linux/drivers/net/enc28j60.c

1602 lines
43 KiB
C
Raw Normal View History

/*
* Microchip ENC28J60 ethernet driver (MAC + PHY)
*
* Copyright (C) 2007 Eurek srl
* Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
* based on enc28j60.c written by David Anders for 2.4 kernel version
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/spi/spi.h>
#include "enc28j60_hw.h"
#define DRV_NAME "enc28j60"
#define DRV_VERSION "1.01"
#define SPI_OPLEN 1
#define ENC28J60_MSG_DEFAULT \
(NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK)
/* Buffer size required for the largest SPI transfer (i.e., reading a
* frame). */
#define SPI_TRANSFER_BUF_LEN (4 + MAX_FRAMELEN)
#define TX_TIMEOUT (4 * HZ)
/* Max TX retries in case of collision as suggested by errata datasheet */
#define MAX_TX_RETRYCOUNT 16
enum {
RXFILTER_NORMAL,
RXFILTER_MULTI,
RXFILTER_PROMISC
};
/* Driver local data */
struct enc28j60_net {
struct net_device *netdev;
struct spi_device *spi;
struct mutex lock;
struct sk_buff *tx_skb;
struct work_struct tx_work;
struct work_struct irq_work;
struct work_struct setrx_work;
struct work_struct restart_work;
u8 bank; /* current register bank selected */
u16 next_pk_ptr; /* next packet pointer within FIFO */
u16 max_pk_counter; /* statistics: max packet counter */
u16 tx_retry_count;
bool hw_enable;
bool full_duplex;
int rxfilter;
u32 msg_enable;
u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN];
};
/* use ethtool to change the level for any given device */
static struct {
u32 msg_enable;
} debug = { -1 };
/*
* SPI read buffer
* wait for the SPI transfer and copy received data to destination
*/
static int
spi_read_buf(struct enc28j60_net *priv, int len, u8 *data)
{
u8 *rx_buf = priv->spi_transfer_buf + 4;
u8 *tx_buf = priv->spi_transfer_buf;
struct spi_transfer t = {
.tx_buf = tx_buf,
.rx_buf = rx_buf,
.len = SPI_OPLEN + len,
};
struct spi_message msg;
int ret;
tx_buf[0] = ENC28J60_READ_BUF_MEM;
tx_buf[1] = tx_buf[2] = tx_buf[3] = 0; /* don't care */
spi_message_init(&msg);
spi_message_add_tail(&t, &msg);
ret = spi_sync(priv->spi, &msg);
if (ret == 0) {
memcpy(data, &rx_buf[SPI_OPLEN], len);
ret = msg.status;
}
if (ret && netif_msg_drv(priv))
printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
__FUNCTION__, ret);
return ret;
}
/*
* SPI write buffer
*/
static int spi_write_buf(struct enc28j60_net *priv, int len,
const u8 *data)
{
int ret;
if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0)
ret = -EINVAL;
else {
priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM;
memcpy(&priv->spi_transfer_buf[1], data, len);
ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1);
if (ret && netif_msg_drv(priv))
printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
__FUNCTION__, ret);
}
return ret;
}
/*
* basic SPI read operation
*/
static u8 spi_read_op(struct enc28j60_net *priv, u8 op,
u8 addr)
{
u8 tx_buf[2];
u8 rx_buf[4];
u8 val = 0;
int ret;
int slen = SPI_OPLEN;
/* do dummy read if needed */
if (addr & SPRD_MASK)
slen++;
tx_buf[0] = op | (addr & ADDR_MASK);
ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen);
if (ret)
printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
__FUNCTION__, ret);
else
val = rx_buf[slen - 1];
return val;
}
/*
* basic SPI write operation
*/
static int spi_write_op(struct enc28j60_net *priv, u8 op,
u8 addr, u8 val)
{
int ret;
priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK);
priv->spi_transfer_buf[1] = val;
ret = spi_write(priv->spi, priv->spi_transfer_buf, 2);
if (ret && netif_msg_drv(priv))
printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
__FUNCTION__, ret);
return ret;
}
static void enc28j60_soft_reset(struct enc28j60_net *priv)
{
if (netif_msg_hw(priv))
printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
/* Errata workaround #1, CLKRDY check is unreliable,
* delay at least 1 mS instead */
udelay(2000);
}
/*
* select the current register bank if necessary
*/
static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr)
{
if ((addr & BANK_MASK) != priv->bank) {
u8 b = (addr & BANK_MASK) >> 5;
if (b != (ECON1_BSEL1 | ECON1_BSEL0))
spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
ECON1_BSEL1 | ECON1_BSEL0);
if (b != 0)
spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, b);
priv->bank = (addr & BANK_MASK);
}
}
/*
* Register access routines through the SPI bus.
* Every register access comes in two flavours:
* - nolock_xxx: caller needs to invoke mutex_lock, usually to access
* atomically more than one register
* - locked_xxx: caller doesn't need to invoke mutex_lock, single access
*
* Some registers can be accessed through the bit field clear and
* bit field set to avoid a read modify write cycle.
*/
/*
* Register bit field Set
*/
static void nolock_reg_bfset(struct enc28j60_net *priv,
u8 addr, u8 mask)
{
enc28j60_set_bank(priv, addr);
spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask);
}
static void locked_reg_bfset(struct enc28j60_net *priv,
u8 addr, u8 mask)
{
mutex_lock(&priv->lock);
nolock_reg_bfset(priv, addr, mask);
mutex_unlock(&priv->lock);
}
/*
* Register bit field Clear
*/
static void nolock_reg_bfclr(struct enc28j60_net *priv,
u8 addr, u8 mask)
{
enc28j60_set_bank(priv, addr);
spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask);
}
static void locked_reg_bfclr(struct enc28j60_net *priv,
u8 addr, u8 mask)
{
mutex_lock(&priv->lock);
nolock_reg_bfclr(priv, addr, mask);
mutex_unlock(&priv->lock);
}
/*
* Register byte read
*/
static int nolock_regb_read(struct enc28j60_net *priv,
u8 address)
{
enc28j60_set_bank(priv, address);
return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
}
static int locked_regb_read(struct enc28j60_net *priv,
u8 address)
{
int ret;
mutex_lock(&priv->lock);
ret = nolock_regb_read(priv, address);
mutex_unlock(&priv->lock);
return ret;
}
/*
* Register word read
*/
static int nolock_regw_read(struct enc28j60_net *priv,
u8 address)
{
int rl, rh;
enc28j60_set_bank(priv, address);
rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1);
return (rh << 8) | rl;
}
static int locked_regw_read(struct enc28j60_net *priv,
u8 address)
{
int ret;
mutex_lock(&priv->lock);
ret = nolock_regw_read(priv, address);
mutex_unlock(&priv->lock);
return ret;
}
/*
* Register byte write
*/
static void nolock_regb_write(struct enc28j60_net *priv,
u8 address, u8 data)
{
enc28j60_set_bank(priv, address);
spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data);
}
static void locked_regb_write(struct enc28j60_net *priv,
u8 address, u8 data)
{
mutex_lock(&priv->lock);
nolock_regb_write(priv, address, data);
mutex_unlock(&priv->lock);
}
/*
* Register word write
*/
static void nolock_regw_write(struct enc28j60_net *priv,
u8 address, u16 data)
{
enc28j60_set_bank(priv, address);
spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data);
spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1,
(u8) (data >> 8));
}
static void locked_regw_write(struct enc28j60_net *priv,
u8 address, u16 data)
{
mutex_lock(&priv->lock);
nolock_regw_write(priv, address, data);
mutex_unlock(&priv->lock);
}
/*
* Buffer memory read
* Select the starting address and execute a SPI buffer read
*/
static void enc28j60_mem_read(struct enc28j60_net *priv,
u16 addr, int len, u8 *data)
{
mutex_lock(&priv->lock);
nolock_regw_write(priv, ERDPTL, addr);
#ifdef CONFIG_ENC28J60_WRITEVERIFY
if (netif_msg_drv(priv)) {
u16 reg;
reg = nolock_regw_read(priv, ERDPTL);
if (reg != addr)
printk(KERN_DEBUG DRV_NAME ": %s() error writing ERDPT "
"(0x%04x - 0x%04x)\n", __FUNCTION__, reg, addr);
}
#endif
spi_read_buf(priv, len, data);
mutex_unlock(&priv->lock);
}
/*
* Write packet to enc28j60 TX buffer memory
*/
static void
enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data)
{
mutex_lock(&priv->lock);
/* Set the write pointer to start of transmit buffer area */
nolock_regw_write(priv, EWRPTL, TXSTART_INIT);
#ifdef CONFIG_ENC28J60_WRITEVERIFY
if (netif_msg_drv(priv)) {
u16 reg;
reg = nolock_regw_read(priv, EWRPTL);
if (reg != TXSTART_INIT)
printk(KERN_DEBUG DRV_NAME
": %s() ERWPT:0x%04x != 0x%04x\n",
__FUNCTION__, reg, TXSTART_INIT);
}
#endif
/* Set the TXND pointer to correspond to the packet size given */
nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len);
/* write per-packet control byte */
spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00);
if (netif_msg_hw(priv))
printk(KERN_DEBUG DRV_NAME
": %s() after control byte ERWPT:0x%04x\n",
__FUNCTION__, nolock_regw_read(priv, EWRPTL));
/* copy the packet into the transmit buffer */
spi_write_buf(priv, len, data);
if (netif_msg_hw(priv))
printk(KERN_DEBUG DRV_NAME
": %s() after write packet ERWPT:0x%04x, len=%d\n",
__FUNCTION__, nolock_regw_read(priv, EWRPTL), len);
mutex_unlock(&priv->lock);
}
/*
* Wait until the PHY operation is complete.
*/
static int wait_phy_ready(struct enc28j60_net *priv)
{
unsigned long timeout = jiffies + 20 * HZ / 1000;
int ret = 1;
/* 20 msec timeout read */
while (nolock_regb_read(priv, MISTAT) & MISTAT_BUSY) {
if (time_after(jiffies, timeout)) {
if (netif_msg_drv(priv))
printk(KERN_DEBUG DRV_NAME
": PHY ready timeout!\n");
ret = 0;
break;
}
cpu_relax();
}
return ret;
}
/*
* PHY register read
* PHY registers are not accessed directly, but through the MII
*/
static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address)
{
u16 ret;
mutex_lock(&priv->lock);
/* set the PHY register address */
nolock_regb_write(priv, MIREGADR, address);
/* start the register read operation */
nolock_regb_write(priv, MICMD, MICMD_MIIRD);
/* wait until the PHY read completes */
wait_phy_ready(priv);
/* quit reading */
nolock_regb_write(priv, MICMD, 0x00);
/* return the data */
ret = nolock_regw_read(priv, MIRDL);
mutex_unlock(&priv->lock);
return ret;
}
static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data)
{
int ret;
mutex_lock(&priv->lock);
/* set the PHY register address */
nolock_regb_write(priv, MIREGADR, address);
/* write the PHY data */
nolock_regw_write(priv, MIWRL, data);
/* wait until the PHY write completes and return */
ret = wait_phy_ready(priv);
mutex_unlock(&priv->lock);
return ret;
}
/*
* Program the hardware MAC address from dev->dev_addr.
*/
static int enc28j60_set_hw_macaddr(struct net_device *ndev)
{
int ret;
struct enc28j60_net *priv = netdev_priv(ndev);
mutex_lock(&priv->lock);
if (!priv->hw_enable) {
if (netif_msg_drv(priv)) {
DECLARE_MAC_BUF(mac);
printk(KERN_INFO DRV_NAME
": %s: Setting MAC address to %s\n",
ndev->name, print_mac(mac, ndev->dev_addr));
}
/* NOTE: MAC address in ENC28J60 is byte-backward */
nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]);
nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]);
nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]);
nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]);
nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]);
nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]);
ret = 0;
} else {
if (netif_msg_drv(priv))
printk(KERN_DEBUG DRV_NAME
": %s() Hardware must be disabled to set "
"Mac address\n", __FUNCTION__);
ret = -EBUSY;
}
mutex_unlock(&priv->lock);
return ret;
}
/*
* Store the new hardware address in dev->dev_addr, and update the MAC.
*/
static int enc28j60_set_mac_address(struct net_device *dev, void *addr)
{
struct sockaddr *address = addr;
if (netif_running(dev))
return -EBUSY;
if (!is_valid_ether_addr(address->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, address->sa_data, dev->addr_len);
return enc28j60_set_hw_macaddr(dev);
}
/*
* Debug routine to dump useful register contents
*/
static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg)
{
mutex_lock(&priv->lock);
printk(KERN_DEBUG DRV_NAME " %s\n"
"HwRevID: 0x%02x\n"
"Cntrl: ECON1 ECON2 ESTAT EIR EIE\n"
" 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n"
"MAC : MACON1 MACON3 MACON4\n"
" 0x%02x 0x%02x 0x%02x\n"
"Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n"
" 0x%04x 0x%04x 0x%04x 0x%04x "
"0x%02x 0x%02x 0x%04x\n"
"Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n"
" 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n",
msg, nolock_regb_read(priv, EREVID),
nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2),
nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR),
nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1),
nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4),
nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL),
nolock_regw_read(priv, ERXWRPTL),
nolock_regw_read(priv, ERXRDPTL),
nolock_regb_read(priv, ERXFCON),
nolock_regb_read(priv, EPKTCNT),
nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL),
nolock_regw_read(priv, ETXNDL),
nolock_regb_read(priv, MACLCON1),
nolock_regb_read(priv, MACLCON2),
nolock_regb_read(priv, MAPHSUP));
mutex_unlock(&priv->lock);
}
/*
* ERXRDPT need to be set always at odd addresses, refer to errata datasheet
*/
static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end)
{
u16 erxrdpt;
if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end))
erxrdpt = end;
else
erxrdpt = next_packet_ptr - 1;
return erxrdpt;
}
static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
{
u16 erxrdpt;
if (start > 0x1FFF || end > 0x1FFF || start > end) {
if (netif_msg_drv(priv))
printk(KERN_ERR DRV_NAME ": %s(%d, %d) RXFIFO "
"bad parameters!\n", __FUNCTION__, start, end);
return;
}
/* set receive buffer start + end */
priv->next_pk_ptr = start;
nolock_regw_write(priv, ERXSTL, start);
erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end);
nolock_regw_write(priv, ERXRDPTL, erxrdpt);
nolock_regw_write(priv, ERXNDL, end);
}
static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
{
if (start > 0x1FFF || end > 0x1FFF || start > end) {
if (netif_msg_drv(priv))
printk(KERN_ERR DRV_NAME ": %s(%d, %d) TXFIFO "
"bad parameters!\n", __FUNCTION__, start, end);
return;
}
/* set transmit buffer start + end */
nolock_regw_write(priv, ETXSTL, start);
nolock_regw_write(priv, ETXNDL, end);
}
static int enc28j60_hw_init(struct enc28j60_net *priv)
{
u8 reg;
if (netif_msg_drv(priv))
printk(KERN_DEBUG DRV_NAME ": %s() - %s\n", __FUNCTION__,
priv->full_duplex ? "FullDuplex" : "HalfDuplex");
mutex_lock(&priv->lock);
/* first reset the chip */
enc28j60_soft_reset(priv);
/* Clear ECON1 */
spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00);
priv->bank = 0;
priv->hw_enable = false;
priv->tx_retry_count = 0;
priv->max_pk_counter = 0;
priv->rxfilter = RXFILTER_NORMAL;
/* enable address auto increment */
nolock_regb_write(priv, ECON2, ECON2_AUTOINC);
nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
mutex_unlock(&priv->lock);
/*
* Check the RevID.
* If it's 0x00 or 0xFF probably the enc28j60 is not mounted or
* damaged
*/
reg = locked_regb_read(priv, EREVID);
if (netif_msg_drv(priv))
printk(KERN_INFO DRV_NAME ": chip RevID: 0x%02x\n", reg);
if (reg == 0x00 || reg == 0xff) {
if (netif_msg_drv(priv))
printk(KERN_DEBUG DRV_NAME ": %s() Invalid RevId %d\n",
__FUNCTION__, reg);
return 0;
}
/* default filter mode: (unicast OR broadcast) AND crc valid */
locked_regb_write(priv, ERXFCON,
ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN);
/* enable MAC receive */
locked_regb_write(priv, MACON1,
MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS);
/* enable automatic padding and CRC operations */
if (priv->full_duplex) {
locked_regb_write(priv, MACON3,
MACON3_PADCFG0 | MACON3_TXCRCEN |
MACON3_FRMLNEN | MACON3_FULDPX);
/* set inter-frame gap (non-back-to-back) */
locked_regb_write(priv, MAIPGL, 0x12);
/* set inter-frame gap (back-to-back) */
locked_regb_write(priv, MABBIPG, 0x15);
} else {
locked_regb_write(priv, MACON3,
MACON3_PADCFG0 | MACON3_TXCRCEN |
MACON3_FRMLNEN);
locked_regb_write(priv, MACON4, 1 << 6); /* DEFER bit */
/* set inter-frame gap (non-back-to-back) */
locked_regw_write(priv, MAIPGL, 0x0C12);
/* set inter-frame gap (back-to-back) */
locked_regb_write(priv, MABBIPG, 0x12);
}
/*
* MACLCON1 (default)
* MACLCON2 (default)
* Set the maximum packet size which the controller will accept
*/
locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN);
/* Configure LEDs */
if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE))
return 0;
if (priv->full_duplex) {
if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD))
return 0;
if (!enc28j60_phy_write(priv, PHCON2, 0x00))
return 0;
} else {
if (!enc28j60_phy_write(priv, PHCON1, 0x00))
return 0;
if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS))
return 0;
}
if (netif_msg_hw(priv))
enc28j60_dump_regs(priv, "Hw initialized.");
return 1;
}
static void enc28j60_hw_enable(struct enc28j60_net *priv)
{
/* enable interrutps */
if (netif_msg_hw(priv))
printk(KERN_DEBUG DRV_NAME ": %s() enabling interrupts.\n",
__FUNCTION__);
enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE);
mutex_lock(&priv->lock);
nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF |
EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF);
nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE |
EIE_TXIE | EIE_TXERIE | EIE_RXERIE);
/* enable receive logic */
nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
priv->hw_enable = true;
mutex_unlock(&priv->lock);
}
static void enc28j60_hw_disable(struct enc28j60_net *priv)
{
mutex_lock(&priv->lock);
/* disable interrutps and packet reception */
nolock_regb_write(priv, EIE, 0x00);
nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
priv->hw_enable = false;
mutex_unlock(&priv->lock);
}
static int
enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex)
{
struct enc28j60_net *priv = netdev_priv(ndev);
int ret = 0;
if (!priv->hw_enable) {
if (autoneg == AUTONEG_DISABLE && speed == SPEED_10) {
priv->full_duplex = (duplex == DUPLEX_FULL);
if (!enc28j60_hw_init(priv)) {
if (netif_msg_drv(priv))
dev_err(&ndev->dev,
"hw_reset() failed\n");
ret = -EINVAL;
}
} else {
if (netif_msg_link(priv))
dev_warn(&ndev->dev,
"unsupported link setting\n");
ret = -EOPNOTSUPP;
}
} else {
if (netif_msg_link(priv))
dev_warn(&ndev->dev, "Warning: hw must be disabled "
"to set link mode\n");
ret = -EBUSY;
}
return ret;
}
/*
* Read the Transmit Status Vector
*/
static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE])
{
int endptr;
endptr = locked_regw_read(priv, ETXNDL);
if (netif_msg_hw(priv))
printk(KERN_DEBUG DRV_NAME ": reading TSV at addr:0x%04x\n",
endptr + 1);
enc28j60_mem_read(priv, endptr + 1, sizeof(tsv), tsv);
}
static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg,
u8 tsv[TSV_SIZE])
{
u16 tmp1, tmp2;
printk(KERN_DEBUG DRV_NAME ": %s - TSV:\n", msg);
tmp1 = tsv[1];
tmp1 <<= 8;
tmp1 |= tsv[0];
tmp2 = tsv[5];
tmp2 <<= 8;
tmp2 |= tsv[4];
printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, CollisionCount: %d,"
" TotByteOnWire: %d\n", tmp1, tsv[2] & 0x0f, tmp2);
printk(KERN_DEBUG DRV_NAME ": TxDone: %d, CRCErr:%d, LenChkErr: %d,"
" LenOutOfRange: %d\n", TSV_GETBIT(tsv, TSV_TXDONE),
TSV_GETBIT(tsv, TSV_TXCRCERROR),
TSV_GETBIT(tsv, TSV_TXLENCHKERROR),
TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE));
printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
"PacketDefer: %d, ExDefer: %d\n",
TSV_GETBIT(tsv, TSV_TXMULTICAST),
TSV_GETBIT(tsv, TSV_TXBROADCAST),
TSV_GETBIT(tsv, TSV_TXPACKETDEFER),
TSV_GETBIT(tsv, TSV_TXEXDEFER));
printk(KERN_DEBUG DRV_NAME ": ExCollision: %d, LateCollision: %d, "
"Giant: %d, Underrun: %d\n",
TSV_GETBIT(tsv, TSV_TXEXCOLLISION),
TSV_GETBIT(tsv, TSV_TXLATECOLLISION),
TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN));
printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d, "
"BackPressApp: %d, VLanTagFrame: %d\n",
TSV_GETBIT(tsv, TSV_TXCONTROLFRAME),
TSV_GETBIT(tsv, TSV_TXPAUSEFRAME),
TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP),
TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME));
}
/*
* Receive Status vector
*/
static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg,
u16 pk_ptr, int len, u16 sts)
{
printk(KERN_DEBUG DRV_NAME ": %s - NextPk: 0x%04x - RSV:\n",
msg, pk_ptr);
printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, DribbleNibble: %d\n", len,
RSV_GETBIT(sts, RSV_DRIBBLENIBBLE));
printk(KERN_DEBUG DRV_NAME ": RxOK: %d, CRCErr:%d, LenChkErr: %d,"
" LenOutOfRange: %d\n", RSV_GETBIT(sts, RSV_RXOK),
RSV_GETBIT(sts, RSV_CRCERROR),
RSV_GETBIT(sts, RSV_LENCHECKERR),
RSV_GETBIT(sts, RSV_LENOUTOFRANGE));
printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
"LongDropEvent: %d, CarrierEvent: %d\n",
RSV_GETBIT(sts, RSV_RXMULTICAST),
RSV_GETBIT(sts, RSV_RXBROADCAST),
RSV_GETBIT(sts, RSV_RXLONGEVDROPEV),
RSV_GETBIT(sts, RSV_CARRIEREV));
printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d,"
" UnknownOp: %d, VLanTagFrame: %d\n",
RSV_GETBIT(sts, RSV_RXCONTROLFRAME),
RSV_GETBIT(sts, RSV_RXPAUSEFRAME),
RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE),
RSV_GETBIT(sts, RSV_RXTYPEVLAN));
}
static void dump_packet(const char *msg, int len, const char *data)
{
printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len);
print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1,
data, len, true);
}
/*
* Hardware receive function.
* Read the buffer memory, update the FIFO pointer to free the buffer,
* check the status vector and decrement the packet counter.
*/
static void enc28j60_hw_rx(struct net_device *ndev)
{
struct enc28j60_net *priv = netdev_priv(ndev);
struct sk_buff *skb = NULL;
u16 erxrdpt, next_packet, rxstat;
u8 rsv[RSV_SIZE];
int len;
if (netif_msg_rx_status(priv))
printk(KERN_DEBUG DRV_NAME ": RX pk_addr:0x%04x\n",
priv->next_pk_ptr);
if (unlikely(priv->next_pk_ptr > RXEND_INIT)) {
if (netif_msg_rx_err(priv))
dev_err(&ndev->dev,
"%s() Invalid packet address!! 0x%04x\n",
__FUNCTION__, priv->next_pk_ptr);
/* packet address corrupted: reset RX logic */
mutex_lock(&priv->lock);
nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
nolock_reg_bfset(priv, ECON1, ECON1_RXRST);
nolock_reg_bfclr(priv, ECON1, ECON1_RXRST);
nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
nolock_reg_bfclr(priv, EIR, EIR_RXERIF);
nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
mutex_unlock(&priv->lock);
ndev->stats.rx_errors++;
return;
}
/* Read next packet pointer and rx status vector */
enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv);
next_packet = rsv[1];
next_packet <<= 8;
next_packet |= rsv[0];
len = rsv[3];
len <<= 8;
len |= rsv[2];
rxstat = rsv[5];
rxstat <<= 8;
rxstat |= rsv[4];
if (netif_msg_rx_status(priv))
enc28j60_dump_rsv(priv, __FUNCTION__, next_packet, len, rxstat);
if (!RSV_GETBIT(rxstat, RSV_RXOK)) {
if (netif_msg_rx_err(priv))
dev_err(&ndev->dev, "Rx Error (%04x)\n", rxstat);
ndev->stats.rx_errors++;
if (RSV_GETBIT(rxstat, RSV_CRCERROR))
ndev->stats.rx_crc_errors++;
if (RSV_GETBIT(rxstat, RSV_LENCHECKERR))
ndev->stats.rx_frame_errors++;
} else {
skb = dev_alloc_skb(len + NET_IP_ALIGN);
if (!skb) {
if (netif_msg_rx_err(priv))
dev_err(&ndev->dev,
"out of memory for Rx'd frame\n");
ndev->stats.rx_dropped++;
} else {
skb->dev = ndev;
skb_reserve(skb, NET_IP_ALIGN);
/* copy the packet from the receive buffer */
enc28j60_mem_read(priv, priv->next_pk_ptr + sizeof(rsv),
len, skb_put(skb, len));
if (netif_msg_pktdata(priv))
dump_packet(__FUNCTION__, skb->len, skb->data);
skb->protocol = eth_type_trans(skb, ndev);
/* update statistics */
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += len;
ndev->last_rx = jiffies;
netif_rx(skb);
}
}
/*
* Move the RX read pointer to the start of the next
* received packet.
* This frees the memory we just read out
*/
erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT);
if (netif_msg_hw(priv))
printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT:0x%04x\n",
__FUNCTION__, erxrdpt);
mutex_lock(&priv->lock);
nolock_regw_write(priv, ERXRDPTL, erxrdpt);
#ifdef CONFIG_ENC28J60_WRITEVERIFY
if (netif_msg_drv(priv)) {
u16 reg;
reg = nolock_regw_read(priv, ERXRDPTL);
if (reg != erxrdpt)
printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT verify "
"error (0x%04x - 0x%04x)\n", __FUNCTION__,
reg, erxrdpt);
}
#endif
priv->next_pk_ptr = next_packet;
/* we are done with this packet, decrement the packet counter */
nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC);
mutex_unlock(&priv->lock);
}
/*
* Calculate free space in RxFIFO
*/
static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv)
{
int epkcnt, erxst, erxnd, erxwr, erxrd;
int free_space;
mutex_lock(&priv->lock);
epkcnt = nolock_regb_read(priv, EPKTCNT);
if (epkcnt >= 255)
free_space = -1;
else {
erxst = nolock_regw_read(priv, ERXSTL);
erxnd = nolock_regw_read(priv, ERXNDL);
erxwr = nolock_regw_read(priv, ERXWRPTL);
erxrd = nolock_regw_read(priv, ERXRDPTL);
if (erxwr > erxrd)
free_space = (erxnd - erxst) - (erxwr - erxrd);
else if (erxwr == erxrd)
free_space = (erxnd - erxst);
else
free_space = erxrd - erxwr - 1;
}
mutex_unlock(&priv->lock);
if (netif_msg_rx_status(priv))
printk(KERN_DEBUG DRV_NAME ": %s() free_space = %d\n",
__FUNCTION__, free_space);
return free_space;
}
/*
* Access the PHY to determine link status
*/
static void enc28j60_check_link_status(struct net_device *ndev)
{
struct enc28j60_net *priv = netdev_priv(ndev);
u16 reg;
int duplex;
reg = enc28j60_phy_read(priv, PHSTAT2);
if (netif_msg_hw(priv))
printk(KERN_DEBUG DRV_NAME ": %s() PHSTAT1: %04x, "
"PHSTAT2: %04x\n", __FUNCTION__,
enc28j60_phy_read(priv, PHSTAT1), reg);
duplex = reg & PHSTAT2_DPXSTAT;
if (reg & PHSTAT2_LSTAT) {
netif_carrier_on(ndev);
if (netif_msg_ifup(priv))
dev_info(&ndev->dev, "link up - %s\n",
duplex ? "Full duplex" : "Half duplex");
} else {
if (netif_msg_ifdown(priv))
dev_info(&ndev->dev, "link down\n");
netif_carrier_off(ndev);
}
}
static void enc28j60_tx_clear(struct net_device *ndev, bool err)
{
struct enc28j60_net *priv = netdev_priv(ndev);
if (err)
ndev->stats.tx_errors++;
else
ndev->stats.tx_packets++;
if (priv->tx_skb) {
if (!err)
ndev->stats.tx_bytes += priv->tx_skb->len;
dev_kfree_skb(priv->tx_skb);
priv->tx_skb = NULL;
}
locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
netif_wake_queue(ndev);
}
/*
* RX handler
* ignore PKTIF because is unreliable! (look at the errata datasheet)
* check EPKTCNT is the suggested workaround.
* We don't need to clear interrupt flag, automatically done when
* enc28j60_hw_rx() decrements the packet counter.
* Returns how many packet processed.
*/
static int enc28j60_rx_interrupt(struct net_device *ndev)
{
struct enc28j60_net *priv = netdev_priv(ndev);
int pk_counter, ret;
pk_counter = locked_regb_read(priv, EPKTCNT);
if (pk_counter && netif_msg_intr(priv))
printk(KERN_DEBUG DRV_NAME ": intRX, pk_cnt: %d\n", pk_counter);
if (pk_counter > priv->max_pk_counter) {
/* update statistics */
priv->max_pk_counter = pk_counter;
if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1)
printk(KERN_DEBUG DRV_NAME ": RX max_pk_cnt: %d\n",
priv->max_pk_counter);
}
ret = pk_counter;
while (pk_counter-- > 0)
enc28j60_hw_rx(ndev);
return ret;
}
static void enc28j60_irq_work_handler(struct work_struct *work)
{
struct enc28j60_net *priv =
container_of(work, struct enc28j60_net, irq_work);
struct net_device *ndev = priv->netdev;
int intflags, loop;
if (netif_msg_intr(priv))
printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
/* disable further interrupts */
locked_reg_bfclr(priv, EIE, EIE_INTIE);
do {
loop = 0;
intflags = locked_regb_read(priv, EIR);
/* DMA interrupt handler (not currently used) */
if ((intflags & EIR_DMAIF) != 0) {
loop++;
if (netif_msg_intr(priv))
printk(KERN_DEBUG DRV_NAME
": intDMA(%d)\n", loop);
locked_reg_bfclr(priv, EIR, EIR_DMAIF);
}
/* LINK changed handler */
if ((intflags & EIR_LINKIF) != 0) {
loop++;
if (netif_msg_intr(priv))
printk(KERN_DEBUG DRV_NAME
": intLINK(%d)\n", loop);
enc28j60_check_link_status(ndev);
/* read PHIR to clear the flag */
enc28j60_phy_read(priv, PHIR);
}
/* TX complete handler */
if ((intflags & EIR_TXIF) != 0) {
bool err = false;
loop++;
if (netif_msg_intr(priv))
printk(KERN_DEBUG DRV_NAME
": intTX(%d)\n", loop);
priv->tx_retry_count = 0;
if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) {
if (netif_msg_tx_err(priv))
dev_err(&ndev->dev,
"Tx Error (aborted)\n");
err = true;
}
if (netif_msg_tx_done(priv)) {
u8 tsv[TSV_SIZE];
enc28j60_read_tsv(priv, tsv);
enc28j60_dump_tsv(priv, "Tx Done", tsv);
}
enc28j60_tx_clear(ndev, err);
locked_reg_bfclr(priv, EIR, EIR_TXIF);
}
/* TX Error handler */
if ((intflags & EIR_TXERIF) != 0) {
u8 tsv[TSV_SIZE];
loop++;
if (netif_msg_intr(priv))
printk(KERN_DEBUG DRV_NAME
": intTXErr(%d)\n", loop);
locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
enc28j60_read_tsv(priv, tsv);
if (netif_msg_tx_err(priv))
enc28j60_dump_tsv(priv, "Tx Error", tsv);
/* Reset TX logic */
mutex_lock(&priv->lock);
nolock_reg_bfset(priv, ECON1, ECON1_TXRST);
nolock_reg_bfclr(priv, ECON1, ECON1_TXRST);
nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
mutex_unlock(&priv->lock);
/* Transmit Late collision check for retransmit */
if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) {
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG DRV_NAME
": LateCollision TXErr (%d)\n",
priv->tx_retry_count);
if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT)
locked_reg_bfset(priv, ECON1,
ECON1_TXRTS);
else
enc28j60_tx_clear(ndev, true);
} else
enc28j60_tx_clear(ndev, true);
locked_reg_bfclr(priv, EIR, EIR_TXERIF);
}
/* RX Error handler */
if ((intflags & EIR_RXERIF) != 0) {
loop++;
if (netif_msg_intr(priv))
printk(KERN_DEBUG DRV_NAME
": intRXErr(%d)\n", loop);
/* Check free FIFO space to flag RX overrun */
if (enc28j60_get_free_rxfifo(priv) <= 0) {
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG DRV_NAME
": RX Overrun\n");
ndev->stats.rx_dropped++;
}
locked_reg_bfclr(priv, EIR, EIR_RXERIF);
}
/* RX handler */
if (enc28j60_rx_interrupt(ndev))
loop++;
} while (loop);
/* re-enable interrupts */
locked_reg_bfset(priv, EIE, EIE_INTIE);
if (netif_msg_intr(priv))
printk(KERN_DEBUG DRV_NAME ": %s() exit\n", __FUNCTION__);
}
/*
* Hardware transmit function.
* Fill the buffer memory and send the contents of the transmit buffer
* onto the network
*/
static void enc28j60_hw_tx(struct enc28j60_net *priv)
{
if (netif_msg_tx_queued(priv))
printk(KERN_DEBUG DRV_NAME
": Tx Packet Len:%d\n", priv->tx_skb->len);
if (netif_msg_pktdata(priv))
dump_packet(__FUNCTION__,
priv->tx_skb->len, priv->tx_skb->data);
enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data);
#ifdef CONFIG_ENC28J60_WRITEVERIFY
/* readback and verify written data */
if (netif_msg_drv(priv)) {
int test_len, k;
u8 test_buf[64]; /* limit the test to the first 64 bytes */
int okflag;
test_len = priv->tx_skb->len;
if (test_len > sizeof(test_buf))
test_len = sizeof(test_buf);
/* + 1 to skip control byte */
enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf);
okflag = 1;
for (k = 0; k < test_len; k++) {
if (priv->tx_skb->data[k] != test_buf[k]) {
printk(KERN_DEBUG DRV_NAME
": Error, %d location differ: "
"0x%02x-0x%02x\n", k,
priv->tx_skb->data[k], test_buf[k]);
okflag = 0;
}
}
if (!okflag)
printk(KERN_DEBUG DRV_NAME ": Tx write buffer, "
"verify ERROR!\n");
}
#endif
/* set TX request flag */
locked_reg_bfset(priv, ECON1, ECON1_TXRTS);
}
static int enc28j60_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct enc28j60_net *priv = netdev_priv(dev);
if (netif_msg_tx_queued(priv))
printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
/* If some error occurs while trying to transmit this
* packet, you should return '1' from this function.
* In such a case you _may not_ do anything to the
* SKB, it is still owned by the network queueing
* layer when an error is returned. This means you
* may not modify any SKB fields, you may not free
* the SKB, etc.
*/
netif_stop_queue(dev);
/* save the timestamp */
priv->netdev->trans_start = jiffies;
/* Remember the skb for deferred processing */
priv->tx_skb = skb;
schedule_work(&priv->tx_work);
return 0;
}
static void enc28j60_tx_work_handler(struct work_struct *work)
{
struct enc28j60_net *priv =
container_of(work, struct enc28j60_net, tx_work);
/* actual delivery of data */
enc28j60_hw_tx(priv);
}
static irqreturn_t enc28j60_irq(int irq, void *dev_id)
{
struct enc28j60_net *priv = dev_id;
/*
* Can't do anything in interrupt context because we need to
* block (spi_sync() is blocking) so fire of the interrupt
* handling workqueue.
* Remember that we access enc28j60 registers through SPI bus
* via spi_sync() call.
*/
schedule_work(&priv->irq_work);
return IRQ_HANDLED;
}
static void enc28j60_tx_timeout(struct net_device *ndev)
{
struct enc28j60_net *priv = netdev_priv(ndev);
if (netif_msg_timer(priv))
dev_err(&ndev->dev, DRV_NAME " tx timeout\n");
ndev->stats.tx_errors++;
/* can't restart safely under softirq */
schedule_work(&priv->restart_work);
}
/*
* Open/initialize the board. This is called (in the current kernel)
* sometime after booting when the 'ifconfig' program is run.
*
* This routine should set everything up anew at each open, even
* registers that "should" only need to be set once at boot, so that
* there is non-reboot way to recover if something goes wrong.
*/
static int enc28j60_net_open(struct net_device *dev)
{
struct enc28j60_net *priv = netdev_priv(dev);
if (netif_msg_drv(priv))
printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
if (!is_valid_ether_addr(dev->dev_addr)) {
if (netif_msg_ifup(priv)) {
DECLARE_MAC_BUF(mac);
dev_err(&dev->dev, "invalid MAC address %s\n",
print_mac(mac, dev->dev_addr));
}
return -EADDRNOTAVAIL;
}
/* Reset the hardware here */
enc28j60_hw_disable(priv);
if (!enc28j60_hw_init(priv)) {
if (netif_msg_ifup(priv))
dev_err(&dev->dev, "hw_reset() failed\n");
return -EINVAL;
}
/* Update the MAC address (in case user has changed it) */
enc28j60_set_hw_macaddr(dev);
/* Enable interrupts */
enc28j60_hw_enable(priv);
/* check link status */
enc28j60_check_link_status(dev);
/* We are now ready to accept transmit requests from
* the queueing layer of the networking.
*/
netif_start_queue(dev);
return 0;
}
/* The inverse routine to net_open(). */
static int enc28j60_net_close(struct net_device *dev)
{
struct enc28j60_net *priv = netdev_priv(dev);
if (netif_msg_drv(priv))
printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
enc28j60_hw_disable(priv);
netif_stop_queue(dev);
return 0;
}
/*
* Set or clear the multicast filter for this adapter
* num_addrs == -1 Promiscuous mode, receive all packets
* num_addrs == 0 Normal mode, filter out multicast packets
* num_addrs > 0 Multicast mode, receive normal and MC packets
*/
static void enc28j60_set_multicast_list(struct net_device *dev)
{
struct enc28j60_net *priv = netdev_priv(dev);
int oldfilter = priv->rxfilter;
if (dev->flags & IFF_PROMISC) {
if (netif_msg_link(priv))
dev_info(&dev->dev, "promiscuous mode\n");
priv->rxfilter = RXFILTER_PROMISC;
} else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count) {
if (netif_msg_link(priv))
dev_info(&dev->dev, "%smulticast mode\n",
(dev->flags & IFF_ALLMULTI) ? "all-" : "");
priv->rxfilter = RXFILTER_MULTI;
} else {
if (netif_msg_link(priv))
dev_info(&dev->dev, "normal mode\n");
priv->rxfilter = RXFILTER_NORMAL;
}
if (oldfilter != priv->rxfilter)
schedule_work(&priv->setrx_work);
}
static void enc28j60_setrx_work_handler(struct work_struct *work)
{
struct enc28j60_net *priv =
container_of(work, struct enc28j60_net, setrx_work);
if (priv->rxfilter == RXFILTER_PROMISC) {
if (netif_msg_drv(priv))
printk(KERN_DEBUG DRV_NAME ": promiscuous mode\n");
locked_regb_write(priv, ERXFCON, 0x00);
} else if (priv->rxfilter == RXFILTER_MULTI) {
if (netif_msg_drv(priv))
printk(KERN_DEBUG DRV_NAME ": multicast mode\n");
locked_regb_write(priv, ERXFCON,
ERXFCON_UCEN | ERXFCON_CRCEN |
ERXFCON_BCEN | ERXFCON_MCEN);
} else {
if (netif_msg_drv(priv))
printk(KERN_DEBUG DRV_NAME ": normal mode\n");
locked_regb_write(priv, ERXFCON,
ERXFCON_UCEN | ERXFCON_CRCEN |
ERXFCON_BCEN);
}
}
static void enc28j60_restart_work_handler(struct work_struct *work)
{
struct enc28j60_net *priv =
container_of(work, struct enc28j60_net, restart_work);
struct net_device *ndev = priv->netdev;
int ret;
rtnl_lock();
if (netif_running(ndev)) {
enc28j60_net_close(ndev);
ret = enc28j60_net_open(ndev);
if (unlikely(ret)) {
dev_info(&ndev->dev, " could not restart %d\n", ret);
dev_close(ndev);
}
}
rtnl_unlock();
}
/* ......................... ETHTOOL SUPPORT ........................... */
static void
enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info,
dev->dev.parent->bus_id, sizeof(info->bus_info));
}
static int
enc28j60_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct enc28j60_net *priv = netdev_priv(dev);
cmd->transceiver = XCVR_INTERNAL;
cmd->supported = SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_TP;
cmd->speed = SPEED_10;
cmd->duplex = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
cmd->port = PORT_TP;
cmd->autoneg = AUTONEG_DISABLE;
return 0;
}
static int
enc28j60_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
return enc28j60_setlink(dev, cmd->autoneg, cmd->speed, cmd->duplex);
}
static u32 enc28j60_get_msglevel(struct net_device *dev)
{
struct enc28j60_net *priv = netdev_priv(dev);
return priv->msg_enable;
}
static void enc28j60_set_msglevel(struct net_device *dev, u32 val)
{
struct enc28j60_net *priv = netdev_priv(dev);
priv->msg_enable = val;
}
static const struct ethtool_ops enc28j60_ethtool_ops = {
.get_settings = enc28j60_get_settings,
.set_settings = enc28j60_set_settings,
.get_drvinfo = enc28j60_get_drvinfo,
.get_msglevel = enc28j60_get_msglevel,
.set_msglevel = enc28j60_set_msglevel,
};
static int enc28j60_chipset_init(struct net_device *dev)
{
struct enc28j60_net *priv = netdev_priv(dev);
return enc28j60_hw_init(priv);
}
static int __devinit enc28j60_probe(struct spi_device *spi)
{
struct net_device *dev;
struct enc28j60_net *priv;
int ret = 0;
if (netif_msg_drv(&debug))
dev_info(&spi->dev, DRV_NAME " Ethernet driver %s loaded\n",
DRV_VERSION);
dev = alloc_etherdev(sizeof(struct enc28j60_net));
if (!dev) {
if (netif_msg_drv(&debug))
dev_err(&spi->dev, DRV_NAME
": unable to alloc new ethernet\n");
ret = -ENOMEM;
goto error_alloc;
}
priv = netdev_priv(dev);
priv->netdev = dev; /* priv to netdev reference */
priv->spi = spi; /* priv to spi reference */
priv->msg_enable = netif_msg_init(debug.msg_enable,
ENC28J60_MSG_DEFAULT);
mutex_init(&priv->lock);
INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler);
INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler);
INIT_WORK(&priv->irq_work, enc28j60_irq_work_handler);
INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler);
dev_set_drvdata(&spi->dev, priv); /* spi to priv reference */
SET_NETDEV_DEV(dev, &spi->dev);
if (!enc28j60_chipset_init(dev)) {
if (netif_msg_probe(priv))
dev_info(&spi->dev, DRV_NAME " chip not found\n");
ret = -EIO;
goto error_irq;
}
random_ether_addr(dev->dev_addr);
enc28j60_set_hw_macaddr(dev);
ret = request_irq(spi->irq, enc28j60_irq, IRQF_TRIGGER_FALLING,
DRV_NAME, priv);
if (ret < 0) {
if (netif_msg_probe(priv))
dev_err(&spi->dev, DRV_NAME ": request irq %d failed "
"(ret = %d)\n", spi->irq, ret);
goto error_irq;
}
dev->if_port = IF_PORT_10BASET;
dev->irq = spi->irq;
dev->open = enc28j60_net_open;
dev->stop = enc28j60_net_close;
dev->hard_start_xmit = enc28j60_send_packet;
dev->set_multicast_list = &enc28j60_set_multicast_list;
dev->set_mac_address = enc28j60_set_mac_address;
dev->tx_timeout = &enc28j60_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
SET_ETHTOOL_OPS(dev, &enc28j60_ethtool_ops);
ret = register_netdev(dev);
if (ret) {
if (netif_msg_probe(priv))
dev_err(&spi->dev, "register netdev " DRV_NAME
" failed (ret = %d)\n", ret);
goto error_register;
}
dev_info(&dev->dev, DRV_NAME " driver registered\n");
return 0;
error_register:
free_irq(spi->irq, priv);
error_irq:
free_netdev(dev);
error_alloc:
return ret;
}
static int enc28j60_remove(struct spi_device *spi)
{
struct enc28j60_net *priv = dev_get_drvdata(&spi->dev);
if (netif_msg_drv(priv))
printk(KERN_DEBUG DRV_NAME ": remove\n");
unregister_netdev(priv->netdev);
free_irq(spi->irq, priv);
free_netdev(priv->netdev);
return 0;
}
static struct spi_driver enc28j60_driver = {
.driver = {
.name = DRV_NAME,
.bus = &spi_bus_type,
.owner = THIS_MODULE,
},
.probe = enc28j60_probe,
.remove = __devexit_p(enc28j60_remove),
};
static int __init enc28j60_init(void)
{
return spi_register_driver(&enc28j60_driver);
}
module_init(enc28j60_init);
static void __exit enc28j60_exit(void)
{
spi_unregister_driver(&enc28j60_driver);
}
module_exit(enc28j60_exit);
MODULE_DESCRIPTION(DRV_NAME " ethernet driver");
MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
MODULE_LICENSE("GPL");
module_param_named(debug, debug.msg_enable, int, 0);
MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., ffff=all)");