inodes which have been "unlocked" using each master key. Originally this wasn't possible because the kernel didn't keep track of in-use master keys at all. But, with the ->s_master_keys keyring it is now possible. Then, add an ioctl FS_IOC_REMOVE_ENCRYPTION_KEY. It finds the specified master key in ->s_master_keys, then wipes the secret key itself, which prevents any additional inodes from being unlocked with the key. Then, it syncs the filesystem and evicts the inodes in the key's list. The normal inode eviction code will free and wipe the per-file keys (in ->i_crypt_info). Note that freeing ->i_crypt_info without evicting the inodes was also considered, but would have been racy. Some inodes may still be in use when a master key is removed, and we can't simply revoke random file descriptors, mmap's, etc. Thus, the ioctl simply skips in-use inodes, and returns -EBUSY to indicate that some inodes weren't evicted. The master key *secret* is still removed, but the fscrypt_master_key struct remains to keep track of the remaining inodes. Userspace can then retry the ioctl to evict the remaining inodes. Alternatively, if userspace adds the key again, the refreshed secret will be associated with the existing list of inodes so they remain correctly tracked for future key removals. The ioctl doesn't wipe pagecache pages. Thus, we tolerate that after a kernel compromise some portions of plaintext file contents may still be recoverable from memory. This can be solved by enabling page poisoning system-wide, which security conscious users may choose to do. But it's very difficult to solve otherwise, e.g. note that plaintext file contents may have been read in other places than pagecache pages. Like FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY is initially restricted to privileged users only. This is sufficient for some use cases, but not all. A later patch will relax this restriction, but it will require introducing key hashes, among other changes. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
static inline bool
is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
{
/*
* The READ_ONCE() is only necessary for fscrypt_drop_inode() and
* fscrypt_key_describe(). These run in atomic context, so they can't
* take the key semaphore and thus 'secret' can change concurrently
* which would be a data race. But they only need to know whether the
* secret *was* present at the time of check, so READ_ONCE() suffices.
fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_REMOVE_ENCRYPTION_KEY. This ioctl removes an encryption key that was added by FS_IOC_ADD_ENCRYPTION_KEY. It wipes the secret key itself, then "locks" the encrypted files and directories that had been unlocked using that key -- implemented by evicting the relevant dentries and inodes from the VFS caches. The problem this solves is that many fscrypt users want the ability to remove encryption keys, causing the corresponding encrypted directories to appear "locked" (presented in ciphertext form) again. Moreover, users want removing an encryption key to *really* remove it, in the sense that the removed keys cannot be recovered even if kernel memory is compromised, e.g. by the exploit of a kernel security vulnerability or by a physical attack. This is desirable after a user logs out of the system, for example. In many cases users even already assume this to be the case and are surprised to hear when it's not. It is not sufficient to simply unlink the master key from the keyring (or to revoke or invalidate it), since the actual encryption transform objects are still pinned in memory by their inodes. Therefore, to really remove a key we must also evict the relevant inodes. Currently one workaround is to run 'sync && echo 2 > /proc/sys/vm/drop_caches'. But, that evicts all unused inodes in the system rather than just the inodes associated with the key being removed, causing severe performance problems. Moreover, it requires root privileges, so regular users can't "lock" their encrypted files. Another workaround, used in Chromium OS kernels, is to add a new VFS-level ioctl FS_IOC_DROP_CACHE which is a more restricted version of drop_caches that operates on a single super_block. It does: shrink_dcache_sb(sb); invalidate_inodes(sb, false); But it's still a hack. Yet, the major users of filesystem encryption want this feature badly enough that they are actually using these hacks. To properly solve the problem, start maintaining a list of the inodes which have been "unlocked" using each master key. Originally this wasn't possible because the kernel didn't keep track of in-use master keys at all. But, with the ->s_master_keys keyring it is now possible. Then, add an ioctl FS_IOC_REMOVE_ENCRYPTION_KEY. It finds the specified master key in ->s_master_keys, then wipes the secret key itself, which prevents any additional inodes from being unlocked with the key. Then, it syncs the filesystem and evicts the inodes in the key's list. The normal inode eviction code will free and wipe the per-file keys (in ->i_crypt_info). Note that freeing ->i_crypt_info without evicting the inodes was also considered, but would have been racy. Some inodes may still be in use when a master key is removed, and we can't simply revoke random file descriptors, mmap's, etc. Thus, the ioctl simply skips in-use inodes, and returns -EBUSY to indicate that some inodes weren't evicted. The master key *secret* is still removed, but the fscrypt_master_key struct remains to keep track of the remaining inodes. Userspace can then retry the ioctl to evict the remaining inodes. Alternatively, if userspace adds the key again, the refreshed secret will be associated with the existing list of inodes so they remain correctly tracked for future key removals. The ioctl doesn't wipe pagecache pages. Thus, we tolerate that after a kernel compromise some portions of plaintext file contents may still be recoverable from memory. This can be solved by enabling page poisoning system-wide, which security conscious users may choose to do. But it's very difficult to solve otherwise, e.g. note that plaintext file contents may have been read in other places than pagecache pages. Like FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY is initially restricted to privileged users only. This is sufficient for some use cases, but not all. A later patch will relax this restriction, but it will require introducing key hashes, among other changes. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
*/
return READ_ONCE(secret->size) != 0;
}
fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
static inline const char *master_key_spec_type(
const struct fscrypt_key_specifier *spec)
{
switch (spec->type) {
case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
return "descriptor";
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
return "identifier";
fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
}
return "[unknown]";
}
static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
{
switch (spec->type) {
case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
return FSCRYPT_KEY_DESCRIPTOR_SIZE;
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
return FSCRYPT_KEY_IDENTIFIER_SIZE;
fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
}
return 0;
}
struct key *
fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
fscrypt_find_master_key(struct super_block *sb,
const struct fscrypt_key_specifier *mk_spec);
int fscrypt_add_test_dummy_key(struct super_block *sb,
struct fscrypt_key_specifier *key_spec);
int fscrypt_verify_key_added(struct super_block *sb,
const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
int __init fscrypt_init_keyring(void);
fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:46 +00:00
/* keysetup.c */
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 13:36:21 +00:00
struct fscrypt_mode {
const char *friendly_name;
const char *cipher_str;
int keysize;
int ivsize;
int logged_impl_name;
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 01:56:05 +00:00
enum blk_crypto_mode_num blk_crypto_mode;
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 13:36:21 +00:00
};
extern struct fscrypt_mode fscrypt_modes[];
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 01:56:05 +00:00
int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
const u8 *raw_key, const struct fscrypt_info *ci);
void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key);
int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key);
int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
const struct fscrypt_master_key *mk);
fscrypt: derive dirhash key for casefolded directories When we allow indexed directories to use both encryption and casefolding, for the dirhash we can't just hash the ciphertext filenames that are stored on-disk (as is done currently) because the dirhash must be case insensitive, but the stored names are case-preserving. Nor can we hash the plaintext names with an unkeyed hash (or a hash keyed with a value stored on-disk like ext4's s_hash_seed), since that would leak information about the names that encryption is meant to protect. Instead, if we can accept a dirhash that's only computable when the fscrypt key is available, we can hash the plaintext names with a keyed hash using a secret key derived from the directory's fscrypt master key. We'll use SipHash-2-4 for this purpose. Prepare for this by deriving a SipHash key for each casefolded encrypted directory. Make sure to handle deriving the key not only when setting up the directory's fscrypt_info, but also in the case where the casefold flag is enabled after the fscrypt_info was already set up. (We could just always derive the key regardless of casefolding, but that would introduce unnecessary overhead for people not using casefolding.) Signed-off-by: Daniel Rosenberg <drosen@google.com> [EB: improved commit message, updated fscrypt.rst, squashed with change that avoids unnecessarily deriving the key, and many other cleanups] Link: https://lore.kernel.org/r/20200120223201.241390-3-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-01-20 22:31:57 +00:00
fscrypt: add fscrypt_prepare_new_inode() and fscrypt_set_context() fscrypt_get_encryption_info() is intended to be GFP_NOFS-safe. But actually it isn't, since it uses functions like crypto_alloc_skcipher() which aren't GFP_NOFS-safe, even when called under memalloc_nofs_save(). Therefore it can deadlock when called from a context that needs GFP_NOFS, e.g. during an ext4 transaction or between f2fs_lock_op() and f2fs_unlock_op(). This happens when creating a new encrypted file. We can't fix this by just not setting up the key for new inodes right away, since new symlinks need their key to encrypt the symlink target. So we need to set up the new inode's key before starting the transaction. But just calling fscrypt_get_encryption_info() earlier doesn't work, since it assumes the encryption context is already set, and the encryption context can't be set until the transaction. The recently proposed fscrypt support for the ceph filesystem (https://lkml.kernel.org/linux-fscrypt/20200821182813.52570-1-jlayton@kernel.org/T/#u) will have this same ordering problem too, since ceph will need to encrypt new symlinks before setting their encryption context. Finally, f2fs can deadlock when the filesystem is mounted with '-o test_dummy_encryption' and a new file is created in an existing unencrypted directory. Similarly, this is caused by holding too many locks when calling fscrypt_get_encryption_info(). To solve all these problems, add new helper functions: - fscrypt_prepare_new_inode() sets up a new inode's encryption key (fscrypt_info), using the parent directory's encryption policy and a new random nonce. It neither reads nor writes the encryption context. - fscrypt_set_context() persists the encryption context of a new inode, using the information from the fscrypt_info already in memory. This replaces fscrypt_inherit_context(). Temporarily keep fscrypt_inherit_context() around until all filesystems have been converted to use fscrypt_set_context(). Acked-by: Jeff Layton <jlayton@kernel.org> Link: https://lore.kernel.org/r/20200917041136.178600-2-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-09-17 04:11:24 +00:00
void fscrypt_hash_inode_number(struct fscrypt_info *ci,
const struct fscrypt_master_key *mk);
fscrypt: allow deleting files with unsupported encryption policy Currently it's impossible to delete files that use an unsupported encryption policy, as the kernel will just return an error when performing any operation on the top-level encrypted directory, even just a path lookup into the directory or opening the directory for readdir. More specifically, this occurs in any of the following cases: - The encryption context has an unrecognized version number. Current kernels know about v1 and v2, but there could be more versions in the future. - The encryption context has unrecognized encryption modes (FSCRYPT_MODE_*) or flags (FSCRYPT_POLICY_FLAG_*), an unrecognized combination of modes, or reserved bits set. - The encryption key has been added and the encryption modes are recognized but aren't available in the crypto API -- for example, a directory is encrypted with FSCRYPT_MODE_ADIANTUM but the kernel doesn't have CONFIG_CRYPTO_ADIANTUM enabled. It's desirable to return errors for most operations on files that use an unsupported encryption policy, but the current behavior is too strict. We need to allow enough to delete files, so that people can't be stuck with undeletable files when downgrading kernel versions. That includes allowing directories to be listed and allowing dentries to be looked up. Fix this by modifying the key setup logic to treat an unsupported encryption policy in the same way as "key unavailable" in the cases that are required for a recursive delete to work: preparing for a readdir or a dentry lookup, revalidating a dentry, or checking whether an inode has the same encryption policy as its parent directory. Reviewed-by: Andreas Dilger <adilger@dilger.ca> Link: https://lore.kernel.org/r/20201203022041.230976-10-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-12-03 02:20:41 +00:00
int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
/**
* fscrypt_require_key() - require an inode's encryption key
* @inode: the inode we need the key for
*
* If the inode is encrypted, set up its encryption key if not already done.
* Then require that the key be present and return -ENOKEY otherwise.
*
* No locks are needed, and the key will live as long as the struct inode --- so
* it won't go away from under you.
*
* Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
* if a problem occurred while setting up the encryption key.
*/
static inline int fscrypt_require_key(struct inode *inode)
{
if (IS_ENCRYPTED(inode)) {
fscrypt: allow deleting files with unsupported encryption policy Currently it's impossible to delete files that use an unsupported encryption policy, as the kernel will just return an error when performing any operation on the top-level encrypted directory, even just a path lookup into the directory or opening the directory for readdir. More specifically, this occurs in any of the following cases: - The encryption context has an unrecognized version number. Current kernels know about v1 and v2, but there could be more versions in the future. - The encryption context has unrecognized encryption modes (FSCRYPT_MODE_*) or flags (FSCRYPT_POLICY_FLAG_*), an unrecognized combination of modes, or reserved bits set. - The encryption key has been added and the encryption modes are recognized but aren't available in the crypto API -- for example, a directory is encrypted with FSCRYPT_MODE_ADIANTUM but the kernel doesn't have CONFIG_CRYPTO_ADIANTUM enabled. It's desirable to return errors for most operations on files that use an unsupported encryption policy, but the current behavior is too strict. We need to allow enough to delete files, so that people can't be stuck with undeletable files when downgrading kernel versions. That includes allowing directories to be listed and allowing dentries to be looked up. Fix this by modifying the key setup logic to treat an unsupported encryption policy in the same way as "key unavailable" in the cases that are required for a recursive delete to work: preparing for a readdir or a dentry lookup, revalidating a dentry, or checking whether an inode has the same encryption policy as its parent directory. Reviewed-by: Andreas Dilger <adilger@dilger.ca> Link: https://lore.kernel.org/r/20201203022041.230976-10-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-12-03 02:20:41 +00:00
int err = fscrypt_get_encryption_info(inode, false);
if (err)
return err;
if (!fscrypt_has_encryption_key(inode))
return -ENOKEY;
}
return 0;
}
/* keysetup_v1.c */
void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
const u8 *raw_master_key);
int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci);
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 02:35:47 +00:00
/* policy.c */
bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
const union fscrypt_policy *policy2);
bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
const struct inode *inode);
int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
const union fscrypt_context *ctx_u,
int ctx_size);
fscrypt: handle test_dummy_encryption in more logical way The behavior of the test_dummy_encryption mount option is that when a new file (or directory or symlink) is created in an unencrypted directory, it's automatically encrypted using a dummy encryption policy. That's it; in particular, the encryption (or lack thereof) of existing files (or directories or symlinks) doesn't change. Unfortunately the implementation of test_dummy_encryption is a bit weird and confusing. When test_dummy_encryption is enabled and a file is being created in an unencrypted directory, we set up an encryption key (->i_crypt_info) for the directory. This isn't actually used to do any encryption, however, since the directory is still unencrypted! Instead, ->i_crypt_info is only used for inheriting the encryption policy. One consequence of this is that the filesystem ends up providing a "dummy context" (policy + nonce) instead of a "dummy policy". In commit ed318a6cc0b6 ("fscrypt: support test_dummy_encryption=v2"), I mistakenly thought this was required. However, actually the nonce only ends up being used to derive a key that is never used. Another consequence of this implementation is that it allows for 'inode->i_crypt_info != NULL && !IS_ENCRYPTED(inode)', which is an edge case that can be forgotten about. For example, currently FS_IOC_GET_ENCRYPTION_POLICY on an unencrypted directory may return the dummy encryption policy when the filesystem is mounted with test_dummy_encryption. That seems like the wrong thing to do, since again, the directory itself is not actually encrypted. Therefore, switch to a more logical and maintainable implementation where the dummy encryption policy inheritance is done without setting up keys for unencrypted directories. This involves: - Adding a function fscrypt_policy_to_inherit() which returns the encryption policy to inherit from a directory. This can be a real policy, a dummy policy, or no policy. - Replacing struct fscrypt_dummy_context, ->get_dummy_context(), etc. with struct fscrypt_dummy_policy, ->get_dummy_policy(), etc. - Making fscrypt_fname_encrypted_size() take an fscrypt_policy instead of an inode. Acked-by: Jaegeuk Kim <jaegeuk@kernel.org> Acked-by: Jeff Layton <jlayton@kernel.org> Link: https://lore.kernel.org/r/20200917041136.178600-13-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-09-17 04:11:35 +00:00
const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir);
#endif /* _FSCRYPT_PRIVATE_H */