linux/fs/orangefs/namei.c

437 lines
11 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* (C) 2001 Clemson University and The University of Chicago
*
* See COPYING in top-level directory.
*/
/*
* Linux VFS namei operations.
*/
#include "protocol.h"
#include "orangefs-kernel.h"
/*
* Get a newly allocated inode to go with a negative dentry.
*/
static int orangefs_create(struct mnt_idmap *idmap,
struct inode *dir,
struct dentry *dentry,
umode_t mode,
bool exclusive)
{
struct orangefs_inode_s *parent = ORANGEFS_I(dir);
struct orangefs_kernel_op_s *new_op;
struct orangefs_object_kref ref;
struct inode *inode;
struct iattr iattr;
int ret;
gossip_debug(GOSSIP_NAME_DEBUG, "%s: %pd\n",
__func__,
dentry);
new_op = op_alloc(ORANGEFS_VFS_OP_CREATE);
if (!new_op)
return -ENOMEM;
new_op->upcall.req.create.parent_refn = parent->refn;
fill_default_sys_attrs(new_op->upcall.req.create.attributes,
ORANGEFS_TYPE_METAFILE, mode);
orangefs: cleanup uses of strncpy strncpy() is deprecated for use on NUL-terminated destination strings [1] and as such we should prefer more robust and less ambiguous string interfaces. There is some care taken to ensure these destination buffers are NUL-terminated by bounding the strncpy()'s by ORANGEFS_NAME_MAX - 1 or ORANGEFS_MAX_SERVER_ADDR_LEN - 1. Instead, we can use the new 2-argument version of strscpy() to guarantee NUL-termination on the destination buffers while simplifying the code. Based on usage with printf-likes, we can see these buffers are expected to be NUL-terminated: | gossip_debug(GOSSIP_NAME_DEBUG, | "%s: doing lookup on %s under %pU,%d\n", | __func__, | new_op->upcall.req.lookup.d_name, | &new_op->upcall.req.lookup.parent_refn.khandle, | new_op->upcall.req.lookup.parent_refn.fs_id); ... | gossip_debug(GOSSIP_SUPER_DEBUG, | "Attempting ORANGEFS Remount via host %s\n", | new_op->upcall.req.fs_mount.orangefs_config_server); NUL-padding isn't required for any of these destination buffers as they've all been zero-allocated with op_alloc() or kzalloc(). Link: https://www.kernel.org/doc/html/latest/process/deprecated.html#strncpy-on-nul-terminated-strings [1] Link: https://manpages.debian.org/testing/linux-manual-4.8/strscpy.9.en.html [2] Link: https://github.com/KSPP/linux/issues/90 Cc: linux-hardening@vger.kernel.org Signed-off-by: Justin Stitt <justinstitt@google.com> Link: https://lore.kernel.org/r/20240322-strncpy-fs-orangefs-dcache-c-v1-1-15d12debbf38@google.com Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-03-22 21:41:18 +00:00
strscpy(new_op->upcall.req.create.d_name, dentry->d_name.name);
ret = service_operation(new_op, __func__, get_interruptible_flag(dir));
gossip_debug(GOSSIP_NAME_DEBUG,
"%s: %pd: handle:%pU: fsid:%d: new_op:%p: ret:%d:\n",
__func__,
dentry,
&new_op->downcall.resp.create.refn.khandle,
new_op->downcall.resp.create.refn.fs_id,
new_op,
ret);
if (ret < 0)
goto out;
ref = new_op->downcall.resp.create.refn;
inode = orangefs_new_inode(dir->i_sb, dir, S_IFREG | mode, 0, &ref);
if (IS_ERR(inode)) {
gossip_err("%s: Failed to allocate inode for file :%pd:\n",
__func__,
dentry);
ret = PTR_ERR(inode);
goto out;
}
gossip_debug(GOSSIP_NAME_DEBUG,
"%s: Assigned inode :%pU: for file :%pd:\n",
__func__,
get_khandle_from_ino(inode),
dentry);
d_instantiate_new(dentry, inode);
orangefs_set_timeout(dentry);
gossip_debug(GOSSIP_NAME_DEBUG,
"%s: dentry instantiated for %pd\n",
__func__,
dentry);
memset(&iattr, 0, sizeof iattr);
iattr.ia_valid |= ATTR_MTIME | ATTR_CTIME;
iattr.ia_mtime = iattr.ia_ctime = current_time(dir);
__orangefs_setattr(dir, &iattr);
ret = 0;
out:
op_release(new_op);
gossip_debug(GOSSIP_NAME_DEBUG,
"%s: %pd: returning %d\n",
__func__,
dentry,
ret);
return ret;
}
/*
* Attempt to resolve an object name (dentry->d_name), parent handle, and
* fsid into a handle for the object.
*/
static struct dentry *orangefs_lookup(struct inode *dir, struct dentry *dentry,
unsigned int flags)
{
struct orangefs_inode_s *parent = ORANGEFS_I(dir);
struct orangefs_kernel_op_s *new_op;
struct inode *inode;
int ret = -EINVAL;
/*
* in theory we could skip a lookup here (if the intent is to
* create) in order to avoid a potentially failed lookup, but
* leaving it in can skip a valid lookup and try to create a file
* that already exists (e.g. the vfs already handles checking for
* -EEXIST on O_EXCL opens, which is broken if we skip this lookup
* in the create path)
*/
gossip_debug(GOSSIP_NAME_DEBUG, "%s called on %pd\n",
__func__, dentry);
if (dentry->d_name.len > (ORANGEFS_NAME_MAX - 1))
return ERR_PTR(-ENAMETOOLONG);
new_op = op_alloc(ORANGEFS_VFS_OP_LOOKUP);
if (!new_op)
return ERR_PTR(-ENOMEM);
new_op->upcall.req.lookup.sym_follow = ORANGEFS_LOOKUP_LINK_NO_FOLLOW;
gossip_debug(GOSSIP_NAME_DEBUG, "%s:%s:%d using parent %pU\n",
__FILE__,
__func__,
__LINE__,
&parent->refn.khandle);
new_op->upcall.req.lookup.parent_refn = parent->refn;
orangefs: cleanup uses of strncpy strncpy() is deprecated for use on NUL-terminated destination strings [1] and as such we should prefer more robust and less ambiguous string interfaces. There is some care taken to ensure these destination buffers are NUL-terminated by bounding the strncpy()'s by ORANGEFS_NAME_MAX - 1 or ORANGEFS_MAX_SERVER_ADDR_LEN - 1. Instead, we can use the new 2-argument version of strscpy() to guarantee NUL-termination on the destination buffers while simplifying the code. Based on usage with printf-likes, we can see these buffers are expected to be NUL-terminated: | gossip_debug(GOSSIP_NAME_DEBUG, | "%s: doing lookup on %s under %pU,%d\n", | __func__, | new_op->upcall.req.lookup.d_name, | &new_op->upcall.req.lookup.parent_refn.khandle, | new_op->upcall.req.lookup.parent_refn.fs_id); ... | gossip_debug(GOSSIP_SUPER_DEBUG, | "Attempting ORANGEFS Remount via host %s\n", | new_op->upcall.req.fs_mount.orangefs_config_server); NUL-padding isn't required for any of these destination buffers as they've all been zero-allocated with op_alloc() or kzalloc(). Link: https://www.kernel.org/doc/html/latest/process/deprecated.html#strncpy-on-nul-terminated-strings [1] Link: https://manpages.debian.org/testing/linux-manual-4.8/strscpy.9.en.html [2] Link: https://github.com/KSPP/linux/issues/90 Cc: linux-hardening@vger.kernel.org Signed-off-by: Justin Stitt <justinstitt@google.com> Link: https://lore.kernel.org/r/20240322-strncpy-fs-orangefs-dcache-c-v1-1-15d12debbf38@google.com Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-03-22 21:41:18 +00:00
strscpy(new_op->upcall.req.lookup.d_name, dentry->d_name.name);
gossip_debug(GOSSIP_NAME_DEBUG,
"%s: doing lookup on %s under %pU,%d\n",
__func__,
new_op->upcall.req.lookup.d_name,
&new_op->upcall.req.lookup.parent_refn.khandle,
new_op->upcall.req.lookup.parent_refn.fs_id);
ret = service_operation(new_op, __func__, get_interruptible_flag(dir));
gossip_debug(GOSSIP_NAME_DEBUG,
"Lookup Got %pU, fsid %d (ret=%d)\n",
&new_op->downcall.resp.lookup.refn.khandle,
new_op->downcall.resp.lookup.refn.fs_id,
ret);
if (ret == 0) {
orangefs_set_timeout(dentry);
inode = orangefs_iget(dir->i_sb, &new_op->downcall.resp.lookup.refn);
} else if (ret == -ENOENT) {
inode = NULL;
} else {
/* must be a non-recoverable error */
inode = ERR_PTR(ret);
}
op_release(new_op);
return d_splice_alias(inode, dentry);
}
/* return 0 on success; non-zero otherwise */
static int orangefs_unlink(struct inode *dir, struct dentry *dentry)
{
struct inode *inode = dentry->d_inode;
struct orangefs_inode_s *parent = ORANGEFS_I(dir);
struct orangefs_kernel_op_s *new_op;
struct iattr iattr;
int ret;
gossip_debug(GOSSIP_NAME_DEBUG,
"%s: called on %pd\n"
" (inode %pU): Parent is %pU | fs_id %d\n",
__func__,
dentry,
get_khandle_from_ino(inode),
&parent->refn.khandle,
parent->refn.fs_id);
new_op = op_alloc(ORANGEFS_VFS_OP_REMOVE);
if (!new_op)
return -ENOMEM;
new_op->upcall.req.remove.parent_refn = parent->refn;
orangefs: cleanup uses of strncpy strncpy() is deprecated for use on NUL-terminated destination strings [1] and as such we should prefer more robust and less ambiguous string interfaces. There is some care taken to ensure these destination buffers are NUL-terminated by bounding the strncpy()'s by ORANGEFS_NAME_MAX - 1 or ORANGEFS_MAX_SERVER_ADDR_LEN - 1. Instead, we can use the new 2-argument version of strscpy() to guarantee NUL-termination on the destination buffers while simplifying the code. Based on usage with printf-likes, we can see these buffers are expected to be NUL-terminated: | gossip_debug(GOSSIP_NAME_DEBUG, | "%s: doing lookup on %s under %pU,%d\n", | __func__, | new_op->upcall.req.lookup.d_name, | &new_op->upcall.req.lookup.parent_refn.khandle, | new_op->upcall.req.lookup.parent_refn.fs_id); ... | gossip_debug(GOSSIP_SUPER_DEBUG, | "Attempting ORANGEFS Remount via host %s\n", | new_op->upcall.req.fs_mount.orangefs_config_server); NUL-padding isn't required for any of these destination buffers as they've all been zero-allocated with op_alloc() or kzalloc(). Link: https://www.kernel.org/doc/html/latest/process/deprecated.html#strncpy-on-nul-terminated-strings [1] Link: https://manpages.debian.org/testing/linux-manual-4.8/strscpy.9.en.html [2] Link: https://github.com/KSPP/linux/issues/90 Cc: linux-hardening@vger.kernel.org Signed-off-by: Justin Stitt <justinstitt@google.com> Link: https://lore.kernel.org/r/20240322-strncpy-fs-orangefs-dcache-c-v1-1-15d12debbf38@google.com Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-03-22 21:41:18 +00:00
strscpy(new_op->upcall.req.remove.d_name, dentry->d_name.name);
ret = service_operation(new_op, "orangefs_unlink",
get_interruptible_flag(inode));
gossip_debug(GOSSIP_NAME_DEBUG,
"%s: service_operation returned:%d:\n",
__func__,
ret);
op_release(new_op);
if (!ret) {
drop_nlink(inode);
memset(&iattr, 0, sizeof iattr);
iattr.ia_valid |= ATTR_MTIME | ATTR_CTIME;
iattr.ia_mtime = iattr.ia_ctime = current_time(dir);
__orangefs_setattr(dir, &iattr);
}
return ret;
}
static int orangefs_symlink(struct mnt_idmap *idmap,
struct inode *dir,
struct dentry *dentry,
const char *symname)
{
struct orangefs_inode_s *parent = ORANGEFS_I(dir);
struct orangefs_kernel_op_s *new_op;
struct orangefs_object_kref ref;
struct inode *inode;
struct iattr iattr;
int mode = 0755;
int ret;
gossip_debug(GOSSIP_NAME_DEBUG, "%s: called\n", __func__);
if (!symname)
return -EINVAL;
if (strlen(symname)+1 > ORANGEFS_NAME_MAX)
return -ENAMETOOLONG;
new_op = op_alloc(ORANGEFS_VFS_OP_SYMLINK);
if (!new_op)
return -ENOMEM;
new_op->upcall.req.sym.parent_refn = parent->refn;
fill_default_sys_attrs(new_op->upcall.req.sym.attributes,
ORANGEFS_TYPE_SYMLINK,
mode);
orangefs: cleanup uses of strncpy strncpy() is deprecated for use on NUL-terminated destination strings [1] and as such we should prefer more robust and less ambiguous string interfaces. There is some care taken to ensure these destination buffers are NUL-terminated by bounding the strncpy()'s by ORANGEFS_NAME_MAX - 1 or ORANGEFS_MAX_SERVER_ADDR_LEN - 1. Instead, we can use the new 2-argument version of strscpy() to guarantee NUL-termination on the destination buffers while simplifying the code. Based on usage with printf-likes, we can see these buffers are expected to be NUL-terminated: | gossip_debug(GOSSIP_NAME_DEBUG, | "%s: doing lookup on %s under %pU,%d\n", | __func__, | new_op->upcall.req.lookup.d_name, | &new_op->upcall.req.lookup.parent_refn.khandle, | new_op->upcall.req.lookup.parent_refn.fs_id); ... | gossip_debug(GOSSIP_SUPER_DEBUG, | "Attempting ORANGEFS Remount via host %s\n", | new_op->upcall.req.fs_mount.orangefs_config_server); NUL-padding isn't required for any of these destination buffers as they've all been zero-allocated with op_alloc() or kzalloc(). Link: https://www.kernel.org/doc/html/latest/process/deprecated.html#strncpy-on-nul-terminated-strings [1] Link: https://manpages.debian.org/testing/linux-manual-4.8/strscpy.9.en.html [2] Link: https://github.com/KSPP/linux/issues/90 Cc: linux-hardening@vger.kernel.org Signed-off-by: Justin Stitt <justinstitt@google.com> Link: https://lore.kernel.org/r/20240322-strncpy-fs-orangefs-dcache-c-v1-1-15d12debbf38@google.com Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-03-22 21:41:18 +00:00
strscpy(new_op->upcall.req.sym.entry_name, dentry->d_name.name);
strscpy(new_op->upcall.req.sym.target, symname);
ret = service_operation(new_op, __func__, get_interruptible_flag(dir));
gossip_debug(GOSSIP_NAME_DEBUG,
"Symlink Got ORANGEFS handle %pU on fsid %d (ret=%d)\n",
&new_op->downcall.resp.sym.refn.khandle,
new_op->downcall.resp.sym.refn.fs_id, ret);
if (ret < 0) {
gossip_debug(GOSSIP_NAME_DEBUG,
"%s: failed with error code %d\n",
__func__, ret);
goto out;
}
ref = new_op->downcall.resp.sym.refn;
inode = orangefs_new_inode(dir->i_sb, dir, S_IFLNK | mode, 0, &ref);
if (IS_ERR(inode)) {
gossip_err
("*** Failed to allocate orangefs symlink inode\n");
ret = PTR_ERR(inode);
goto out;
}
/*
* This is necessary because orangefs_inode_getattr will not
* re-read symlink size as it is impossible for it to change.
* Invalidating the cache does not help. orangefs_new_inode
* does not set the correct size (it does not know symname).
*/
inode->i_size = strlen(symname);
gossip_debug(GOSSIP_NAME_DEBUG,
"Assigned symlink inode new number of %pU\n",
get_khandle_from_ino(inode));
d_instantiate_new(dentry, inode);
orangefs_set_timeout(dentry);
gossip_debug(GOSSIP_NAME_DEBUG,
"Inode (Symlink) %pU -> %pd\n",
get_khandle_from_ino(inode),
dentry);
memset(&iattr, 0, sizeof iattr);
iattr.ia_valid |= ATTR_MTIME | ATTR_CTIME;
iattr.ia_mtime = iattr.ia_ctime = current_time(dir);
__orangefs_setattr(dir, &iattr);
ret = 0;
out:
op_release(new_op);
return ret;
}
static int orangefs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode)
{
struct orangefs_inode_s *parent = ORANGEFS_I(dir);
struct orangefs_kernel_op_s *new_op;
struct orangefs_object_kref ref;
struct inode *inode;
struct iattr iattr;
int ret;
new_op = op_alloc(ORANGEFS_VFS_OP_MKDIR);
if (!new_op)
return -ENOMEM;
new_op->upcall.req.mkdir.parent_refn = parent->refn;
fill_default_sys_attrs(new_op->upcall.req.mkdir.attributes,
ORANGEFS_TYPE_DIRECTORY, mode);
orangefs: cleanup uses of strncpy strncpy() is deprecated for use on NUL-terminated destination strings [1] and as such we should prefer more robust and less ambiguous string interfaces. There is some care taken to ensure these destination buffers are NUL-terminated by bounding the strncpy()'s by ORANGEFS_NAME_MAX - 1 or ORANGEFS_MAX_SERVER_ADDR_LEN - 1. Instead, we can use the new 2-argument version of strscpy() to guarantee NUL-termination on the destination buffers while simplifying the code. Based on usage with printf-likes, we can see these buffers are expected to be NUL-terminated: | gossip_debug(GOSSIP_NAME_DEBUG, | "%s: doing lookup on %s under %pU,%d\n", | __func__, | new_op->upcall.req.lookup.d_name, | &new_op->upcall.req.lookup.parent_refn.khandle, | new_op->upcall.req.lookup.parent_refn.fs_id); ... | gossip_debug(GOSSIP_SUPER_DEBUG, | "Attempting ORANGEFS Remount via host %s\n", | new_op->upcall.req.fs_mount.orangefs_config_server); NUL-padding isn't required for any of these destination buffers as they've all been zero-allocated with op_alloc() or kzalloc(). Link: https://www.kernel.org/doc/html/latest/process/deprecated.html#strncpy-on-nul-terminated-strings [1] Link: https://manpages.debian.org/testing/linux-manual-4.8/strscpy.9.en.html [2] Link: https://github.com/KSPP/linux/issues/90 Cc: linux-hardening@vger.kernel.org Signed-off-by: Justin Stitt <justinstitt@google.com> Link: https://lore.kernel.org/r/20240322-strncpy-fs-orangefs-dcache-c-v1-1-15d12debbf38@google.com Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-03-22 21:41:18 +00:00
strscpy(new_op->upcall.req.mkdir.d_name, dentry->d_name.name);
ret = service_operation(new_op, __func__, get_interruptible_flag(dir));
gossip_debug(GOSSIP_NAME_DEBUG,
"Mkdir Got ORANGEFS handle %pU on fsid %d\n",
&new_op->downcall.resp.mkdir.refn.khandle,
new_op->downcall.resp.mkdir.refn.fs_id);
if (ret < 0) {
gossip_debug(GOSSIP_NAME_DEBUG,
"%s: failed with error code %d\n",
__func__, ret);
goto out;
}
ref = new_op->downcall.resp.mkdir.refn;
inode = orangefs_new_inode(dir->i_sb, dir, S_IFDIR | mode, 0, &ref);
if (IS_ERR(inode)) {
gossip_err("*** Failed to allocate orangefs dir inode\n");
ret = PTR_ERR(inode);
goto out;
}
gossip_debug(GOSSIP_NAME_DEBUG,
"Assigned dir inode new number of %pU\n",
get_khandle_from_ino(inode));
d_instantiate_new(dentry, inode);
orangefs_set_timeout(dentry);
gossip_debug(GOSSIP_NAME_DEBUG,
"Inode (Directory) %pU -> %pd\n",
get_khandle_from_ino(inode),
dentry);
/*
* NOTE: we have no good way to keep nlink consistent for directories
* across clients; keep constant at 1.
*/
memset(&iattr, 0, sizeof iattr);
iattr.ia_valid |= ATTR_MTIME | ATTR_CTIME;
iattr.ia_mtime = iattr.ia_ctime = current_time(dir);
__orangefs_setattr(dir, &iattr);
out:
op_release(new_op);
return ret;
}
static int orangefs_rename(struct mnt_idmap *idmap,
struct inode *old_dir,
struct dentry *old_dentry,
struct inode *new_dir,
struct dentry *new_dentry,
unsigned int flags)
{
struct orangefs_kernel_op_s *new_op;
struct iattr iattr;
int ret;
if (flags)
return -EINVAL;
gossip_debug(GOSSIP_NAME_DEBUG,
"orangefs_rename: called (%pd2 => %pd2) ct=%d\n",
old_dentry, new_dentry, d_count(new_dentry));
memset(&iattr, 0, sizeof iattr);
iattr.ia_valid |= ATTR_MTIME | ATTR_CTIME;
iattr.ia_mtime = iattr.ia_ctime = current_time(new_dir);
__orangefs_setattr(new_dir, &iattr);
new_op = op_alloc(ORANGEFS_VFS_OP_RENAME);
if (!new_op)
return -EINVAL;
new_op->upcall.req.rename.old_parent_refn = ORANGEFS_I(old_dir)->refn;
new_op->upcall.req.rename.new_parent_refn = ORANGEFS_I(new_dir)->refn;
orangefs: cleanup uses of strncpy strncpy() is deprecated for use on NUL-terminated destination strings [1] and as such we should prefer more robust and less ambiguous string interfaces. There is some care taken to ensure these destination buffers are NUL-terminated by bounding the strncpy()'s by ORANGEFS_NAME_MAX - 1 or ORANGEFS_MAX_SERVER_ADDR_LEN - 1. Instead, we can use the new 2-argument version of strscpy() to guarantee NUL-termination on the destination buffers while simplifying the code. Based on usage with printf-likes, we can see these buffers are expected to be NUL-terminated: | gossip_debug(GOSSIP_NAME_DEBUG, | "%s: doing lookup on %s under %pU,%d\n", | __func__, | new_op->upcall.req.lookup.d_name, | &new_op->upcall.req.lookup.parent_refn.khandle, | new_op->upcall.req.lookup.parent_refn.fs_id); ... | gossip_debug(GOSSIP_SUPER_DEBUG, | "Attempting ORANGEFS Remount via host %s\n", | new_op->upcall.req.fs_mount.orangefs_config_server); NUL-padding isn't required for any of these destination buffers as they've all been zero-allocated with op_alloc() or kzalloc(). Link: https://www.kernel.org/doc/html/latest/process/deprecated.html#strncpy-on-nul-terminated-strings [1] Link: https://manpages.debian.org/testing/linux-manual-4.8/strscpy.9.en.html [2] Link: https://github.com/KSPP/linux/issues/90 Cc: linux-hardening@vger.kernel.org Signed-off-by: Justin Stitt <justinstitt@google.com> Link: https://lore.kernel.org/r/20240322-strncpy-fs-orangefs-dcache-c-v1-1-15d12debbf38@google.com Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-03-22 21:41:18 +00:00
strscpy(new_op->upcall.req.rename.d_old_name, old_dentry->d_name.name);
strscpy(new_op->upcall.req.rename.d_new_name, new_dentry->d_name.name);
ret = service_operation(new_op,
"orangefs_rename",
get_interruptible_flag(old_dentry->d_inode));
gossip_debug(GOSSIP_NAME_DEBUG,
"orangefs_rename: got downcall status %d\n",
ret);
if (new_dentry->d_inode)
inode_set_ctime_current(d_inode(new_dentry));
op_release(new_op);
return ret;
}
/* ORANGEFS implementation of VFS inode operations for directories */
const struct inode_operations orangefs_dir_inode_operations = {
.lookup = orangefs_lookup,
fs: rename current get acl method The current way of setting and getting posix acls through the generic xattr interface is error prone and type unsafe. The vfs needs to interpret and fixup posix acls before storing or reporting it to userspace. Various hacks exist to make this work. The code is hard to understand and difficult to maintain in it's current form. Instead of making this work by hacking posix acls through xattr handlers we are building a dedicated posix acl api around the get and set inode operations. This removes a lot of hackiness and makes the codepaths easier to maintain. A lot of background can be found in [1]. The current inode operation for getting posix acls takes an inode argument but various filesystems (e.g., 9p, cifs, overlayfs) need access to the dentry. In contrast to the ->set_acl() inode operation we cannot simply extend ->get_acl() to take a dentry argument. The ->get_acl() inode operation is called from: acl_permission_check() -> check_acl() -> get_acl() which is part of generic_permission() which in turn is part of inode_permission(). Both generic_permission() and inode_permission() are called in the ->permission() handler of various filesystems (e.g., overlayfs). So simply passing a dentry argument to ->get_acl() would amount to also having to pass a dentry argument to ->permission(). We should avoid this unnecessary change. So instead of extending the existing inode operation rename it from ->get_acl() to ->get_inode_acl() and add a ->get_acl() method later that passes a dentry argument and which filesystems that need access to the dentry can implement instead of ->get_inode_acl(). Filesystems like cifs which allow setting and getting posix acls but not using them for permission checking during lookup can simply not implement ->get_inode_acl(). This is intended to be a non-functional change. Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1] Suggested-by/Inspired-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2022-09-22 15:17:00 +00:00
.get_inode_acl = orangefs_get_acl,
.set_acl = orangefs_set_acl,
.create = orangefs_create,
.unlink = orangefs_unlink,
.symlink = orangefs_symlink,
.mkdir = orangefs_mkdir,
.rmdir = orangefs_unlink,
.rename = orangefs_rename,
.setattr = orangefs_setattr,
.getattr = orangefs_getattr,
.listxattr = orangefs_listxattr,
.permission = orangefs_permission,
.update_time = orangefs_update_time,
};