linux/fs/bcachefs/btree_io.c

1712 lines
42 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "bkey_methods.h"
#include "bkey_sort.h"
#include "btree_cache.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_locking.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "buckets.h"
#include "checksum.h"
#include "debug.h"
#include "error.h"
#include "extents.h"
#include "io.h"
#include "journal_reclaim.h"
#include "journal_seq_blacklist.h"
#include "super-io.h"
#include "trace.h"
#include <linux/sched/mm.h>
static void verify_no_dups(struct btree *b,
struct bkey_packed *start,
struct bkey_packed *end)
{
#ifdef CONFIG_BCACHEFS_DEBUG
struct bkey_packed *k, *p;
if (start == end)
return;
for (p = start, k = bkey_next_skip_noops(start, end);
k != end;
p = k, k = bkey_next_skip_noops(k, end)) {
struct bkey l = bkey_unpack_key(b, p);
struct bkey r = bkey_unpack_key(b, k);
BUG_ON(bkey_cmp(l.p, bkey_start_pos(&r)) >= 0);
}
#endif
}
static void set_needs_whiteout(struct bset *i, int v)
{
struct bkey_packed *k;
for (k = i->start;
k != vstruct_last(i);
k = bkey_next_skip_noops(k, vstruct_last(i)))
k->needs_whiteout = v;
}
static void btree_bounce_free(struct bch_fs *c, size_t size,
bool used_mempool, void *p)
{
if (used_mempool)
mempool_free(p, &c->btree_bounce_pool);
else
vpfree(p, size);
}
static void *btree_bounce_alloc(struct bch_fs *c, size_t size,
bool *used_mempool)
{
unsigned flags = memalloc_nofs_save();
void *p;
BUG_ON(size > btree_bytes(c));
*used_mempool = false;
p = vpmalloc(size, __GFP_NOWARN|GFP_NOWAIT);
if (!p) {
*used_mempool = true;
p = mempool_alloc(&c->btree_bounce_pool, GFP_NOIO);
}
memalloc_nofs_restore(flags);
return p;
}
static void sort_bkey_ptrs(const struct btree *bt,
struct bkey_packed **ptrs, unsigned nr)
{
unsigned n = nr, a = nr / 2, b, c, d;
if (!a)
return;
/* Heap sort: see lib/sort.c: */
while (1) {
if (a)
a--;
else if (--n)
swap(ptrs[0], ptrs[n]);
else
break;
for (b = a; c = 2 * b + 1, (d = c + 1) < n;)
b = bch2_bkey_cmp_packed(bt,
ptrs[c],
ptrs[d]) >= 0 ? c : d;
if (d == n)
b = c;
while (b != a &&
bch2_bkey_cmp_packed(bt,
ptrs[a],
ptrs[b]) >= 0)
b = (b - 1) / 2;
c = b;
while (b != a) {
b = (b - 1) / 2;
swap(ptrs[b], ptrs[c]);
}
}
}
static void bch2_sort_whiteouts(struct bch_fs *c, struct btree *b)
{
struct bkey_packed *new_whiteouts, **ptrs, **ptrs_end, *k;
bool used_mempool = false;
size_t bytes = b->whiteout_u64s * sizeof(u64);
if (!b->whiteout_u64s)
return;
new_whiteouts = btree_bounce_alloc(c, bytes, &used_mempool);
ptrs = ptrs_end = ((void *) new_whiteouts + bytes);
for (k = unwritten_whiteouts_start(c, b);
k != unwritten_whiteouts_end(c, b);
k = bkey_next(k))
*--ptrs = k;
sort_bkey_ptrs(b, ptrs, ptrs_end - ptrs);
k = new_whiteouts;
while (ptrs != ptrs_end) {
bkey_copy(k, *ptrs);
k = bkey_next(k);
ptrs++;
}
verify_no_dups(b, new_whiteouts,
(void *) ((u64 *) new_whiteouts + b->whiteout_u64s));
memcpy_u64s(unwritten_whiteouts_start(c, b),
new_whiteouts, b->whiteout_u64s);
btree_bounce_free(c, bytes, used_mempool, new_whiteouts);
}
static bool should_compact_bset(struct btree *b, struct bset_tree *t,
bool compacting, enum compact_mode mode)
{
if (!bset_dead_u64s(b, t))
return false;
switch (mode) {
case COMPACT_LAZY:
return should_compact_bset_lazy(b, t) ||
(compacting && !bset_written(b, bset(b, t)));
case COMPACT_ALL:
return true;
default:
BUG();
}
}
static bool bch2_drop_whiteouts(struct btree *b, enum compact_mode mode)
{
struct bset_tree *t;
bool ret = false;
for_each_bset(b, t) {
struct bset *i = bset(b, t);
struct bkey_packed *k, *n, *out, *start, *end;
struct btree_node_entry *src = NULL, *dst = NULL;
if (t != b->set && !bset_written(b, i)) {
src = container_of(i, struct btree_node_entry, keys);
dst = max(write_block(b),
(void *) btree_bkey_last(b, t - 1));
}
if (src != dst)
ret = true;
if (!should_compact_bset(b, t, ret, mode)) {
if (src != dst) {
memmove(dst, src, sizeof(*src) +
le16_to_cpu(src->keys.u64s) *
sizeof(u64));
i = &dst->keys;
set_btree_bset(b, t, i);
}
continue;
}
start = btree_bkey_first(b, t);
end = btree_bkey_last(b, t);
if (src != dst) {
memmove(dst, src, sizeof(*src));
i = &dst->keys;
set_btree_bset(b, t, i);
}
out = i->start;
for (k = start; k != end; k = n) {
n = bkey_next_skip_noops(k, end);
if (!bkey_whiteout(k)) {
bkey_copy(out, k);
out = bkey_next(out);
} else {
BUG_ON(k->needs_whiteout);
}
}
i->u64s = cpu_to_le16((u64 *) out - i->_data);
set_btree_bset_end(b, t);
bch2_bset_set_no_aux_tree(b, t);
ret = true;
}
bch2_verify_btree_nr_keys(b);
bch2_btree_build_aux_trees(b);
return ret;
}
bool bch2_compact_whiteouts(struct bch_fs *c, struct btree *b,
enum compact_mode mode)
{
return bch2_drop_whiteouts(b, mode);
}
static void btree_node_sort(struct bch_fs *c, struct btree *b,
struct btree_iter *iter,
unsigned start_idx,
unsigned end_idx,
bool filter_whiteouts)
{
struct btree_node *out;
struct sort_iter sort_iter;
struct bset_tree *t;
struct bset *start_bset = bset(b, &b->set[start_idx]);
bool used_mempool = false;
u64 start_time, seq = 0;
unsigned i, u64s = 0, bytes, shift = end_idx - start_idx - 1;
bool sorting_entire_node = start_idx == 0 &&
end_idx == b->nsets;
sort_iter_init(&sort_iter, b);
for (t = b->set + start_idx;
t < b->set + end_idx;
t++) {
u64s += le16_to_cpu(bset(b, t)->u64s);
sort_iter_add(&sort_iter,
btree_bkey_first(b, t),
btree_bkey_last(b, t));
}
bytes = sorting_entire_node
? btree_bytes(c)
: __vstruct_bytes(struct btree_node, u64s);
out = btree_bounce_alloc(c, bytes, &used_mempool);
start_time = local_clock();
u64s = bch2_sort_keys(out->keys.start, &sort_iter, filter_whiteouts);
out->keys.u64s = cpu_to_le16(u64s);
BUG_ON(vstruct_end(&out->keys) > (void *) out + bytes);
if (sorting_entire_node)
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort],
start_time);
/* Make sure we preserve bset journal_seq: */
for (t = b->set + start_idx; t < b->set + end_idx; t++)
seq = max(seq, le64_to_cpu(bset(b, t)->journal_seq));
start_bset->journal_seq = cpu_to_le64(seq);
if (sorting_entire_node) {
unsigned u64s = le16_to_cpu(out->keys.u64s);
BUG_ON(bytes != btree_bytes(c));
/*
* Our temporary buffer is the same size as the btree node's
* buffer, we can just swap buffers instead of doing a big
* memcpy()
*/
*out = *b->data;
out->keys.u64s = cpu_to_le16(u64s);
swap(out, b->data);
set_btree_bset(b, b->set, &b->data->keys);
} else {
start_bset->u64s = out->keys.u64s;
memcpy_u64s(start_bset->start,
out->keys.start,
le16_to_cpu(out->keys.u64s));
}
for (i = start_idx + 1; i < end_idx; i++)
b->nr.bset_u64s[start_idx] +=
b->nr.bset_u64s[i];
b->nsets -= shift;
for (i = start_idx + 1; i < b->nsets; i++) {
b->nr.bset_u64s[i] = b->nr.bset_u64s[i + shift];
b->set[i] = b->set[i + shift];
}
for (i = b->nsets; i < MAX_BSETS; i++)
b->nr.bset_u64s[i] = 0;
set_btree_bset_end(b, &b->set[start_idx]);
bch2_bset_set_no_aux_tree(b, &b->set[start_idx]);
btree_bounce_free(c, bytes, used_mempool, out);
bch2_verify_btree_nr_keys(b);
}
void bch2_btree_sort_into(struct bch_fs *c,
struct btree *dst,
struct btree *src)
{
struct btree_nr_keys nr;
struct btree_node_iter src_iter;
u64 start_time = local_clock();
BUG_ON(dst->nsets != 1);
bch2_bset_set_no_aux_tree(dst, dst->set);
bch2_btree_node_iter_init_from_start(&src_iter, src);
if (btree_node_is_extents(src))
nr = bch2_sort_repack_merge(c, btree_bset_first(dst),
src, &src_iter,
&dst->format,
true);
else
nr = bch2_sort_repack(btree_bset_first(dst),
src, &src_iter,
&dst->format,
true);
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort],
start_time);
set_btree_bset_end(dst, dst->set);
dst->nr.live_u64s += nr.live_u64s;
dst->nr.bset_u64s[0] += nr.bset_u64s[0];
dst->nr.packed_keys += nr.packed_keys;
dst->nr.unpacked_keys += nr.unpacked_keys;
bch2_verify_btree_nr_keys(dst);
}
#define SORT_CRIT (4096 / sizeof(u64))
/*
* We're about to add another bset to the btree node, so if there's currently
* too many bsets - sort some of them together:
*/
static bool btree_node_compact(struct bch_fs *c, struct btree *b,
struct btree_iter *iter)
{
unsigned unwritten_idx;
bool ret = false;
for (unwritten_idx = 0;
unwritten_idx < b->nsets;
unwritten_idx++)
if (!bset_written(b, bset(b, &b->set[unwritten_idx])))
break;
if (b->nsets - unwritten_idx > 1) {
btree_node_sort(c, b, iter, unwritten_idx,
b->nsets, false);
ret = true;
}
if (unwritten_idx > 1) {
btree_node_sort(c, b, iter, 0, unwritten_idx, false);
ret = true;
}
return ret;
}
void bch2_btree_build_aux_trees(struct btree *b)
{
struct bset_tree *t;
for_each_bset(b, t)
bch2_bset_build_aux_tree(b, t,
!bset_written(b, bset(b, t)) &&
t == bset_tree_last(b));
}
/*
* @bch_btree_init_next - initialize a new (unwritten) bset that can then be
* inserted into
*
* Safe to call if there already is an unwritten bset - will only add a new bset
* if @b doesn't already have one.
*
* Returns true if we sorted (i.e. invalidated iterators
*/
void bch2_btree_init_next(struct bch_fs *c, struct btree *b,
struct btree_iter *iter)
{
struct btree_node_entry *bne;
bool did_sort;
EBUG_ON(!(b->c.lock.state.seq & 1));
EBUG_ON(iter && iter->l[b->c.level].b != b);
did_sort = btree_node_compact(c, b, iter);
bne = want_new_bset(c, b);
if (bne)
bch2_bset_init_next(c, b, bne);
bch2_btree_build_aux_trees(b);
if (iter && did_sort)
bch2_btree_iter_reinit_node(iter, b);
}
static void btree_pos_to_text(struct printbuf *out, struct bch_fs *c,
struct btree *b)
{
pr_buf(out, "%s level %u/%u\n ",
bch2_btree_ids[b->c.btree_id],
b->c.level,
c->btree_roots[b->c.btree_id].level);
bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key));
}
static void btree_err_msg(struct printbuf *out, struct bch_fs *c,
struct bch_dev *ca,
struct btree *b, struct bset *i,
unsigned offset, int write)
{
pr_buf(out, "error validating btree node ");
if (write)
pr_buf(out, "before write ");
if (ca)
pr_buf(out, "on %s ", ca->name);
pr_buf(out, "at btree ");
btree_pos_to_text(out, c, b);
pr_buf(out, "\n node offset %u", b->written);
if (i)
pr_buf(out, " bset u64s %u", le16_to_cpu(i->u64s));
}
enum btree_err_type {
BTREE_ERR_FIXABLE,
BTREE_ERR_WANT_RETRY,
BTREE_ERR_MUST_RETRY,
BTREE_ERR_FATAL,
};
enum btree_validate_ret {
BTREE_RETRY_READ = 64,
};
#define btree_err(type, c, ca, b, i, msg, ...) \
({ \
__label__ out; \
char _buf[300]; \
char *buf2 = _buf; \
struct printbuf out = PBUF(_buf); \
\
buf2 = kmalloc(4096, GFP_ATOMIC); \
if (buf2) \
out = _PBUF(buf2, 4986); \
\
btree_err_msg(&out, c, ca, b, i, b->written, write); \
pr_buf(&out, ": " msg, ##__VA_ARGS__); \
\
if (type == BTREE_ERR_FIXABLE && \
write == READ && \
!test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags)) { \
mustfix_fsck_err(c, "%s", buf2); \
goto out; \
} \
\
switch (write) { \
case READ: \
bch_err(c, "%s", buf2); \
\
switch (type) { \
case BTREE_ERR_FIXABLE: \
ret = BCH_FSCK_ERRORS_NOT_FIXED; \
goto fsck_err; \
case BTREE_ERR_WANT_RETRY: \
if (have_retry) { \
ret = BTREE_RETRY_READ; \
goto fsck_err; \
} \
break; \
case BTREE_ERR_MUST_RETRY: \
ret = BTREE_RETRY_READ; \
goto fsck_err; \
case BTREE_ERR_FATAL: \
ret = BCH_FSCK_ERRORS_NOT_FIXED; \
goto fsck_err; \
} \
break; \
case WRITE: \
bch_err(c, "corrupt metadata before write: %s", buf2); \
\
if (bch2_fs_inconsistent(c)) { \
ret = BCH_FSCK_ERRORS_NOT_FIXED; \
goto fsck_err; \
} \
break; \
} \
out: \
if (buf2 != _buf) \
kfree(buf2); \
true; \
})
#define btree_err_on(cond, ...) ((cond) ? btree_err(__VA_ARGS__) : false)
static int validate_bset(struct bch_fs *c, struct bch_dev *ca,
struct btree *b, struct bset *i,
unsigned sectors, int write, bool have_retry)
{
unsigned version = le16_to_cpu(i->version);
const char *err;
int ret = 0;
btree_err_on((version != BCH_BSET_VERSION_OLD &&
version < bcachefs_metadata_version_min) ||
version >= bcachefs_metadata_version_max,
BTREE_ERR_FATAL, c, ca, b, i,
"unsupported bset version");
if (btree_err_on(b->written + sectors > c->opts.btree_node_size,
BTREE_ERR_FIXABLE, c, ca, b, i,
"bset past end of btree node")) {
i->u64s = 0;
return 0;
}
btree_err_on(b->written && !i->u64s,
BTREE_ERR_FIXABLE, c, ca, b, i,
"empty bset");
if (!b->written) {
struct btree_node *bn =
container_of(i, struct btree_node, keys);
/* These indicate that we read the wrong btree node: */
if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
struct bch_btree_ptr_v2 *bp =
&bkey_i_to_btree_ptr_v2(&b->key)->v;
/* XXX endianness */
btree_err_on(bp->seq != bn->keys.seq,
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
"incorrect sequence number (wrong btree node)");
}
btree_err_on(BTREE_NODE_ID(bn) != b->c.btree_id,
BTREE_ERR_MUST_RETRY, c, ca, b, i,
"incorrect btree id");
btree_err_on(BTREE_NODE_LEVEL(bn) != b->c.level,
BTREE_ERR_MUST_RETRY, c, ca, b, i,
"incorrect level");
if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN) {
u64 *p = (u64 *) &bn->ptr;
*p = swab64(*p);
}
if (!write)
compat_btree_node(b->c.level, b->c.btree_id, version,
BSET_BIG_ENDIAN(i), write, bn);
if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
struct bch_btree_ptr_v2 *bp =
&bkey_i_to_btree_ptr_v2(&b->key)->v;
if (BTREE_PTR_RANGE_UPDATED(bp)) {
b->data->min_key = bp->min_key;
b->data->max_key = b->key.k.p;
}
btree_err_on(bkey_cmp(b->data->min_key, bp->min_key),
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
"incorrect min_key: got %llu:%llu should be %llu:%llu",
b->data->min_key.inode,
b->data->min_key.offset,
bp->min_key.inode,
bp->min_key.offset);
}
btree_err_on(bkey_cmp(bn->max_key, b->key.k.p),
BTREE_ERR_MUST_RETRY, c, ca, b, i,
"incorrect max key %llu:%llu",
bn->max_key.inode,
bn->max_key.offset);
if (write)
compat_btree_node(b->c.level, b->c.btree_id, version,
BSET_BIG_ENDIAN(i), write, bn);
/* XXX: ideally we would be validating min_key too */
#if 0
/*
* not correct anymore, due to btree node write error
* handling
*
* need to add bn->seq to btree keys and verify
* against that
*/
btree_err_on(!extent_contains_ptr(bkey_i_to_s_c_extent(&b->key),
bn->ptr),
BTREE_ERR_FATAL, c, b, i,
"incorrect backpointer");
#endif
err = bch2_bkey_format_validate(&bn->format);
btree_err_on(err,
BTREE_ERR_FATAL, c, ca, b, i,
"invalid bkey format: %s", err);
compat_bformat(b->c.level, b->c.btree_id, version,
BSET_BIG_ENDIAN(i), write,
&bn->format);
}
fsck_err:
return ret;
}
static int validate_bset_keys(struct bch_fs *c, struct btree *b,
struct bset *i, unsigned *whiteout_u64s,
int write, bool have_retry)
{
unsigned version = le16_to_cpu(i->version);
struct bkey_packed *k, *prev = NULL;
bool seen_non_whiteout = false;
int ret = 0;
if (!BSET_SEPARATE_WHITEOUTS(i)) {
seen_non_whiteout = true;
*whiteout_u64s = 0;
}
for (k = i->start;
k != vstruct_last(i);) {
struct bkey_s u;
struct bkey tmp;
const char *invalid;
if (btree_err_on(bkey_next(k) > vstruct_last(i),
BTREE_ERR_FIXABLE, c, NULL, b, i,
"key extends past end of bset")) {
i->u64s = cpu_to_le16((u64 *) k - i->_data);
break;
}
if (btree_err_on(k->format > KEY_FORMAT_CURRENT,
BTREE_ERR_FIXABLE, c, NULL, b, i,
"invalid bkey format %u", k->format)) {
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove_u64s_down(k, bkey_next(k),
(u64 *) vstruct_end(i) - (u64 *) k);
continue;
}
/* XXX: validate k->u64s */
if (!write)
bch2_bkey_compat(b->c.level, b->c.btree_id, version,
BSET_BIG_ENDIAN(i), write,
&b->format, k);
u = __bkey_disassemble(b, k, &tmp);
invalid = __bch2_bkey_invalid(c, u.s_c, btree_node_type(b)) ?:
bch2_bkey_in_btree_node(b, u.s_c) ?:
(write ? bch2_bkey_val_invalid(c, u.s_c) : NULL);
if (invalid) {
char buf[160];
bch2_bkey_val_to_text(&PBUF(buf), c, u.s_c);
btree_err(BTREE_ERR_FIXABLE, c, NULL, b, i,
"invalid bkey: %s\n%s", invalid, buf);
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove_u64s_down(k, bkey_next(k),
(u64 *) vstruct_end(i) - (u64 *) k);
continue;
}
if (write)
bch2_bkey_compat(b->c.level, b->c.btree_id, version,
BSET_BIG_ENDIAN(i), write,
&b->format, k);
/*
* with the separate whiteouts thing (used for extents), the
* second set of keys actually can have whiteouts too, so we
* can't solely go off bkey_whiteout()...
*/
if (!seen_non_whiteout &&
(!bkey_whiteout(k) ||
(prev && bkey_iter_cmp(b, prev, k) > 0))) {
*whiteout_u64s = k->_data - i->_data;
seen_non_whiteout = true;
} else if (prev && bkey_iter_cmp(b, prev, k) > 0) {
char buf1[80];
char buf2[80];
struct bkey up = bkey_unpack_key(b, prev);
bch2_bkey_to_text(&PBUF(buf1), &up);
bch2_bkey_to_text(&PBUF(buf2), u.k);
bch2_dump_bset(c, b, i, 0);
btree_err(BTREE_ERR_FATAL, c, NULL, b, i,
"keys out of order: %s > %s",
buf1, buf2);
/* XXX: repair this */
}
prev = k;
k = bkey_next_skip_noops(k, vstruct_last(i));
}
fsck_err:
return ret;
}
int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
struct btree *b, bool have_retry)
{
struct btree_node_entry *bne;
struct sort_iter *iter;
struct btree_node *sorted;
struct bkey_packed *k;
struct bch_extent_ptr *ptr;
struct bset *i;
bool used_mempool, blacklisted;
unsigned u64s;
int ret, retry_read = 0, write = READ;
b->version_ondisk = U16_MAX;
iter = mempool_alloc(&c->fill_iter, GFP_NOIO);
sort_iter_init(iter, b);
iter->size = (btree_blocks(c) + 1) * 2;
if (bch2_meta_read_fault("btree"))
btree_err(BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
"dynamic fault");
btree_err_on(le64_to_cpu(b->data->magic) != bset_magic(c),
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
"bad magic");
btree_err_on(!b->data->keys.seq,
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
"bad btree header");
if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
struct bch_btree_ptr_v2 *bp =
&bkey_i_to_btree_ptr_v2(&b->key)->v;
btree_err_on(b->data->keys.seq != bp->seq,
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
"got wrong btree node (seq %llx want %llx)",
b->data->keys.seq, bp->seq);
}
while (b->written < c->opts.btree_node_size) {
unsigned sectors, whiteout_u64s = 0;
struct nonce nonce;
struct bch_csum csum;
bool first = !b->written;
if (!b->written) {
i = &b->data->keys;
btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)),
BTREE_ERR_WANT_RETRY, c, ca, b, i,
"unknown checksum type %llu",
BSET_CSUM_TYPE(i));
nonce = btree_nonce(i, b->written << 9);
csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data);
btree_err_on(bch2_crc_cmp(csum, b->data->csum),
BTREE_ERR_WANT_RETRY, c, ca, b, i,
"invalid checksum");
bset_encrypt(c, i, b->written << 9);
btree_err_on(btree_node_is_extents(b) &&
!BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data),
BTREE_ERR_FATAL, c, NULL, b, NULL,
"btree node does not have NEW_EXTENT_OVERWRITE set");
sectors = vstruct_sectors(b->data, c->block_bits);
} else {
bne = write_block(b);
i = &bne->keys;
if (i->seq != b->data->keys.seq)
break;
btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)),
BTREE_ERR_WANT_RETRY, c, ca, b, i,
"unknown checksum type %llu",
BSET_CSUM_TYPE(i));
nonce = btree_nonce(i, b->written << 9);
csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
btree_err_on(bch2_crc_cmp(csum, bne->csum),
BTREE_ERR_WANT_RETRY, c, ca, b, i,
"invalid checksum");
bset_encrypt(c, i, b->written << 9);
sectors = vstruct_sectors(bne, c->block_bits);
}
b->version_ondisk = min(b->version_ondisk,
le16_to_cpu(i->version));
ret = validate_bset(c, ca, b, i, sectors,
READ, have_retry);
if (ret)
goto fsck_err;
if (!b->written)
btree_node_set_format(b, b->data->format);
ret = validate_bset_keys(c, b, i, &whiteout_u64s,
READ, have_retry);
if (ret)
goto fsck_err;
SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
b->written += sectors;
blacklisted = bch2_journal_seq_is_blacklisted(c,
le64_to_cpu(i->journal_seq),
true);
btree_err_on(blacklisted && first,
BTREE_ERR_FIXABLE, c, ca, b, i,
"first btree node bset has blacklisted journal seq");
if (blacklisted && !first)
continue;
sort_iter_add(iter, i->start,
vstruct_idx(i, whiteout_u64s));
sort_iter_add(iter,
vstruct_idx(i, whiteout_u64s),
vstruct_last(i));
}
for (bne = write_block(b);
bset_byte_offset(b, bne) < btree_bytes(c);
bne = (void *) bne + block_bytes(c))
btree_err_on(bne->keys.seq == b->data->keys.seq,
BTREE_ERR_WANT_RETRY, c, ca, b, NULL,
"found bset signature after last bset");
sorted = btree_bounce_alloc(c, btree_bytes(c), &used_mempool);
sorted->keys.u64s = 0;
set_btree_bset(b, b->set, &b->data->keys);
b->nr = bch2_key_sort_fix_overlapping(c, &sorted->keys, iter);
u64s = le16_to_cpu(sorted->keys.u64s);
*sorted = *b->data;
sorted->keys.u64s = cpu_to_le16(u64s);
swap(sorted, b->data);
set_btree_bset(b, b->set, &b->data->keys);
b->nsets = 1;
BUG_ON(b->nr.live_u64s != u64s);
btree_bounce_free(c, btree_bytes(c), used_mempool, sorted);
i = &b->data->keys;
for (k = i->start; k != vstruct_last(i);) {
struct bkey tmp;
struct bkey_s u = __bkey_disassemble(b, k, &tmp);
const char *invalid = bch2_bkey_val_invalid(c, u.s_c);
if (invalid ||
(bch2_inject_invalid_keys &&
!bversion_cmp(u.k->version, MAX_VERSION))) {
char buf[160];
bch2_bkey_val_to_text(&PBUF(buf), c, u.s_c);
btree_err(BTREE_ERR_FIXABLE, c, NULL, b, i,
"invalid bkey %s: %s", buf, invalid);
btree_keys_account_key_drop(&b->nr, 0, k);
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove_u64s_down(k, bkey_next(k),
(u64 *) vstruct_end(i) - (u64 *) k);
set_btree_bset_end(b, b->set);
continue;
}
if (u.k->type == KEY_TYPE_btree_ptr_v2) {
struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(u);
bp.v->mem_ptr = 0;
}
k = bkey_next_skip_noops(k, vstruct_last(i));
}
bch2_bset_build_aux_tree(b, b->set, false);
set_needs_whiteout(btree_bset_first(b), true);
btree_node_reset_sib_u64s(b);
bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&b->key)), ptr) {
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
if (ca->mi.state != BCH_MEMBER_STATE_RW)
set_btree_node_need_rewrite(b);
}
out:
mempool_free(iter, &c->fill_iter);
return retry_read;
fsck_err:
if (ret == BTREE_RETRY_READ) {
retry_read = 1;
} else {
bch2_inconsistent_error(c);
set_btree_node_read_error(b);
}
goto out;
}
static void btree_node_read_work(struct work_struct *work)
{
struct btree_read_bio *rb =
container_of(work, struct btree_read_bio, work);
struct bch_fs *c = rb->c;
struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
struct btree *b = rb->bio.bi_private;
struct bio *bio = &rb->bio;
struct bch_io_failures failed = { .nr = 0 };
char buf[200];
struct printbuf out;
bool can_retry;
goto start;
while (1) {
bch_info(c, "retrying read");
ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
rb->have_ioref = bch2_dev_get_ioref(ca, READ);
bio_reset(bio, NULL, REQ_OP_READ|REQ_SYNC|REQ_META);
bio->bi_iter.bi_sector = rb->pick.ptr.offset;
bio->bi_iter.bi_size = btree_bytes(c);
if (rb->have_ioref) {
bio_set_dev(bio, ca->disk_sb.bdev);
submit_bio_wait(bio);
} else {
bio->bi_status = BLK_STS_REMOVED;
}
start:
out = PBUF(buf);
btree_pos_to_text(&out, c, b);
bch2_dev_io_err_on(bio->bi_status, ca, "btree read error %s for %s",
bch2_blk_status_to_str(bio->bi_status), buf);
if (rb->have_ioref)
percpu_ref_put(&ca->io_ref);
rb->have_ioref = false;
bch2_mark_io_failure(&failed, &rb->pick);
can_retry = bch2_bkey_pick_read_device(c,
bkey_i_to_s_c(&b->key),
&failed, &rb->pick) > 0;
if (!bio->bi_status &&
!bch2_btree_node_read_done(c, ca, b, can_retry))
break;
if (!can_retry) {
set_btree_node_read_error(b);
break;
}
}
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_read],
rb->start_time);
bio_put(&rb->bio);
clear_btree_node_read_in_flight(b);
wake_up_bit(&b->flags, BTREE_NODE_read_in_flight);
}
static void btree_node_read_endio(struct bio *bio)
{
struct btree_read_bio *rb =
container_of(bio, struct btree_read_bio, bio);
struct bch_fs *c = rb->c;
if (rb->have_ioref) {
struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
bch2_latency_acct(ca, rb->start_time, READ);
}
queue_work(system_unbound_wq, &rb->work);
}
void bch2_btree_node_read(struct bch_fs *c, struct btree *b,
bool sync)
{
struct extent_ptr_decoded pick;
struct btree_read_bio *rb;
struct bch_dev *ca;
struct bio *bio;
char buf[200];
int ret;
btree_pos_to_text(&PBUF(buf), c, b);
trace_btree_read(c, b);
ret = bch2_bkey_pick_read_device(c, bkey_i_to_s_c(&b->key),
NULL, &pick);
if (bch2_fs_fatal_err_on(ret <= 0, c,
"btree node read error: no device to read from\n"
" at %s", buf)) {
set_btree_node_read_error(b);
return;
}
ca = bch_dev_bkey_exists(c, pick.ptr.dev);
bio = bio_alloc_bioset(NULL,
buf_pages(b->data, btree_bytes(c)),
REQ_OP_READ|REQ_SYNC|REQ_META,
GFP_NOIO,
&c->btree_bio);
rb = container_of(bio, struct btree_read_bio, bio);
rb->c = c;
rb->start_time = local_clock();
rb->have_ioref = bch2_dev_get_ioref(ca, READ);
rb->pick = pick;
INIT_WORK(&rb->work, btree_node_read_work);
bio->bi_iter.bi_sector = pick.ptr.offset;
bio->bi_end_io = btree_node_read_endio;
bio->bi_private = b;
bch2_bio_map(bio, b->data, btree_bytes(c));
set_btree_node_read_in_flight(b);
if (rb->have_ioref) {
this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree],
bio_sectors(bio));
bio_set_dev(bio, ca->disk_sb.bdev);
if (sync) {
submit_bio_wait(bio);
bio->bi_private = b;
btree_node_read_work(&rb->work);
} else {
submit_bio(bio);
}
} else {
bio->bi_status = BLK_STS_REMOVED;
if (sync)
btree_node_read_work(&rb->work);
else
queue_work(system_unbound_wq, &rb->work);
}
}
int bch2_btree_root_read(struct bch_fs *c, enum btree_id id,
const struct bkey_i *k, unsigned level)
{
struct closure cl;
struct btree *b;
int ret;
closure_init_stack(&cl);
do {
ret = bch2_btree_cache_cannibalize_lock(c, &cl);
closure_sync(&cl);
} while (ret);
b = bch2_btree_node_mem_alloc(c);
bch2_btree_cache_cannibalize_unlock(c);
BUG_ON(IS_ERR(b));
bkey_copy(&b->key, k);
BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, id));
bch2_btree_node_read(c, b, true);
if (btree_node_read_error(b)) {
bch2_btree_node_hash_remove(&c->btree_cache, b);
mutex_lock(&c->btree_cache.lock);
list_move(&b->list, &c->btree_cache.freeable);
mutex_unlock(&c->btree_cache.lock);
ret = -EIO;
goto err;
}
bch2_btree_set_root_for_read(c, b);
err:
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
return ret;
}
void bch2_btree_complete_write(struct bch_fs *c, struct btree *b,
struct btree_write *w)
{
unsigned long old, new, v = READ_ONCE(b->will_make_reachable);
do {
old = new = v;
if (!(old & 1))
break;
new &= ~1UL;
} while ((v = cmpxchg(&b->will_make_reachable, old, new)) != old);
if (old & 1)
closure_put(&((struct btree_update *) new)->cl);
bch2_journal_pin_drop(&c->journal, &w->journal);
}
static void btree_node_write_done(struct bch_fs *c, struct btree *b)
{
struct btree_write *w = btree_prev_write(b);
bch2_btree_complete_write(c, b, w);
btree_node_io_unlock(b);
}
static void bch2_btree_node_write_error(struct bch_fs *c,
struct btree_write_bio *wbio)
{
struct btree *b = wbio->wbio.bio.bi_private;
struct bkey_buf k;
struct bch_extent_ptr *ptr;
struct btree_trans trans;
struct btree_iter *iter;
int ret;
bch2_bkey_buf_init(&k);
bch2_trans_init(&trans, c, 0, 0);
iter = bch2_trans_get_node_iter(&trans, b->c.btree_id, b->key.k.p,
BTREE_MAX_DEPTH, b->c.level, 0);
retry:
ret = bch2_btree_iter_traverse(iter);
if (ret)
goto err;
/* has node been freed? */
if (iter->l[b->c.level].b != b) {
/* node has been freed: */
BUG_ON(!btree_node_dying(b));
goto out;
}
BUG_ON(!btree_node_hashed(b));
bch2_bkey_buf_copy(&k, c, &b->key);
bch2_bkey_drop_ptrs(bkey_i_to_s(k.k), ptr,
bch2_dev_list_has_dev(wbio->wbio.failed, ptr->dev));
if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(k.k)))
goto err;
ret = bch2_btree_node_update_key(c, iter, b, k.k);
if (ret == -EINTR)
goto retry;
if (ret)
goto err;
out:
bch2_trans_exit(&trans);
bch2_bkey_buf_exit(&k, c);
bio_put(&wbio->wbio.bio);
btree_node_write_done(c, b);
return;
err:
set_btree_node_noevict(b);
bch2_fs_fatal_error(c, "fatal error writing btree node");
goto out;
}
void bch2_btree_write_error_work(struct work_struct *work)
{
struct bch_fs *c = container_of(work, struct bch_fs,
btree_write_error_work);
struct bio *bio;
while (1) {
spin_lock_irq(&c->btree_write_error_lock);
bio = bio_list_pop(&c->btree_write_error_list);
spin_unlock_irq(&c->btree_write_error_lock);
if (!bio)
break;
bch2_btree_node_write_error(c,
container_of(bio, struct btree_write_bio, wbio.bio));
}
}
static void btree_node_write_work(struct work_struct *work)
{
struct btree_write_bio *wbio =
container_of(work, struct btree_write_bio, work);
struct bch_fs *c = wbio->wbio.c;
struct btree *b = wbio->wbio.bio.bi_private;
btree_bounce_free(c,
wbio->bytes,
wbio->wbio.used_mempool,
wbio->data);
if (wbio->wbio.failed.nr) {
unsigned long flags;
spin_lock_irqsave(&c->btree_write_error_lock, flags);
bio_list_add(&c->btree_write_error_list, &wbio->wbio.bio);
spin_unlock_irqrestore(&c->btree_write_error_lock, flags);
queue_work(c->wq, &c->btree_write_error_work);
return;
}
bio_put(&wbio->wbio.bio);
btree_node_write_done(c, b);
}
static void btree_node_write_endio(struct bio *bio)
{
struct bch_write_bio *wbio = to_wbio(bio);
struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
struct bch_write_bio *orig = parent ?: wbio;
struct bch_fs *c = wbio->c;
struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev);
unsigned long flags;
if (wbio->have_ioref)
bch2_latency_acct(ca, wbio->submit_time, WRITE);
if (bch2_dev_io_err_on(bio->bi_status, ca, "btree write error: %s",
bch2_blk_status_to_str(bio->bi_status)) ||
bch2_meta_write_fault("btree")) {
spin_lock_irqsave(&c->btree_write_error_lock, flags);
bch2_dev_list_add_dev(&orig->failed, wbio->dev);
spin_unlock_irqrestore(&c->btree_write_error_lock, flags);
}
if (wbio->have_ioref)
percpu_ref_put(&ca->io_ref);
if (parent) {
bio_put(bio);
bio_endio(&parent->bio);
} else {
struct btree_write_bio *wb =
container_of(orig, struct btree_write_bio, wbio);
INIT_WORK(&wb->work, btree_node_write_work);
queue_work(system_unbound_wq, &wb->work);
}
}
static int validate_bset_for_write(struct bch_fs *c, struct btree *b,
struct bset *i, unsigned sectors)
{
unsigned whiteout_u64s = 0;
int ret;
if (bch2_bkey_invalid(c, bkey_i_to_s_c(&b->key), BKEY_TYPE_BTREE))
return -1;
ret = validate_bset(c, NULL, b, i, sectors, WRITE, false) ?:
validate_bset_keys(c, b, i, &whiteout_u64s, WRITE, false);
if (ret) {
bch2_inconsistent_error(c);
dump_stack();
}
return ret;
}
void __bch2_btree_node_write(struct bch_fs *c, struct btree *b,
enum six_lock_type lock_type_held)
{
struct btree_write_bio *wbio;
struct bset_tree *t;
struct bset *i;
struct btree_node *bn = NULL;
struct btree_node_entry *bne = NULL;
struct bkey_buf k;
struct bch_extent_ptr *ptr;
struct sort_iter sort_iter;
struct nonce nonce;
unsigned bytes_to_write, sectors_to_write, bytes, u64s;
u64 seq = 0;
bool used_mempool;
unsigned long old, new;
bool validate_before_checksum = false;
void *data;
bch2_bkey_buf_init(&k);
if (test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags))
return;
/*
* We may only have a read lock on the btree node - the dirty bit is our
* "lock" against racing with other threads that may be trying to start
* a write, we do a write iff we clear the dirty bit. Since setting the
* dirty bit requires a write lock, we can't race with other threads
* redirtying it:
*/
do {
old = new = READ_ONCE(b->flags);
if (!(old & (1 << BTREE_NODE_dirty)))
return;
if (!btree_node_may_write(b))
return;
if (old & (1 << BTREE_NODE_never_write))
return;
if (old & (1 << BTREE_NODE_write_in_flight)) {
btree_node_wait_on_io(b);
continue;
}
new &= ~(1 << BTREE_NODE_dirty);
new &= ~(1 << BTREE_NODE_need_write);
new |= (1 << BTREE_NODE_write_in_flight);
new |= (1 << BTREE_NODE_just_written);
new ^= (1 << BTREE_NODE_write_idx);
} while (cmpxchg_acquire(&b->flags, old, new) != old);
atomic_dec(&c->btree_cache.dirty);
BUG_ON(btree_node_fake(b));
BUG_ON((b->will_make_reachable != 0) != !b->written);
BUG_ON(b->written >= c->opts.btree_node_size);
BUG_ON(b->written & (c->opts.block_size - 1));
BUG_ON(bset_written(b, btree_bset_last(b)));
BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(c));
BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format)));
bch2_sort_whiteouts(c, b);
sort_iter_init(&sort_iter, b);
bytes = !b->written
? sizeof(struct btree_node)
: sizeof(struct btree_node_entry);
bytes += b->whiteout_u64s * sizeof(u64);
for_each_bset(b, t) {
i = bset(b, t);
if (bset_written(b, i))
continue;
bytes += le16_to_cpu(i->u64s) * sizeof(u64);
sort_iter_add(&sort_iter,
btree_bkey_first(b, t),
btree_bkey_last(b, t));
seq = max(seq, le64_to_cpu(i->journal_seq));
}
BUG_ON(b->written && !seq);
/* bch2_varint_decode may read up to 7 bytes past the end of the buffer: */
bytes += 8;
data = btree_bounce_alloc(c, bytes, &used_mempool);
if (!b->written) {
bn = data;
*bn = *b->data;
i = &bn->keys;
} else {
bne = data;
bne->keys = b->data->keys;
i = &bne->keys;
}
i->journal_seq = cpu_to_le64(seq);
i->u64s = 0;
sort_iter_add(&sort_iter,
unwritten_whiteouts_start(c, b),
unwritten_whiteouts_end(c, b));
SET_BSET_SEPARATE_WHITEOUTS(i, false);
b->whiteout_u64s = 0;
u64s = bch2_sort_keys(i->start, &sort_iter, false);
le16_add_cpu(&i->u64s, u64s);
set_needs_whiteout(i, false);
/* do we have data to write? */
if (b->written && !i->u64s)
goto nowrite;
bytes_to_write = vstruct_end(i) - data;
sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9;
memset(data + bytes_to_write, 0,
(sectors_to_write << 9) - bytes_to_write);
BUG_ON(b->written + sectors_to_write > c->opts.btree_node_size);
BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN);
BUG_ON(i->seq != b->data->keys.seq);
i->version = c->sb.version < bcachefs_metadata_version_new_versioning
? cpu_to_le16(BCH_BSET_VERSION_OLD)
: cpu_to_le16(c->sb.version);
SET_BSET_CSUM_TYPE(i, bch2_meta_checksum_type(c));
if (bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i)))
validate_before_checksum = true;
/* validate_bset will be modifying: */
if (le16_to_cpu(i->version) <= bcachefs_metadata_version_inode_btree_change)
validate_before_checksum = true;
/* if we're going to be encrypting, check metadata validity first: */
if (validate_before_checksum &&
validate_bset_for_write(c, b, i, sectors_to_write))
goto err;
bset_encrypt(c, i, b->written << 9);
nonce = btree_nonce(i, b->written << 9);
if (bn)
bn->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bn);
else
bne->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
/* if we're not encrypting, check metadata after checksumming: */
if (!validate_before_checksum &&
validate_bset_for_write(c, b, i, sectors_to_write))
goto err;
/*
* We handle btree write errors by immediately halting the journal -
* after we've done that, we can't issue any subsequent btree writes
* because they might have pointers to new nodes that failed to write.
*
* Furthermore, there's no point in doing any more btree writes because
* with the journal stopped, we're never going to update the journal to
* reflect that those writes were done and the data flushed from the
* journal:
*
* Also on journal error, the pending write may have updates that were
* never journalled (interior nodes, see btree_update_nodes_written()) -
* it's critical that we don't do the write in that case otherwise we
* will have updates visible that weren't in the journal:
*
* Make sure to update b->written so bch2_btree_init_next() doesn't
* break:
*/
if (bch2_journal_error(&c->journal) ||
c->opts.nochanges)
goto err;
trace_btree_write(b, bytes_to_write, sectors_to_write);
wbio = container_of(bio_alloc_bioset(NULL,
buf_pages(data, sectors_to_write << 9),
REQ_OP_WRITE|REQ_META,
GFP_NOIO,
&c->btree_bio),
struct btree_write_bio, wbio.bio);
wbio_init(&wbio->wbio.bio);
wbio->data = data;
wbio->bytes = bytes;
wbio->wbio.used_mempool = used_mempool;
wbio->wbio.bio.bi_end_io = btree_node_write_endio;
wbio->wbio.bio.bi_private = b;
bch2_bio_map(&wbio->wbio.bio, data, sectors_to_write << 9);
/*
* If we're appending to a leaf node, we don't technically need FUA -
* this write just needs to be persisted before the next journal write,
* which will be marked FLUSH|FUA.
*
* Similarly if we're writing a new btree root - the pointer is going to
* be in the next journal entry.
*
* But if we're writing a new btree node (that isn't a root) or
* appending to a non leaf btree node, we need either FUA or a flush
* when we write the parent with the new pointer. FUA is cheaper than a
* flush, and writes appending to leaf nodes aren't blocking anything so
* just make all btree node writes FUA to keep things sane.
*/
bch2_bkey_buf_copy(&k, c, &b->key);
bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(k.k)), ptr)
ptr->offset += b->written;
b->written += sectors_to_write;
/* XXX: submitting IO with btree locks held: */
bch2_submit_wbio_replicas(&wbio->wbio, c, BCH_DATA_btree, k.k);
bch2_bkey_buf_exit(&k, c);
return;
err:
set_btree_node_noevict(b);
b->written += sectors_to_write;
nowrite:
btree_bounce_free(c, bytes, used_mempool, data);
btree_node_write_done(c, b);
}
/*
* Work that must be done with write lock held:
*/
bool bch2_btree_post_write_cleanup(struct bch_fs *c, struct btree *b)
{
bool invalidated_iter = false;
struct btree_node_entry *bne;
struct bset_tree *t;
if (!btree_node_just_written(b))
return false;
BUG_ON(b->whiteout_u64s);
clear_btree_node_just_written(b);
/*
* Note: immediately after write, bset_written() doesn't work - the
* amount of data we had to write after compaction might have been
* smaller than the offset of the last bset.
*
* However, we know that all bsets have been written here, as long as
* we're still holding the write lock:
*/
/*
* XXX: decide if we really want to unconditionally sort down to a
* single bset:
*/
if (b->nsets > 1) {
btree_node_sort(c, b, NULL, 0, b->nsets, true);
invalidated_iter = true;
} else {
invalidated_iter = bch2_drop_whiteouts(b, COMPACT_ALL);
}
for_each_bset(b, t)
set_needs_whiteout(bset(b, t), true);
bch2_btree_verify(c, b);
/*
* If later we don't unconditionally sort down to a single bset, we have
* to ensure this is still true:
*/
BUG_ON((void *) btree_bkey_last(b, bset_tree_last(b)) > write_block(b));
bne = want_new_bset(c, b);
if (bne)
bch2_bset_init_next(c, b, bne);
bch2_btree_build_aux_trees(b);
return invalidated_iter;
}
/*
* Use this one if the node is intent locked:
*/
void bch2_btree_node_write(struct bch_fs *c, struct btree *b,
enum six_lock_type lock_type_held)
{
BUG_ON(lock_type_held == SIX_LOCK_write);
if (lock_type_held == SIX_LOCK_intent ||
six_lock_tryupgrade(&b->c.lock)) {
__bch2_btree_node_write(c, b, SIX_LOCK_intent);
/* don't cycle lock unnecessarily: */
if (btree_node_just_written(b) &&
six_trylock_write(&b->c.lock)) {
bch2_btree_post_write_cleanup(c, b);
six_unlock_write(&b->c.lock);
}
if (lock_type_held == SIX_LOCK_read)
six_lock_downgrade(&b->c.lock);
} else {
__bch2_btree_node_write(c, b, SIX_LOCK_read);
}
}
static void __bch2_btree_flush_all(struct bch_fs *c, unsigned flag)
{
struct bucket_table *tbl;
struct rhash_head *pos;
struct btree *b;
unsigned i;
restart:
rcu_read_lock();
for_each_cached_btree(b, c, tbl, i, pos)
if (test_bit(flag, &b->flags)) {
rcu_read_unlock();
wait_on_bit_io(&b->flags, flag, TASK_UNINTERRUPTIBLE);
goto restart;
}
rcu_read_unlock();
}
void bch2_btree_flush_all_reads(struct bch_fs *c)
{
__bch2_btree_flush_all(c, BTREE_NODE_read_in_flight);
}
void bch2_btree_flush_all_writes(struct bch_fs *c)
{
__bch2_btree_flush_all(c, BTREE_NODE_write_in_flight);
}
void bch2_dirty_btree_nodes_to_text(struct printbuf *out, struct bch_fs *c)
{
struct bucket_table *tbl;
struct rhash_head *pos;
struct btree *b;
unsigned i;
rcu_read_lock();
for_each_cached_btree(b, c, tbl, i, pos) {
unsigned long flags = READ_ONCE(b->flags);
if (!(flags & (1 << BTREE_NODE_dirty)))
continue;
pr_buf(out, "%p d %u n %u l %u w %u b %u r %u:%lu\n",
b,
(flags & (1 << BTREE_NODE_dirty)) != 0,
(flags & (1 << BTREE_NODE_need_write)) != 0,
b->c.level,
b->written,
!list_empty_careful(&b->write_blocked),
b->will_make_reachable != 0,
b->will_make_reachable & 1);
}
rcu_read_unlock();
}