linux/fs/nfs/internal.h

954 lines
29 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* NFS internal definitions
*/
#include "nfs4_fs.h"
NFS: Add fs_context support. Add filesystem context support to NFS, parsing the options in advance and attaching the information to struct nfs_fs_context. The highlights are: (*) Merge nfs_mount_info and nfs_clone_mount into nfs_fs_context. This structure represents NFS's superblock config. (*) Make use of the VFS's parsing support to split comma-separated lists (*) Pin the NFS protocol module in the nfs_fs_context. (*) Attach supplementary error information to fs_context. This has the downside that these strings must be static and can't be formatted. (*) Remove the auxiliary file_system_type structs since the information necessary can be conveyed in the nfs_fs_context struct instead. (*) Root mounts are made by duplicating the config for the requested mount so as to have the same parameters. Submounts pick up their parameters from the parent superblock. [AV -- retrans is u32, not string] [SM -- Renamed cfg to ctx in a few functions in an earlier patch] [SM -- Moved fs_context mount option parsing to an earlier patch] [SM -- Moved fs_context error logging to a later patch] [SM -- Fixed printks in nfs4_try_get_tree() and nfs4_get_referral_tree()] [SM -- Added is_remount_fc() helper] [SM -- Deferred some refactoring to a later patch] [SM -- Fixed referral mounts, which were broken in the original patch] [SM -- Fixed leak of nfs_fattr when fs_context is freed] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Scott Mayhew <smayhew@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2019-12-10 12:31:13 +00:00
#include <linux/fs_context.h>
#include <linux/security.h>
#include <linux/crc32.h>
#include <linux/sunrpc/addr.h>
#include <linux/nfs_page.h>
#include <linux/wait_bit.h>
#define NFS_SB_MASK (SB_RDONLY|SB_NOSUID|SB_NODEV|SB_NOEXEC|SB_SYNCHRONOUS)
NFS: Define and create superblock-level objects Define and create superblock-level cache index objects (as managed by nfs_server structs). Each superblock object is created in a server level index object and is itself an index into which inode-level objects are inserted. Ideally there would be one superblock-level object per server, and the former would be folded into the latter; however, since the "nosharecache" option exists this isn't possible. The superblock object key is a sequence consisting of: (1) Certain superblock s_flags. (2) Various connection parameters that serve to distinguish superblocks for sget(). (3) The volume FSID. (4) The security flavour. (5) The uniquifier length. (6) The uniquifier text. This is normally an empty string, unless the fsc=xyz mount option was used to explicitly specify a uniquifier. The key blob is of variable length, depending on the length of (6). The superblock object is given no coherency data to carry in the auxiliary data permitted by the cache. It is assumed that the superblock is always coherent. This patch also adds uniquification handling such that two otherwise identical superblocks, at least one of which is marked "nosharecache", won't end up trying to share the on-disk cache. It will be possible to manually provide a uniquifier through a mount option with a later patch to avoid the error otherwise produced. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 15:42:42 +00:00
extern const struct export_operations nfs_export_ops;
NFS: Share NFS superblocks per-protocol per-server per-FSID The attached patch makes NFS share superblocks between mounts from the same server and FSID over the same protocol. It does this by creating each superblock with a false root and returning the real root dentry in the vfsmount presented by get_sb(). The root dentry set starts off as an anonymous dentry if we don't already have the dentry for its inode, otherwise it simply returns the dentry we already have. We may thus end up with several trees of dentries in the superblock, and if at some later point one of anonymous tree roots is discovered by normal filesystem activity to be located in another tree within the superblock, the anonymous root is named and materialises attached to the second tree at the appropriate point. Why do it this way? Why not pass an extra argument to the mount() syscall to indicate the subpath and then pathwalk from the server root to the desired directory? You can't guarantee this will work for two reasons: (1) The root and intervening nodes may not be accessible to the client. With NFS2 and NFS3, for instance, mountd is called on the server to get the filehandle for the tip of a path. mountd won't give us handles for anything we don't have permission to access, and so we can't set up NFS inodes for such nodes, and so can't easily set up dentries (we'd have to have ghost inodes or something). With this patch we don't actually create dentries until we get handles from the server that we can use to set up their inodes, and we don't actually bind them into the tree until we know for sure where they go. (2) Inaccessible symbolic links. If we're asked to mount two exports from the server, eg: mount warthog:/warthog/aaa/xxx /mmm mount warthog:/warthog/bbb/yyy /nnn We may not be able to access anything nearer the root than xxx and yyy, but we may find out later that /mmm/www/yyy, say, is actually the same directory as the one mounted on /nnn. What we might then find out, for example, is that /warthog/bbb was actually a symbolic link to /warthog/aaa/xxx/www, but we can't actually determine that by talking to the server until /warthog is made available by NFS. This would lead to having constructed an errneous dentry tree which we can't easily fix. We can end up with a dentry marked as a directory when it should actually be a symlink, or we could end up with an apparently hardlinked directory. With this patch we need not make assumptions about the type of a dentry for which we can't retrieve information, nor need we assume we know its place in the grand scheme of things until we actually see that place. This patch reduces the possibility of aliasing in the inode and page caches for inodes that may be accessed by more than one NFS export. It also reduces the number of superblocks required for NFS where there are many NFS exports being used from a server (home directory server + autofs for example). This in turn makes it simpler to do local caching of network filesystems, as it can then be guaranteed that there won't be links from multiple inodes in separate superblocks to the same cache file. Obviously, cache aliasing between different levels of NFS protocol could still be a problem, but at least that gives us another key to use when indexing the cache. This patch makes the following changes: (1) The server record construction/destruction has been abstracted out into its own set of functions to make things easier to get right. These have been moved into fs/nfs/client.c. All the code in fs/nfs/client.c has to do with the management of connections to servers, and doesn't touch superblocks in any way; the remaining code in fs/nfs/super.c has to do with VFS superblock management. (2) The sequence of events undertaken by NFS mount is now reordered: (a) A volume representation (struct nfs_server) is allocated. (b) A server representation (struct nfs_client) is acquired. This may be allocated or shared, and is keyed on server address, port and NFS version. (c) If allocated, the client representation is initialised. The state member variable of nfs_client is used to prevent a race during initialisation from two mounts. (d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we are given the root FH in advance. (e) The volume FSID is probed for on the root FH. (f) The volume representation is initialised from the FSINFO record retrieved on the root FH. (g) sget() is called to acquire a superblock. This may be allocated or shared, keyed on client pointer and FSID. (h) If allocated, the superblock is initialised. (i) If the superblock is shared, then the new nfs_server record is discarded. (j) The root dentry for this mount is looked up from the root FH. (k) The root dentry for this mount is assigned to the vfsmount. (3) nfs_readdir_lookup() creates dentries for each of the entries readdir() returns; this function now attaches disconnected trees from alternate roots that happen to be discovered attached to a directory being read (in the same way nfs_lookup() is made to do for lookup ops). The new d_materialise_unique() function is now used to do this, thus permitting the whole thing to be done under one set of locks, and thus avoiding any race between mount and lookup operations on the same directory. (4) The client management code uses a new debug facility: NFSDBG_CLIENT which is set by echoing 1024 to /proc/net/sunrpc/nfs_debug. (5) Clone mounts are now called xdev mounts. (6) Use the dentry passed to the statfs() op as the handle for retrieving fs statistics rather than the root dentry of the superblock (which is now a dummy). Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 00:06:13 +00:00
struct nfs_string;
NFS: Add fs_context support. Add filesystem context support to NFS, parsing the options in advance and attaching the information to struct nfs_fs_context. The highlights are: (*) Merge nfs_mount_info and nfs_clone_mount into nfs_fs_context. This structure represents NFS's superblock config. (*) Make use of the VFS's parsing support to split comma-separated lists (*) Pin the NFS protocol module in the nfs_fs_context. (*) Attach supplementary error information to fs_context. This has the downside that these strings must be static and can't be formatted. (*) Remove the auxiliary file_system_type structs since the information necessary can be conveyed in the nfs_fs_context struct instead. (*) Root mounts are made by duplicating the config for the requested mount so as to have the same parameters. Submounts pick up their parameters from the parent superblock. [AV -- retrans is u32, not string] [SM -- Renamed cfg to ctx in a few functions in an earlier patch] [SM -- Moved fs_context mount option parsing to an earlier patch] [SM -- Moved fs_context error logging to a later patch] [SM -- Fixed printks in nfs4_try_get_tree() and nfs4_get_referral_tree()] [SM -- Added is_remount_fc() helper] [SM -- Deferred some refactoring to a later patch] [SM -- Fixed referral mounts, which were broken in the original patch] [SM -- Fixed leak of nfs_fattr when fs_context is freed] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Scott Mayhew <smayhew@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2019-12-10 12:31:13 +00:00
struct nfs_pageio_descriptor;
NFS: Share NFS superblocks per-protocol per-server per-FSID The attached patch makes NFS share superblocks between mounts from the same server and FSID over the same protocol. It does this by creating each superblock with a false root and returning the real root dentry in the vfsmount presented by get_sb(). The root dentry set starts off as an anonymous dentry if we don't already have the dentry for its inode, otherwise it simply returns the dentry we already have. We may thus end up with several trees of dentries in the superblock, and if at some later point one of anonymous tree roots is discovered by normal filesystem activity to be located in another tree within the superblock, the anonymous root is named and materialises attached to the second tree at the appropriate point. Why do it this way? Why not pass an extra argument to the mount() syscall to indicate the subpath and then pathwalk from the server root to the desired directory? You can't guarantee this will work for two reasons: (1) The root and intervening nodes may not be accessible to the client. With NFS2 and NFS3, for instance, mountd is called on the server to get the filehandle for the tip of a path. mountd won't give us handles for anything we don't have permission to access, and so we can't set up NFS inodes for such nodes, and so can't easily set up dentries (we'd have to have ghost inodes or something). With this patch we don't actually create dentries until we get handles from the server that we can use to set up their inodes, and we don't actually bind them into the tree until we know for sure where they go. (2) Inaccessible symbolic links. If we're asked to mount two exports from the server, eg: mount warthog:/warthog/aaa/xxx /mmm mount warthog:/warthog/bbb/yyy /nnn We may not be able to access anything nearer the root than xxx and yyy, but we may find out later that /mmm/www/yyy, say, is actually the same directory as the one mounted on /nnn. What we might then find out, for example, is that /warthog/bbb was actually a symbolic link to /warthog/aaa/xxx/www, but we can't actually determine that by talking to the server until /warthog is made available by NFS. This would lead to having constructed an errneous dentry tree which we can't easily fix. We can end up with a dentry marked as a directory when it should actually be a symlink, or we could end up with an apparently hardlinked directory. With this patch we need not make assumptions about the type of a dentry for which we can't retrieve information, nor need we assume we know its place in the grand scheme of things until we actually see that place. This patch reduces the possibility of aliasing in the inode and page caches for inodes that may be accessed by more than one NFS export. It also reduces the number of superblocks required for NFS where there are many NFS exports being used from a server (home directory server + autofs for example). This in turn makes it simpler to do local caching of network filesystems, as it can then be guaranteed that there won't be links from multiple inodes in separate superblocks to the same cache file. Obviously, cache aliasing between different levels of NFS protocol could still be a problem, but at least that gives us another key to use when indexing the cache. This patch makes the following changes: (1) The server record construction/destruction has been abstracted out into its own set of functions to make things easier to get right. These have been moved into fs/nfs/client.c. All the code in fs/nfs/client.c has to do with the management of connections to servers, and doesn't touch superblocks in any way; the remaining code in fs/nfs/super.c has to do with VFS superblock management. (2) The sequence of events undertaken by NFS mount is now reordered: (a) A volume representation (struct nfs_server) is allocated. (b) A server representation (struct nfs_client) is acquired. This may be allocated or shared, and is keyed on server address, port and NFS version. (c) If allocated, the client representation is initialised. The state member variable of nfs_client is used to prevent a race during initialisation from two mounts. (d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we are given the root FH in advance. (e) The volume FSID is probed for on the root FH. (f) The volume representation is initialised from the FSINFO record retrieved on the root FH. (g) sget() is called to acquire a superblock. This may be allocated or shared, keyed on client pointer and FSID. (h) If allocated, the superblock is initialised. (i) If the superblock is shared, then the new nfs_server record is discarded. (j) The root dentry for this mount is looked up from the root FH. (k) The root dentry for this mount is assigned to the vfsmount. (3) nfs_readdir_lookup() creates dentries for each of the entries readdir() returns; this function now attaches disconnected trees from alternate roots that happen to be discovered attached to a directory being read (in the same way nfs_lookup() is made to do for lookup ops). The new d_materialise_unique() function is now used to do this, thus permitting the whole thing to be done under one set of locks, and thus avoiding any race between mount and lookup operations on the same directory. (4) The client management code uses a new debug facility: NFSDBG_CLIENT which is set by echoing 1024 to /proc/net/sunrpc/nfs_debug. (5) Clone mounts are now called xdev mounts. (6) Use the dentry passed to the statfs() op as the handle for retrieving fs statistics rather than the root dentry of the superblock (which is now a dummy). Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 00:06:13 +00:00
static inline void nfs_attr_check_mountpoint(struct super_block *parent, struct nfs_fattr *fattr)
{
if (!nfs_fsid_equal(&NFS_SB(parent)->fsid, &fattr->fsid))
fattr->valid |= NFS_ATTR_FATTR_MOUNTPOINT;
}
static inline int nfs_attr_use_mounted_on_fileid(struct nfs_fattr *fattr)
{
if (((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) == 0) ||
(((fattr->valid & NFS_ATTR_FATTR_MOUNTPOINT) == 0) &&
((fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) == 0)))
return 0;
return 1;
}
static inline bool nfs_lookup_is_soft_revalidate(const struct dentry *dentry)
{
if (!(NFS_SB(dentry->d_sb)->flags & NFS_MOUNT_SOFTREVAL))
return false;
if (!d_is_positive(dentry) || !NFS_FH(d_inode(dentry))->size)
return false;
return true;
}
static inline fmode_t flags_to_mode(int flags)
{
fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
if ((flags & O_ACCMODE) != O_WRONLY)
res |= FMODE_READ;
if ((flags & O_ACCMODE) != O_RDONLY)
res |= FMODE_WRITE;
return res;
}
/*
* Note: RFC 1813 doesn't limit the number of auth flavors that
* a server can return, so make something up.
*/
#define NFS_MAX_SECFLAVORS (12)
/*
* Value used if the user did not specify a port value.
*/
#define NFS_UNSPEC_PORT (-1)
#define NFS_UNSPEC_RETRANS (UINT_MAX)
#define NFS_UNSPEC_TIMEO (UINT_MAX)
struct nfs_client_initdata {
unsigned long init_flags;
NFS: Fix an Oops in the pNFS files and flexfiles connection setup to the DS Chris Worley reports: RIP: 0010:[<ffffffffa0245f80>] [<ffffffffa0245f80>] rpc_new_client+0x2a0/0x2e0 [sunrpc] RSP: 0018:ffff880158f6f548 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff880234f8bc00 RCX: 000000000000ea60 RDX: 0000000000074cc0 RSI: 000000000000ea60 RDI: ffff880234f8bcf0 RBP: ffff880158f6f588 R08: 000000000001ac80 R09: ffff880237003300 R10: ffff880201171000 R11: ffffea0000d75200 R12: ffffffffa03afc60 R13: ffff880230c18800 R14: 0000000000000000 R15: ffff880158f6f680 FS: 00007f0e32673740(0000) GS:ffff88023fc40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000008 CR3: 0000000234886000 CR4: 00000000001406e0 Stack: ffffffffa047a680 0000000000000000 ffff880158f6f598 ffff880158f6f680 ffff880158f6f680 ffff880234d11d00 ffff88023357f800 ffff880158f6f7d0 ffff880158f6f5b8 ffffffffa024660a ffff880158f6f5b8 ffffffffa02492ec Call Trace: [<ffffffffa024660a>] rpc_create_xprt+0x1a/0xb0 [sunrpc] [<ffffffffa02492ec>] ? xprt_create_transport+0x13c/0x240 [sunrpc] [<ffffffffa0246766>] rpc_create+0xc6/0x1a0 [sunrpc] [<ffffffffa038e695>] nfs_create_rpc_client+0xf5/0x140 [nfs] [<ffffffffa038f31a>] nfs_init_client+0x3a/0xd0 [nfs] [<ffffffffa038f22f>] nfs_get_client+0x25f/0x310 [nfs] [<ffffffffa025cef8>] ? rpc_ntop+0xe8/0x100 [sunrpc] [<ffffffffa047512c>] nfs3_set_ds_client+0xcc/0x100 [nfsv3] [<ffffffffa041fa10>] nfs4_pnfs_ds_connect+0x120/0x400 [nfsv4] [<ffffffffa03d41c7>] nfs4_ff_layout_prepare_ds+0xe7/0x330 [nfs_layout_flexfiles] [<ffffffffa03d1b1b>] ff_layout_pg_init_write+0xcb/0x280 [nfs_layout_flexfiles] [<ffffffffa03a14dc>] __nfs_pageio_add_request+0x12c/0x490 [nfs] [<ffffffffa03a1fa2>] nfs_pageio_add_request+0xc2/0x2a0 [nfs] [<ffffffffa03a0365>] ? nfs_pageio_init+0x75/0x120 [nfs] [<ffffffffa03a5b50>] nfs_do_writepage+0x120/0x270 [nfs] [<ffffffffa03a5d31>] nfs_writepage_locked+0x61/0xc0 [nfs] [<ffffffff813d4115>] ? __percpu_counter_add+0x55/0x70 [<ffffffffa03a6a9f>] nfs_wb_single_page+0xef/0x1c0 [nfs] [<ffffffff811ca4a3>] ? __dec_zone_page_state+0x33/0x40 [<ffffffffa0395b21>] nfs_launder_page+0x41/0x90 [nfs] [<ffffffff811baba0>] invalidate_inode_pages2_range+0x340/0x3a0 [<ffffffff811bac17>] invalidate_inode_pages2+0x17/0x20 [<ffffffffa039960e>] nfs_release+0x9e/0xb0 [nfs] [<ffffffffa0399570>] ? nfs_open+0x60/0x60 [nfs] [<ffffffffa0394dad>] nfs_file_release+0x3d/0x60 [nfs] [<ffffffff81226e6c>] __fput+0xdc/0x1e0 [<ffffffff81226fbe>] ____fput+0xe/0x10 [<ffffffff810bf2e4>] task_work_run+0xc4/0xe0 [<ffffffff810a4188>] do_exit+0x2e8/0xb30 [<ffffffff8102471c>] ? do_audit_syscall_entry+0x6c/0x70 [<ffffffff811464e6>] ? __audit_syscall_exit+0x1e6/0x280 [<ffffffff810a4a5f>] do_group_exit+0x3f/0xa0 [<ffffffff810a4ad4>] SyS_exit_group+0x14/0x20 [<ffffffff8179b76e>] system_call_fastpath+0x12/0x71 Which seems to be due to a call to utsname() when in a task exit context in order to determine the hostname to set in rpc_new_client(). In reality, what we want here is not the hostname of the current task, but the hostname that was used to set up the metadata server. Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2016-06-22 18:13:12 +00:00
const char *hostname; /* Hostname of the server */
const struct sockaddr_storage *addr; /* Address of the server */
NFS: Fix an Oops in the pNFS files and flexfiles connection setup to the DS Chris Worley reports: RIP: 0010:[<ffffffffa0245f80>] [<ffffffffa0245f80>] rpc_new_client+0x2a0/0x2e0 [sunrpc] RSP: 0018:ffff880158f6f548 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff880234f8bc00 RCX: 000000000000ea60 RDX: 0000000000074cc0 RSI: 000000000000ea60 RDI: ffff880234f8bcf0 RBP: ffff880158f6f588 R08: 000000000001ac80 R09: ffff880237003300 R10: ffff880201171000 R11: ffffea0000d75200 R12: ffffffffa03afc60 R13: ffff880230c18800 R14: 0000000000000000 R15: ffff880158f6f680 FS: 00007f0e32673740(0000) GS:ffff88023fc40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000008 CR3: 0000000234886000 CR4: 00000000001406e0 Stack: ffffffffa047a680 0000000000000000 ffff880158f6f598 ffff880158f6f680 ffff880158f6f680 ffff880234d11d00 ffff88023357f800 ffff880158f6f7d0 ffff880158f6f5b8 ffffffffa024660a ffff880158f6f5b8 ffffffffa02492ec Call Trace: [<ffffffffa024660a>] rpc_create_xprt+0x1a/0xb0 [sunrpc] [<ffffffffa02492ec>] ? xprt_create_transport+0x13c/0x240 [sunrpc] [<ffffffffa0246766>] rpc_create+0xc6/0x1a0 [sunrpc] [<ffffffffa038e695>] nfs_create_rpc_client+0xf5/0x140 [nfs] [<ffffffffa038f31a>] nfs_init_client+0x3a/0xd0 [nfs] [<ffffffffa038f22f>] nfs_get_client+0x25f/0x310 [nfs] [<ffffffffa025cef8>] ? rpc_ntop+0xe8/0x100 [sunrpc] [<ffffffffa047512c>] nfs3_set_ds_client+0xcc/0x100 [nfsv3] [<ffffffffa041fa10>] nfs4_pnfs_ds_connect+0x120/0x400 [nfsv4] [<ffffffffa03d41c7>] nfs4_ff_layout_prepare_ds+0xe7/0x330 [nfs_layout_flexfiles] [<ffffffffa03d1b1b>] ff_layout_pg_init_write+0xcb/0x280 [nfs_layout_flexfiles] [<ffffffffa03a14dc>] __nfs_pageio_add_request+0x12c/0x490 [nfs] [<ffffffffa03a1fa2>] nfs_pageio_add_request+0xc2/0x2a0 [nfs] [<ffffffffa03a0365>] ? nfs_pageio_init+0x75/0x120 [nfs] [<ffffffffa03a5b50>] nfs_do_writepage+0x120/0x270 [nfs] [<ffffffffa03a5d31>] nfs_writepage_locked+0x61/0xc0 [nfs] [<ffffffff813d4115>] ? __percpu_counter_add+0x55/0x70 [<ffffffffa03a6a9f>] nfs_wb_single_page+0xef/0x1c0 [nfs] [<ffffffff811ca4a3>] ? __dec_zone_page_state+0x33/0x40 [<ffffffffa0395b21>] nfs_launder_page+0x41/0x90 [nfs] [<ffffffff811baba0>] invalidate_inode_pages2_range+0x340/0x3a0 [<ffffffff811bac17>] invalidate_inode_pages2+0x17/0x20 [<ffffffffa039960e>] nfs_release+0x9e/0xb0 [nfs] [<ffffffffa0399570>] ? nfs_open+0x60/0x60 [nfs] [<ffffffffa0394dad>] nfs_file_release+0x3d/0x60 [nfs] [<ffffffff81226e6c>] __fput+0xdc/0x1e0 [<ffffffff81226fbe>] ____fput+0xe/0x10 [<ffffffff810bf2e4>] task_work_run+0xc4/0xe0 [<ffffffff810a4188>] do_exit+0x2e8/0xb30 [<ffffffff8102471c>] ? do_audit_syscall_entry+0x6c/0x70 [<ffffffff811464e6>] ? __audit_syscall_exit+0x1e6/0x280 [<ffffffff810a4a5f>] do_group_exit+0x3f/0xa0 [<ffffffff810a4ad4>] SyS_exit_group+0x14/0x20 [<ffffffff8179b76e>] system_call_fastpath+0x12/0x71 Which seems to be due to a call to utsname() when in a task exit context in order to determine the hostname to set in rpc_new_client(). In reality, what we want here is not the hostname of the current task, but the hostname that was used to set up the metadata server. Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2016-06-22 18:13:12 +00:00
const char *nodename; /* Hostname of the client */
const char *ip_addr; /* IP address of the client */
size_t addrlen;
struct nfs_subversion *nfs_mod;
int proto;
u32 minorversion;
unsigned int nconnect;
unsigned int max_connect;
struct net *net;
NFS: Fix an Oops in the pNFS files and flexfiles connection setup to the DS Chris Worley reports: RIP: 0010:[<ffffffffa0245f80>] [<ffffffffa0245f80>] rpc_new_client+0x2a0/0x2e0 [sunrpc] RSP: 0018:ffff880158f6f548 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff880234f8bc00 RCX: 000000000000ea60 RDX: 0000000000074cc0 RSI: 000000000000ea60 RDI: ffff880234f8bcf0 RBP: ffff880158f6f588 R08: 000000000001ac80 R09: ffff880237003300 R10: ffff880201171000 R11: ffffea0000d75200 R12: ffffffffa03afc60 R13: ffff880230c18800 R14: 0000000000000000 R15: ffff880158f6f680 FS: 00007f0e32673740(0000) GS:ffff88023fc40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000008 CR3: 0000000234886000 CR4: 00000000001406e0 Stack: ffffffffa047a680 0000000000000000 ffff880158f6f598 ffff880158f6f680 ffff880158f6f680 ffff880234d11d00 ffff88023357f800 ffff880158f6f7d0 ffff880158f6f5b8 ffffffffa024660a ffff880158f6f5b8 ffffffffa02492ec Call Trace: [<ffffffffa024660a>] rpc_create_xprt+0x1a/0xb0 [sunrpc] [<ffffffffa02492ec>] ? xprt_create_transport+0x13c/0x240 [sunrpc] [<ffffffffa0246766>] rpc_create+0xc6/0x1a0 [sunrpc] [<ffffffffa038e695>] nfs_create_rpc_client+0xf5/0x140 [nfs] [<ffffffffa038f31a>] nfs_init_client+0x3a/0xd0 [nfs] [<ffffffffa038f22f>] nfs_get_client+0x25f/0x310 [nfs] [<ffffffffa025cef8>] ? rpc_ntop+0xe8/0x100 [sunrpc] [<ffffffffa047512c>] nfs3_set_ds_client+0xcc/0x100 [nfsv3] [<ffffffffa041fa10>] nfs4_pnfs_ds_connect+0x120/0x400 [nfsv4] [<ffffffffa03d41c7>] nfs4_ff_layout_prepare_ds+0xe7/0x330 [nfs_layout_flexfiles] [<ffffffffa03d1b1b>] ff_layout_pg_init_write+0xcb/0x280 [nfs_layout_flexfiles] [<ffffffffa03a14dc>] __nfs_pageio_add_request+0x12c/0x490 [nfs] [<ffffffffa03a1fa2>] nfs_pageio_add_request+0xc2/0x2a0 [nfs] [<ffffffffa03a0365>] ? nfs_pageio_init+0x75/0x120 [nfs] [<ffffffffa03a5b50>] nfs_do_writepage+0x120/0x270 [nfs] [<ffffffffa03a5d31>] nfs_writepage_locked+0x61/0xc0 [nfs] [<ffffffff813d4115>] ? __percpu_counter_add+0x55/0x70 [<ffffffffa03a6a9f>] nfs_wb_single_page+0xef/0x1c0 [nfs] [<ffffffff811ca4a3>] ? __dec_zone_page_state+0x33/0x40 [<ffffffffa0395b21>] nfs_launder_page+0x41/0x90 [nfs] [<ffffffff811baba0>] invalidate_inode_pages2_range+0x340/0x3a0 [<ffffffff811bac17>] invalidate_inode_pages2+0x17/0x20 [<ffffffffa039960e>] nfs_release+0x9e/0xb0 [nfs] [<ffffffffa0399570>] ? nfs_open+0x60/0x60 [nfs] [<ffffffffa0394dad>] nfs_file_release+0x3d/0x60 [nfs] [<ffffffff81226e6c>] __fput+0xdc/0x1e0 [<ffffffff81226fbe>] ____fput+0xe/0x10 [<ffffffff810bf2e4>] task_work_run+0xc4/0xe0 [<ffffffff810a4188>] do_exit+0x2e8/0xb30 [<ffffffff8102471c>] ? do_audit_syscall_entry+0x6c/0x70 [<ffffffff811464e6>] ? __audit_syscall_exit+0x1e6/0x280 [<ffffffff810a4a5f>] do_group_exit+0x3f/0xa0 [<ffffffff810a4ad4>] SyS_exit_group+0x14/0x20 [<ffffffff8179b76e>] system_call_fastpath+0x12/0x71 Which seems to be due to a call to utsname() when in a task exit context in order to determine the hostname to set in rpc_new_client(). In reality, what we want here is not the hostname of the current task, but the hostname that was used to set up the metadata server. Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2016-06-22 18:13:12 +00:00
const struct rpc_timeout *timeparms;
const struct cred *cred;
struct xprtsec_parms xprtsec;
unsigned long connect_timeout;
unsigned long reconnect_timeout;
};
/*
* In-kernel mount arguments
*/
struct nfs_fs_context {
NFS: Add fs_context support. Add filesystem context support to NFS, parsing the options in advance and attaching the information to struct nfs_fs_context. The highlights are: (*) Merge nfs_mount_info and nfs_clone_mount into nfs_fs_context. This structure represents NFS's superblock config. (*) Make use of the VFS's parsing support to split comma-separated lists (*) Pin the NFS protocol module in the nfs_fs_context. (*) Attach supplementary error information to fs_context. This has the downside that these strings must be static and can't be formatted. (*) Remove the auxiliary file_system_type structs since the information necessary can be conveyed in the nfs_fs_context struct instead. (*) Root mounts are made by duplicating the config for the requested mount so as to have the same parameters. Submounts pick up their parameters from the parent superblock. [AV -- retrans is u32, not string] [SM -- Renamed cfg to ctx in a few functions in an earlier patch] [SM -- Moved fs_context mount option parsing to an earlier patch] [SM -- Moved fs_context error logging to a later patch] [SM -- Fixed printks in nfs4_try_get_tree() and nfs4_get_referral_tree()] [SM -- Added is_remount_fc() helper] [SM -- Deferred some refactoring to a later patch] [SM -- Fixed referral mounts, which were broken in the original patch] [SM -- Fixed leak of nfs_fattr when fs_context is freed] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Scott Mayhew <smayhew@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2019-12-10 12:31:13 +00:00
bool internal;
bool skip_reconfig_option_check;
bool need_mount;
bool sloppy;
unsigned int flags; /* NFS{,4}_MOUNT_* flags */
unsigned int rsize, wsize;
unsigned int timeo, retrans;
unsigned int acregmin, acregmax;
unsigned int acdirmin, acdirmax;
unsigned int namlen;
unsigned int options;
unsigned int bsize;
struct nfs_auth_info auth_info;
rpc_authflavor_t selected_flavor;
struct xprtsec_parms xprtsec;
char *client_address;
unsigned int version;
unsigned int minorversion;
NFS: Define and create superblock-level objects Define and create superblock-level cache index objects (as managed by nfs_server structs). Each superblock object is created in a server level index object and is itself an index into which inode-level objects are inserted. Ideally there would be one superblock-level object per server, and the former would be folded into the latter; however, since the "nosharecache" option exists this isn't possible. The superblock object key is a sequence consisting of: (1) Certain superblock s_flags. (2) Various connection parameters that serve to distinguish superblocks for sget(). (3) The volume FSID. (4) The security flavour. (5) The uniquifier length. (6) The uniquifier text. This is normally an empty string, unless the fsc=xyz mount option was used to explicitly specify a uniquifier. The key blob is of variable length, depending on the length of (6). The superblock object is given no coherency data to carry in the auxiliary data permitted by the cache. It is assumed that the superblock is always coherent. This patch also adds uniquification handling such that two otherwise identical superblocks, at least one of which is marked "nosharecache", won't end up trying to share the on-disk cache. It will be possible to manually provide a uniquifier through a mount option with a later patch to avoid the error otherwise produced. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 15:42:42 +00:00
char *fscache_uniq;
unsigned short protofamily;
unsigned short mountfamily;
bool has_sec_mnt_opts;
struct {
union {
struct sockaddr address;
struct sockaddr_storage _address;
};
size_t addrlen;
char *hostname;
u32 version;
int port;
unsigned short protocol;
} mount_server;
struct {
union {
struct sockaddr address;
struct sockaddr_storage _address;
};
size_t addrlen;
char *hostname;
char *export_path;
int port;
unsigned short protocol;
unsigned short nconnect;
unsigned short max_connect;
NFS: Add fs_context support. Add filesystem context support to NFS, parsing the options in advance and attaching the information to struct nfs_fs_context. The highlights are: (*) Merge nfs_mount_info and nfs_clone_mount into nfs_fs_context. This structure represents NFS's superblock config. (*) Make use of the VFS's parsing support to split comma-separated lists (*) Pin the NFS protocol module in the nfs_fs_context. (*) Attach supplementary error information to fs_context. This has the downside that these strings must be static and can't be formatted. (*) Remove the auxiliary file_system_type structs since the information necessary can be conveyed in the nfs_fs_context struct instead. (*) Root mounts are made by duplicating the config for the requested mount so as to have the same parameters. Submounts pick up their parameters from the parent superblock. [AV -- retrans is u32, not string] [SM -- Renamed cfg to ctx in a few functions in an earlier patch] [SM -- Moved fs_context mount option parsing to an earlier patch] [SM -- Moved fs_context error logging to a later patch] [SM -- Fixed printks in nfs4_try_get_tree() and nfs4_get_referral_tree()] [SM -- Added is_remount_fc() helper] [SM -- Deferred some refactoring to a later patch] [SM -- Fixed referral mounts, which were broken in the original patch] [SM -- Fixed leak of nfs_fattr when fs_context is freed] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Scott Mayhew <smayhew@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2019-12-10 12:31:13 +00:00
unsigned short export_path_len;
} nfs_server;
struct nfs_fh *mntfh;
struct nfs_server *server;
struct nfs_subversion *nfs_mod;
/* Information for a cloned mount. */
struct nfs_clone_mount {
struct super_block *sb;
struct dentry *dentry;
struct nfs_fattr *fattr;
unsigned int inherited_bsize;
} clone_data;
};
#define nfs_errorf(fc, fmt, ...) ((fc)->log.log ? \
errorf(fc, fmt, ## __VA_ARGS__) : \
({ dprintk(fmt "\n", ## __VA_ARGS__); }))
#define nfs_ferrorf(fc, fac, fmt, ...) ((fc)->log.log ? \
errorf(fc, fmt, ## __VA_ARGS__) : \
({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); }))
#define nfs_invalf(fc, fmt, ...) ((fc)->log.log ? \
invalf(fc, fmt, ## __VA_ARGS__) : \
({ dprintk(fmt "\n", ## __VA_ARGS__); -EINVAL; }))
#define nfs_finvalf(fc, fac, fmt, ...) ((fc)->log.log ? \
invalf(fc, fmt, ## __VA_ARGS__) : \
({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); -EINVAL; }))
#define nfs_warnf(fc, fmt, ...) ((fc)->log.log ? \
warnf(fc, fmt, ## __VA_ARGS__) : \
({ dprintk(fmt "\n", ## __VA_ARGS__); }))
#define nfs_fwarnf(fc, fac, fmt, ...) ((fc)->log.log ? \
warnf(fc, fmt, ## __VA_ARGS__) : \
({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); }))
NFS: Add fs_context support. Add filesystem context support to NFS, parsing the options in advance and attaching the information to struct nfs_fs_context. The highlights are: (*) Merge nfs_mount_info and nfs_clone_mount into nfs_fs_context. This structure represents NFS's superblock config. (*) Make use of the VFS's parsing support to split comma-separated lists (*) Pin the NFS protocol module in the nfs_fs_context. (*) Attach supplementary error information to fs_context. This has the downside that these strings must be static and can't be formatted. (*) Remove the auxiliary file_system_type structs since the information necessary can be conveyed in the nfs_fs_context struct instead. (*) Root mounts are made by duplicating the config for the requested mount so as to have the same parameters. Submounts pick up their parameters from the parent superblock. [AV -- retrans is u32, not string] [SM -- Renamed cfg to ctx in a few functions in an earlier patch] [SM -- Moved fs_context mount option parsing to an earlier patch] [SM -- Moved fs_context error logging to a later patch] [SM -- Fixed printks in nfs4_try_get_tree() and nfs4_get_referral_tree()] [SM -- Added is_remount_fc() helper] [SM -- Deferred some refactoring to a later patch] [SM -- Fixed referral mounts, which were broken in the original patch] [SM -- Fixed leak of nfs_fattr when fs_context is freed] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Scott Mayhew <smayhew@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2019-12-10 12:31:13 +00:00
static inline struct nfs_fs_context *nfs_fc2context(const struct fs_context *fc)
{
return fc->fs_private;
}
/* mount_clnt.c */
struct nfs_mount_request {
struct sockaddr_storage *sap;
size_t salen;
char *hostname;
char *dirpath;
u32 version;
unsigned short protocol;
struct nfs_fh *fh;
int noresvport;
unsigned int *auth_flav_len;
rpc_authflavor_t *auth_flavs;
struct net *net;
};
extern int nfs_mount(struct nfs_mount_request *info, int timeo, int retrans);
extern void nfs_umount(const struct nfs_mount_request *info);
/* client.c */
extern const struct rpc_program nfs_program;
extern void nfs_clients_init(struct net *net);
extern void nfs_clients_exit(struct net *net);
extern struct nfs_client *nfs_alloc_client(const struct nfs_client_initdata *);
NFS: Fix an Oops in the pNFS files and flexfiles connection setup to the DS Chris Worley reports: RIP: 0010:[<ffffffffa0245f80>] [<ffffffffa0245f80>] rpc_new_client+0x2a0/0x2e0 [sunrpc] RSP: 0018:ffff880158f6f548 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff880234f8bc00 RCX: 000000000000ea60 RDX: 0000000000074cc0 RSI: 000000000000ea60 RDI: ffff880234f8bcf0 RBP: ffff880158f6f588 R08: 000000000001ac80 R09: ffff880237003300 R10: ffff880201171000 R11: ffffea0000d75200 R12: ffffffffa03afc60 R13: ffff880230c18800 R14: 0000000000000000 R15: ffff880158f6f680 FS: 00007f0e32673740(0000) GS:ffff88023fc40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000008 CR3: 0000000234886000 CR4: 00000000001406e0 Stack: ffffffffa047a680 0000000000000000 ffff880158f6f598 ffff880158f6f680 ffff880158f6f680 ffff880234d11d00 ffff88023357f800 ffff880158f6f7d0 ffff880158f6f5b8 ffffffffa024660a ffff880158f6f5b8 ffffffffa02492ec Call Trace: [<ffffffffa024660a>] rpc_create_xprt+0x1a/0xb0 [sunrpc] [<ffffffffa02492ec>] ? xprt_create_transport+0x13c/0x240 [sunrpc] [<ffffffffa0246766>] rpc_create+0xc6/0x1a0 [sunrpc] [<ffffffffa038e695>] nfs_create_rpc_client+0xf5/0x140 [nfs] [<ffffffffa038f31a>] nfs_init_client+0x3a/0xd0 [nfs] [<ffffffffa038f22f>] nfs_get_client+0x25f/0x310 [nfs] [<ffffffffa025cef8>] ? rpc_ntop+0xe8/0x100 [sunrpc] [<ffffffffa047512c>] nfs3_set_ds_client+0xcc/0x100 [nfsv3] [<ffffffffa041fa10>] nfs4_pnfs_ds_connect+0x120/0x400 [nfsv4] [<ffffffffa03d41c7>] nfs4_ff_layout_prepare_ds+0xe7/0x330 [nfs_layout_flexfiles] [<ffffffffa03d1b1b>] ff_layout_pg_init_write+0xcb/0x280 [nfs_layout_flexfiles] [<ffffffffa03a14dc>] __nfs_pageio_add_request+0x12c/0x490 [nfs] [<ffffffffa03a1fa2>] nfs_pageio_add_request+0xc2/0x2a0 [nfs] [<ffffffffa03a0365>] ? nfs_pageio_init+0x75/0x120 [nfs] [<ffffffffa03a5b50>] nfs_do_writepage+0x120/0x270 [nfs] [<ffffffffa03a5d31>] nfs_writepage_locked+0x61/0xc0 [nfs] [<ffffffff813d4115>] ? __percpu_counter_add+0x55/0x70 [<ffffffffa03a6a9f>] nfs_wb_single_page+0xef/0x1c0 [nfs] [<ffffffff811ca4a3>] ? __dec_zone_page_state+0x33/0x40 [<ffffffffa0395b21>] nfs_launder_page+0x41/0x90 [nfs] [<ffffffff811baba0>] invalidate_inode_pages2_range+0x340/0x3a0 [<ffffffff811bac17>] invalidate_inode_pages2+0x17/0x20 [<ffffffffa039960e>] nfs_release+0x9e/0xb0 [nfs] [<ffffffffa0399570>] ? nfs_open+0x60/0x60 [nfs] [<ffffffffa0394dad>] nfs_file_release+0x3d/0x60 [nfs] [<ffffffff81226e6c>] __fput+0xdc/0x1e0 [<ffffffff81226fbe>] ____fput+0xe/0x10 [<ffffffff810bf2e4>] task_work_run+0xc4/0xe0 [<ffffffff810a4188>] do_exit+0x2e8/0xb30 [<ffffffff8102471c>] ? do_audit_syscall_entry+0x6c/0x70 [<ffffffff811464e6>] ? __audit_syscall_exit+0x1e6/0x280 [<ffffffff810a4a5f>] do_group_exit+0x3f/0xa0 [<ffffffff810a4ad4>] SyS_exit_group+0x14/0x20 [<ffffffff8179b76e>] system_call_fastpath+0x12/0x71 Which seems to be due to a call to utsname() when in a task exit context in order to determine the hostname to set in rpc_new_client(). In reality, what we want here is not the hostname of the current task, but the hostname that was used to set up the metadata server. Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2016-06-22 18:13:12 +00:00
int nfs_create_rpc_client(struct nfs_client *, const struct nfs_client_initdata *, rpc_authflavor_t);
struct nfs_client *nfs_get_client(const struct nfs_client_initdata *);
int nfs_probe_server(struct nfs_server *, struct nfs_fh *);
void nfs_server_insert_lists(struct nfs_server *);
void nfs_server_remove_lists(struct nfs_server *);
void nfs_init_timeout_values(struct rpc_timeout *to, int proto, int timeo, int retrans);
int nfs_init_server_rpcclient(struct nfs_server *, const struct rpc_timeout *t,
rpc_authflavor_t);
struct nfs_server *nfs_alloc_server(void);
void nfs_server_copy_userdata(struct nfs_server *, struct nfs_server *);
NFS: Share NFS superblocks per-protocol per-server per-FSID The attached patch makes NFS share superblocks between mounts from the same server and FSID over the same protocol. It does this by creating each superblock with a false root and returning the real root dentry in the vfsmount presented by get_sb(). The root dentry set starts off as an anonymous dentry if we don't already have the dentry for its inode, otherwise it simply returns the dentry we already have. We may thus end up with several trees of dentries in the superblock, and if at some later point one of anonymous tree roots is discovered by normal filesystem activity to be located in another tree within the superblock, the anonymous root is named and materialises attached to the second tree at the appropriate point. Why do it this way? Why not pass an extra argument to the mount() syscall to indicate the subpath and then pathwalk from the server root to the desired directory? You can't guarantee this will work for two reasons: (1) The root and intervening nodes may not be accessible to the client. With NFS2 and NFS3, for instance, mountd is called on the server to get the filehandle for the tip of a path. mountd won't give us handles for anything we don't have permission to access, and so we can't set up NFS inodes for such nodes, and so can't easily set up dentries (we'd have to have ghost inodes or something). With this patch we don't actually create dentries until we get handles from the server that we can use to set up their inodes, and we don't actually bind them into the tree until we know for sure where they go. (2) Inaccessible symbolic links. If we're asked to mount two exports from the server, eg: mount warthog:/warthog/aaa/xxx /mmm mount warthog:/warthog/bbb/yyy /nnn We may not be able to access anything nearer the root than xxx and yyy, but we may find out later that /mmm/www/yyy, say, is actually the same directory as the one mounted on /nnn. What we might then find out, for example, is that /warthog/bbb was actually a symbolic link to /warthog/aaa/xxx/www, but we can't actually determine that by talking to the server until /warthog is made available by NFS. This would lead to having constructed an errneous dentry tree which we can't easily fix. We can end up with a dentry marked as a directory when it should actually be a symlink, or we could end up with an apparently hardlinked directory. With this patch we need not make assumptions about the type of a dentry for which we can't retrieve information, nor need we assume we know its place in the grand scheme of things until we actually see that place. This patch reduces the possibility of aliasing in the inode and page caches for inodes that may be accessed by more than one NFS export. It also reduces the number of superblocks required for NFS where there are many NFS exports being used from a server (home directory server + autofs for example). This in turn makes it simpler to do local caching of network filesystems, as it can then be guaranteed that there won't be links from multiple inodes in separate superblocks to the same cache file. Obviously, cache aliasing between different levels of NFS protocol could still be a problem, but at least that gives us another key to use when indexing the cache. This patch makes the following changes: (1) The server record construction/destruction has been abstracted out into its own set of functions to make things easier to get right. These have been moved into fs/nfs/client.c. All the code in fs/nfs/client.c has to do with the management of connections to servers, and doesn't touch superblocks in any way; the remaining code in fs/nfs/super.c has to do with VFS superblock management. (2) The sequence of events undertaken by NFS mount is now reordered: (a) A volume representation (struct nfs_server) is allocated. (b) A server representation (struct nfs_client) is acquired. This may be allocated or shared, and is keyed on server address, port and NFS version. (c) If allocated, the client representation is initialised. The state member variable of nfs_client is used to prevent a race during initialisation from two mounts. (d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we are given the root FH in advance. (e) The volume FSID is probed for on the root FH. (f) The volume representation is initialised from the FSINFO record retrieved on the root FH. (g) sget() is called to acquire a superblock. This may be allocated or shared, keyed on client pointer and FSID. (h) If allocated, the superblock is initialised. (i) If the superblock is shared, then the new nfs_server record is discarded. (j) The root dentry for this mount is looked up from the root FH. (k) The root dentry for this mount is assigned to the vfsmount. (3) nfs_readdir_lookup() creates dentries for each of the entries readdir() returns; this function now attaches disconnected trees from alternate roots that happen to be discovered attached to a directory being read (in the same way nfs_lookup() is made to do for lookup ops). The new d_materialise_unique() function is now used to do this, thus permitting the whole thing to be done under one set of locks, and thus avoiding any race between mount and lookup operations on the same directory. (4) The client management code uses a new debug facility: NFSDBG_CLIENT which is set by echoing 1024 to /proc/net/sunrpc/nfs_debug. (5) Clone mounts are now called xdev mounts. (6) Use the dentry passed to the statfs() op as the handle for retrieving fs statistics rather than the root dentry of the superblock (which is now a dummy). Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 00:06:13 +00:00
extern void nfs_put_client(struct nfs_client *);
extern void nfs_free_client(struct nfs_client *);
extern struct nfs_client *nfs4_find_client_ident(struct net *, int);
NFS refactor nfs_find_client and reference client across callback processing Fixes a bug where the nfs_client could be freed during callback processing. Refactor nfs_find_client to use minorversion specific means to locate the correct nfs_client structure. In the NFS layer, V4.0 clients are found using the callback_ident field in the CB_COMPOUND header. V4.1 clients are found using the sessionID in the CB_SEQUENCE operation which is also compared against the sessionID associated with the back channel thread after a successful CREATE_SESSION. Each of these methods finds the one an only nfs_client associated with the incoming callback request - so nfs_find_client_next is not needed. In the RPC layer, the pg_authenticate call needs to find the nfs_client. For the v4.0 callback service, the callback identifier has not been decoded so a search by address, version, and minorversion is used. The sessionid for the sessions based callback service has (usually) not been set for the pg_authenticate on a CB_NULL call which can be sent prior to the return of a CREATE_SESSION call, so the sessionid associated with the back channel thread is not used to find the client in pg_authenticate for CB_NULL calls. Pass the referenced nfs_client to each CB_COMPOUND operation being proceesed via the new cb_process_state structure. The reference is held across cb_compound processing. Use the new cb_process_state struct to move the NFS4ERR_RETRY_UNCACHED_REP processing from process_op into nfs4_callback_sequence where it belongs. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2011-01-06 02:04:32 +00:00
extern struct nfs_client *
nfs4_find_client_sessionid(struct net *, const struct sockaddr *,
struct nfs4_sessionid *, u32);
extern struct nfs_server *nfs_create_server(struct fs_context *);
extern void nfs4_server_set_init_caps(struct nfs_server *);
extern struct nfs_server *nfs4_create_server(struct fs_context *);
extern struct nfs_server *nfs4_create_referral_server(struct fs_context *);
extern int nfs4_update_server(struct nfs_server *server, const char *hostname,
struct sockaddr_storage *sap, size_t salen,
struct net *net);
NFS: Share NFS superblocks per-protocol per-server per-FSID The attached patch makes NFS share superblocks between mounts from the same server and FSID over the same protocol. It does this by creating each superblock with a false root and returning the real root dentry in the vfsmount presented by get_sb(). The root dentry set starts off as an anonymous dentry if we don't already have the dentry for its inode, otherwise it simply returns the dentry we already have. We may thus end up with several trees of dentries in the superblock, and if at some later point one of anonymous tree roots is discovered by normal filesystem activity to be located in another tree within the superblock, the anonymous root is named and materialises attached to the second tree at the appropriate point. Why do it this way? Why not pass an extra argument to the mount() syscall to indicate the subpath and then pathwalk from the server root to the desired directory? You can't guarantee this will work for two reasons: (1) The root and intervening nodes may not be accessible to the client. With NFS2 and NFS3, for instance, mountd is called on the server to get the filehandle for the tip of a path. mountd won't give us handles for anything we don't have permission to access, and so we can't set up NFS inodes for such nodes, and so can't easily set up dentries (we'd have to have ghost inodes or something). With this patch we don't actually create dentries until we get handles from the server that we can use to set up their inodes, and we don't actually bind them into the tree until we know for sure where they go. (2) Inaccessible symbolic links. If we're asked to mount two exports from the server, eg: mount warthog:/warthog/aaa/xxx /mmm mount warthog:/warthog/bbb/yyy /nnn We may not be able to access anything nearer the root than xxx and yyy, but we may find out later that /mmm/www/yyy, say, is actually the same directory as the one mounted on /nnn. What we might then find out, for example, is that /warthog/bbb was actually a symbolic link to /warthog/aaa/xxx/www, but we can't actually determine that by talking to the server until /warthog is made available by NFS. This would lead to having constructed an errneous dentry tree which we can't easily fix. We can end up with a dentry marked as a directory when it should actually be a symlink, or we could end up with an apparently hardlinked directory. With this patch we need not make assumptions about the type of a dentry for which we can't retrieve information, nor need we assume we know its place in the grand scheme of things until we actually see that place. This patch reduces the possibility of aliasing in the inode and page caches for inodes that may be accessed by more than one NFS export. It also reduces the number of superblocks required for NFS where there are many NFS exports being used from a server (home directory server + autofs for example). This in turn makes it simpler to do local caching of network filesystems, as it can then be guaranteed that there won't be links from multiple inodes in separate superblocks to the same cache file. Obviously, cache aliasing between different levels of NFS protocol could still be a problem, but at least that gives us another key to use when indexing the cache. This patch makes the following changes: (1) The server record construction/destruction has been abstracted out into its own set of functions to make things easier to get right. These have been moved into fs/nfs/client.c. All the code in fs/nfs/client.c has to do with the management of connections to servers, and doesn't touch superblocks in any way; the remaining code in fs/nfs/super.c has to do with VFS superblock management. (2) The sequence of events undertaken by NFS mount is now reordered: (a) A volume representation (struct nfs_server) is allocated. (b) A server representation (struct nfs_client) is acquired. This may be allocated or shared, and is keyed on server address, port and NFS version. (c) If allocated, the client representation is initialised. The state member variable of nfs_client is used to prevent a race during initialisation from two mounts. (d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we are given the root FH in advance. (e) The volume FSID is probed for on the root FH. (f) The volume representation is initialised from the FSINFO record retrieved on the root FH. (g) sget() is called to acquire a superblock. This may be allocated or shared, keyed on client pointer and FSID. (h) If allocated, the superblock is initialised. (i) If the superblock is shared, then the new nfs_server record is discarded. (j) The root dentry for this mount is looked up from the root FH. (k) The root dentry for this mount is assigned to the vfsmount. (3) nfs_readdir_lookup() creates dentries for each of the entries readdir() returns; this function now attaches disconnected trees from alternate roots that happen to be discovered attached to a directory being read (in the same way nfs_lookup() is made to do for lookup ops). The new d_materialise_unique() function is now used to do this, thus permitting the whole thing to be done under one set of locks, and thus avoiding any race between mount and lookup operations on the same directory. (4) The client management code uses a new debug facility: NFSDBG_CLIENT which is set by echoing 1024 to /proc/net/sunrpc/nfs_debug. (5) Clone mounts are now called xdev mounts. (6) Use the dentry passed to the statfs() op as the handle for retrieving fs statistics rather than the root dentry of the superblock (which is now a dummy). Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 00:06:13 +00:00
extern void nfs_free_server(struct nfs_server *server);
extern struct nfs_server *nfs_clone_server(struct nfs_server *,
struct nfs_fh *,
struct nfs_fattr *,
rpc_authflavor_t);
extern bool nfs_client_init_is_complete(const struct nfs_client *clp);
extern int nfs_client_init_status(const struct nfs_client *clp);
extern int nfs_wait_client_init_complete(const struct nfs_client *clp);
nfs41: add session setup to the state manager At mount, nfs_alloc_client sets the cl_state NFS4CLNT_LEASE_EXPIRED bit and nfs4_alloc_session sets the NFS4CLNT_SESSION_SETUP bit, so both bits are set when nfs4_lookup_root calls nfs4_recover_expired_lease which schedules the nfs4_state_manager and waits for it to complete. Place the session setup after the clientid establishment in nfs4_state_manager so that the session is setup right after the clientid has been established without rescheduling the state manager. Unlike nfsv4.0, the nfs_client struct is not ready to use until the session has been established. Postpone marking the nfs_client struct to NFS_CS_READY until after a successful CREATE_SESSION call so that other threads cannot use the client until the session is established. If the EXCHANGE_ID call fails and the session has not been setup (the NFS4CLNT_SESSION_SETUP bit is set), mark the client with the error and return. If the session setup CREATE_SESSION call fails with NFS4ERR_STALE_CLIENTID which could occur due to server reboot or network partition inbetween the EXCHANGE_ID and CREATE_SESSION call, reset the NFS4CLNT_LEASE_EXPIRED and NFS4CLNT_SESSION_SETUP bits and try again. If the CREATE_SESSION call fails with other errors, mark the client with the error and return. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: NFS_CS_SESSION_SETUP cl_cons_state for back channel setup] On session setup, the CREATE_SESSION reply races with the server back channel probe which needs to succeed to setup the back channel. Set a new cl_cons_state NFS_CS_SESSION_SETUP just prior to the CREATE_SESSION call and add it as a valid state to nfs_find_client so that the client back channel can find the nfs_client struct and won't drop the server backchannel probe. Use a new cl_cons_state so that NFSv4.0 back channel behaviour which only sets NFS_CS_READY is unchanged. Adjust waiting on the nfs_client_active_wq accordingly. Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: rename NFS_CS_SESSION_SETUP to NFS_CS_SESSION_INITING] Signed-off-by: Andy Adamson <andros@netapp.com> [nfs41: set NFS_CL_SESSION_INITING in alloc_session] Signed-off-by: Andy Adamson <andros@netapp.com> [nfs41: move session setup into a function] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [moved nfs4_proc_create_session declaration here] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2009-04-01 13:22:38 +00:00
extern void nfs_mark_client_ready(struct nfs_client *clp, int state);
extern struct nfs_client *nfs4_set_ds_client(struct nfs_server *mds_srv,
const struct sockaddr_storage *ds_addr,
int ds_addrlen, int ds_proto,
unsigned int ds_timeo,
unsigned int ds_retrans,
u32 minor_version);
extern struct rpc_clnt *nfs4_find_or_create_ds_client(struct nfs_client *,
struct inode *);
extern struct nfs_client *nfs3_set_ds_client(struct nfs_server *mds_srv,
const struct sockaddr_storage *ds_addr, int ds_addrlen,
int ds_proto, unsigned int ds_timeo,
unsigned int ds_retrans);
#ifdef CONFIG_PROC_FS
extern int __init nfs_fs_proc_init(void);
extern void nfs_fs_proc_exit(void);
extern int nfs_fs_proc_net_init(struct net *net);
extern void nfs_fs_proc_net_exit(struct net *net);
#else
static inline int nfs_fs_proc_net_init(struct net *net)
{
return 0;
}
static inline void nfs_fs_proc_net_exit(struct net *net)
{
}
static inline int nfs_fs_proc_init(void)
{
return 0;
}
static inline void nfs_fs_proc_exit(void)
{
}
#endif
/* callback_xdr.c */
extern const struct svc_version nfs4_callback_version1;
extern const struct svc_version nfs4_callback_version4;
NFS: Add fs_context support. Add filesystem context support to NFS, parsing the options in advance and attaching the information to struct nfs_fs_context. The highlights are: (*) Merge nfs_mount_info and nfs_clone_mount into nfs_fs_context. This structure represents NFS's superblock config. (*) Make use of the VFS's parsing support to split comma-separated lists (*) Pin the NFS protocol module in the nfs_fs_context. (*) Attach supplementary error information to fs_context. This has the downside that these strings must be static and can't be formatted. (*) Remove the auxiliary file_system_type structs since the information necessary can be conveyed in the nfs_fs_context struct instead. (*) Root mounts are made by duplicating the config for the requested mount so as to have the same parameters. Submounts pick up their parameters from the parent superblock. [AV -- retrans is u32, not string] [SM -- Renamed cfg to ctx in a few functions in an earlier patch] [SM -- Moved fs_context mount option parsing to an earlier patch] [SM -- Moved fs_context error logging to a later patch] [SM -- Fixed printks in nfs4_try_get_tree() and nfs4_get_referral_tree()] [SM -- Added is_remount_fc() helper] [SM -- Deferred some refactoring to a later patch] [SM -- Fixed referral mounts, which were broken in the original patch] [SM -- Fixed leak of nfs_fattr when fs_context is freed] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Scott Mayhew <smayhew@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2019-12-10 12:31:13 +00:00
/* fs_context.c */
extern struct file_system_type nfs_fs_type;
/* pagelist.c */
extern int __init nfs_init_nfspagecache(void);
extern void nfs_destroy_nfspagecache(void);
extern int __init nfs_init_readpagecache(void);
extern void nfs_destroy_readpagecache(void);
extern int __init nfs_init_writepagecache(void);
extern void nfs_destroy_writepagecache(void);
extern int __init nfs_init_directcache(void);
extern void nfs_destroy_directcache(void);
extern void nfs_pgheader_init(struct nfs_pageio_descriptor *desc,
struct nfs_pgio_header *hdr,
void (*release)(struct nfs_pgio_header *hdr));
void nfs_set_pgio_error(struct nfs_pgio_header *hdr, int error, loff_t pos);
int nfs_iocounter_wait(struct nfs_lock_context *l_ctx);
extern const struct nfs_pageio_ops nfs_pgio_rw_ops;
struct nfs_pgio_header *nfs_pgio_header_alloc(const struct nfs_rw_ops *);
void nfs_pgio_header_free(struct nfs_pgio_header *);
int nfs_generic_pgio(struct nfs_pageio_descriptor *, struct nfs_pgio_header *);
int nfs_initiate_pgio(struct rpc_clnt *clnt, struct nfs_pgio_header *hdr,
const struct cred *cred, const struct nfs_rpc_ops *rpc_ops,
const struct rpc_call_ops *call_ops, int how, int flags);
void nfs_free_request(struct nfs_page *req);
struct nfs_pgio_mirror *
nfs_pgio_current_mirror(struct nfs_pageio_descriptor *desc);
static inline bool nfs_match_open_context(const struct nfs_open_context *ctx1,
const struct nfs_open_context *ctx2)
{
return cred_fscmp(ctx1->cred, ctx2->cred) == 0 && ctx1->state == ctx2->state;
}
/* nfs2xdr.c */
extern const struct rpc_procinfo nfs_procedures[];
extern int nfs2_decode_dirent(struct xdr_stream *,
struct nfs_entry *, bool);
/* nfs3xdr.c */
extern const struct rpc_procinfo nfs3_procedures[];
extern int nfs3_decode_dirent(struct xdr_stream *,
struct nfs_entry *, bool);
/* nfs4xdr.c */
#if IS_ENABLED(CONFIG_NFS_V4)
extern int nfs4_decode_dirent(struct xdr_stream *,
struct nfs_entry *, bool);
#endif
#ifdef CONFIG_NFS_V4_1
extern const u32 nfs41_maxread_overhead;
extern const u32 nfs41_maxwrite_overhead;
extern const u32 nfs41_maxgetdevinfo_overhead;
#endif
/* nfs4proc.c */
#if IS_ENABLED(CONFIG_NFS_V4)
extern const struct rpc_procinfo nfs4_procedures[];
git-nfs-build-fixes Fix various problems with nfs4 disabled. And various other things. In file included from fs/nfs/inode.c:50: fs/nfs/internal.h:24: error: static declaration of 'nfs_do_refmount' follows non-static declaration include/linux/nfs_fs.h:320: error: previous declaration of 'nfs_do_refmount' was here fs/nfs/internal.h:65: warning: 'struct nfs4_fs_locations' declared inside parameter list fs/nfs/internal.h:65: warning: its scope is only this definition or declaration, which is probably not what you want fs/nfs/internal.h: In function 'nfs4_path': fs/nfs/internal.h:97: error: 'struct nfs_server' has no member named 'mnt_path' fs/nfs/inode.c: In function 'init_once': fs/nfs/inode.c:1116: error: 'struct nfs_inode' has no member named 'open_states' fs/nfs/inode.c:1116: error: 'struct nfs_inode' has no member named 'delegation' fs/nfs/inode.c:1116: error: 'struct nfs_inode' has no member named 'delegation_state' fs/nfs/inode.c:1116: error: 'struct nfs_inode' has no member named 'rwsem' distcc[26452] ERROR: compile fs/nfs/inode.c on g5/64 failed make[1]: *** [fs/nfs/inode.o] Error 1 make: *** [fs/nfs/inode.o] Error 2 make: *** Waiting for unfinished jobs.... In file included from fs/nfs/nfs3xdr.c:26: fs/nfs/internal.h:24: error: static declaration of 'nfs_do_refmount' follows non-static declaration include/linux/nfs_fs.h:320: error: previous declaration of 'nfs_do_refmount' was here fs/nfs/internal.h:65: warning: 'struct nfs4_fs_locations' declared inside parameter list fs/nfs/internal.h:65: warning: its scope is only this definition or declaration, which is probably not what you want fs/nfs/internal.h: In function 'nfs4_path': fs/nfs/internal.h:97: error: 'struct nfs_server' has no member named 'mnt_path' distcc[26486] ERROR: compile fs/nfs/nfs3xdr.c on g5/64 failed make[1]: *** [fs/nfs/nfs3xdr.o] Error 1 make: *** [fs/nfs/nfs3xdr.o] Error 2 In file included from fs/nfs/nfs3proc.c:24: fs/nfs/internal.h:24: error: static declaration of 'nfs_do_refmount' follows non-static declaration include/linux/nfs_fs.h:320: error: previous declaration of 'nfs_do_refmount' was here fs/nfs/internal.h:65: warning: 'struct nfs4_fs_locations' declared inside parameter list fs/nfs/internal.h:65: warning: its scope is only this definition or declaration, which is probably not what you want fs/nfs/internal.h: In function 'nfs4_path': fs/nfs/internal.h:97: error: 'struct nfs_server' has no member named 'mnt_path' distcc[26469] ERROR: compile fs/nfs/nfs3proc.c on bix/32 failed make[1]: *** [fs/nfs/nfs3proc.o] Error 1 make: *** [fs/nfs/nfs3proc.o] Error 2 **FAILED** Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andreas Gruenbacher <agruen@suse.de> Cc: Andy Adamson <andros@citi.umich.edu> Cc: Chuck Lever <cel@netapp.com> Cc: David Howells <dhowells@redhat.com> Cc: J. Bruce Fields <bfields@fieldses.org> Cc: Manoj Naik <manoj@almaden.ibm.com> Cc: Marc Eshel <eshel@almaden.ibm.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-06-25 09:41:26 +00:00
#endif
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
extern struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags);
nfs: Fix an oops caused by using other thread's stack space in ASYNC mode An oops caused by using other thread's stack space in sunrpc ASYNC sending thread. [ 9839.007187] ------------[ cut here ]------------ [ 9839.007923] kernel BUG at fs/nfs/nfs4xdr.c:910! [ 9839.008069] invalid opcode: 0000 [#1] SMP [ 9839.008069] Modules linked in: blocklayoutdriver rpcsec_gss_krb5 nfsv4 dns_resolver nfs fscache snd_hda_codec_generic snd_hda_intel snd_hda_controller snd_hda_codec snd_hwdep snd_seq snd_seq_device snd_pcm joydev iosf_mbi crct10dif_pclmul snd_timer crc32_pclmul crc32c_intel ghash_clmulni_intel snd soundcore ppdev pvpanic parport_pc i2c_piix4 serio_raw virtio_balloon parport acpi_cpufreq nfsd nfs_acl lockd grace auth_rpcgss sunrpc qxl drm_kms_helper virtio_net virtio_console virtio_blk ttm drm virtio_pci virtio_ring virtio ata_generic pata_acpi [ 9839.008069] CPU: 0 PID: 308 Comm: kworker/0:1H Not tainted 4.0.0-0.rc4.git1.3.fc23.x86_64 #1 [ 9839.008069] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 9839.008069] Workqueue: rpciod rpc_async_schedule [sunrpc] [ 9839.008069] task: ffff8800d8b4d8e0 ti: ffff880036678000 task.ti: ffff880036678000 [ 9839.008069] RIP: 0010:[<ffffffffa0339cc9>] [<ffffffffa0339cc9>] reserve_space.part.73+0x9/0x10 [nfsv4] [ 9839.008069] RSP: 0018:ffff88003667ba58 EFLAGS: 00010246 [ 9839.008069] RAX: 0000000000000000 RBX: 000000001fc15e18 RCX: ffff8800c0193800 [ 9839.008069] RDX: ffff8800e4ae3f24 RSI: 000000001fc15e2c RDI: ffff88003667bcd0 [ 9839.008069] RBP: ffff88003667ba58 R08: ffff8800d9173008 R09: 0000000000000003 [ 9839.008069] R10: ffff88003667bcd0 R11: 000000000000000c R12: 0000000000010000 [ 9839.008069] R13: ffff8800d9173350 R14: 0000000000000000 R15: ffff8800c0067b98 [ 9839.008069] FS: 0000000000000000(0000) GS:ffff88011fc00000(0000) knlGS:0000000000000000 [ 9839.008069] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 9839.008069] CR2: 00007f988c9c8bb0 CR3: 00000000d99b6000 CR4: 00000000000407f0 [ 9839.008069] Stack: [ 9839.008069] ffff88003667bbc8 ffffffffa03412c5 00000000c6c55680 ffff880000000003 [ 9839.008069] 0000000000000088 00000010c6c55680 0001000000000002 ffffffff816e87e9 [ 9839.008069] 0000000000000000 00000000477290e2 ffff88003667bab8 ffffffff81327ba3 [ 9839.008069] Call Trace: [ 9839.008069] [<ffffffffa03412c5>] encode_attrs+0x435/0x530 [nfsv4] [ 9839.008069] [<ffffffff816e87e9>] ? inet_sendmsg+0x69/0xb0 [ 9839.008069] [<ffffffff81327ba3>] ? selinux_socket_sendmsg+0x23/0x30 [ 9839.008069] [<ffffffff8164c1df>] ? do_sock_sendmsg+0x9f/0xc0 [ 9839.008069] [<ffffffff8164c278>] ? kernel_sendmsg+0x58/0x70 [ 9839.008069] [<ffffffffa011acc0>] ? xdr_reserve_space+0x20/0x170 [sunrpc] [ 9839.008069] [<ffffffffa011acc0>] ? xdr_reserve_space+0x20/0x170 [sunrpc] [ 9839.008069] [<ffffffffa0341b40>] ? nfs4_xdr_enc_open_noattr+0x130/0x130 [nfsv4] [ 9839.008069] [<ffffffffa03419a5>] encode_open+0x2d5/0x340 [nfsv4] [ 9839.008069] [<ffffffffa0341b40>] ? nfs4_xdr_enc_open_noattr+0x130/0x130 [nfsv4] [ 9839.008069] [<ffffffffa011ab89>] ? xdr_encode_opaque+0x19/0x20 [sunrpc] [ 9839.008069] [<ffffffffa0339cfb>] ? encode_string+0x2b/0x40 [nfsv4] [ 9839.008069] [<ffffffffa0341bf3>] nfs4_xdr_enc_open+0xb3/0x140 [nfsv4] [ 9839.008069] [<ffffffffa0110a4c>] rpcauth_wrap_req+0xac/0xf0 [sunrpc] [ 9839.008069] [<ffffffffa01017db>] call_transmit+0x18b/0x2d0 [sunrpc] [ 9839.008069] [<ffffffffa0101650>] ? call_decode+0x860/0x860 [sunrpc] [ 9839.008069] [<ffffffffa0101650>] ? call_decode+0x860/0x860 [sunrpc] [ 9839.008069] [<ffffffffa010caa0>] __rpc_execute+0x90/0x460 [sunrpc] [ 9839.008069] [<ffffffffa010ce85>] rpc_async_schedule+0x15/0x20 [sunrpc] [ 9839.008069] [<ffffffff810b452b>] process_one_work+0x1bb/0x410 [ 9839.008069] [<ffffffff810b47d3>] worker_thread+0x53/0x470 [ 9839.008069] [<ffffffff810b4780>] ? process_one_work+0x410/0x410 [ 9839.008069] [<ffffffff810b4780>] ? process_one_work+0x410/0x410 [ 9839.008069] [<ffffffff810ba7b8>] kthread+0xd8/0xf0 [ 9839.008069] [<ffffffff810ba6e0>] ? kthread_worker_fn+0x180/0x180 [ 9839.008069] [<ffffffff81786418>] ret_from_fork+0x58/0x90 [ 9839.008069] [<ffffffff810ba6e0>] ? kthread_worker_fn+0x180/0x180 [ 9839.008069] Code: 00 00 48 c7 c7 21 fa 37 a0 e8 94 1c d6 e0 c6 05 d2 17 05 00 01 8b 03 eb d7 66 0f 1f 84 00 00 00 00 00 66 66 66 66 90 55 48 89 e5 <0f> 0b 0f 1f 44 00 00 66 66 66 66 90 55 48 89 e5 41 54 53 89 f3 [ 9839.008069] RIP [<ffffffffa0339cc9>] reserve_space.part.73+0x9/0x10 [nfsv4] [ 9839.008069] RSP <ffff88003667ba58> [ 9839.071114] ---[ end trace cc14c03adb522e94 ]--- Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2015-07-27 07:31:38 +00:00
static inline struct nfs4_label *
nfs4_label_copy(struct nfs4_label *dst, struct nfs4_label *src)
{
if (!dst || !src)
return NULL;
if (src->len > NFS4_MAXLABELLEN)
return NULL;
dst->lfs = src->lfs;
dst->pi = src->pi;
dst->len = src->len;
memcpy(dst->label, src->label, src->len);
return dst;
}
static inline void nfs_zap_label_cache_locked(struct nfs_inode *nfsi)
{
if (nfs_server_capable(&nfsi->vfs_inode, NFS_CAP_SECURITY_LABEL))
nfsi->cache_validity |= NFS_INO_INVALID_LABEL;
}
#else
static inline struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags) { return NULL; }
static inline void nfs_zap_label_cache_locked(struct nfs_inode *nfsi)
{
}
nfs: Fix an oops caused by using other thread's stack space in ASYNC mode An oops caused by using other thread's stack space in sunrpc ASYNC sending thread. [ 9839.007187] ------------[ cut here ]------------ [ 9839.007923] kernel BUG at fs/nfs/nfs4xdr.c:910! [ 9839.008069] invalid opcode: 0000 [#1] SMP [ 9839.008069] Modules linked in: blocklayoutdriver rpcsec_gss_krb5 nfsv4 dns_resolver nfs fscache snd_hda_codec_generic snd_hda_intel snd_hda_controller snd_hda_codec snd_hwdep snd_seq snd_seq_device snd_pcm joydev iosf_mbi crct10dif_pclmul snd_timer crc32_pclmul crc32c_intel ghash_clmulni_intel snd soundcore ppdev pvpanic parport_pc i2c_piix4 serio_raw virtio_balloon parport acpi_cpufreq nfsd nfs_acl lockd grace auth_rpcgss sunrpc qxl drm_kms_helper virtio_net virtio_console virtio_blk ttm drm virtio_pci virtio_ring virtio ata_generic pata_acpi [ 9839.008069] CPU: 0 PID: 308 Comm: kworker/0:1H Not tainted 4.0.0-0.rc4.git1.3.fc23.x86_64 #1 [ 9839.008069] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 9839.008069] Workqueue: rpciod rpc_async_schedule [sunrpc] [ 9839.008069] task: ffff8800d8b4d8e0 ti: ffff880036678000 task.ti: ffff880036678000 [ 9839.008069] RIP: 0010:[<ffffffffa0339cc9>] [<ffffffffa0339cc9>] reserve_space.part.73+0x9/0x10 [nfsv4] [ 9839.008069] RSP: 0018:ffff88003667ba58 EFLAGS: 00010246 [ 9839.008069] RAX: 0000000000000000 RBX: 000000001fc15e18 RCX: ffff8800c0193800 [ 9839.008069] RDX: ffff8800e4ae3f24 RSI: 000000001fc15e2c RDI: ffff88003667bcd0 [ 9839.008069] RBP: ffff88003667ba58 R08: ffff8800d9173008 R09: 0000000000000003 [ 9839.008069] R10: ffff88003667bcd0 R11: 000000000000000c R12: 0000000000010000 [ 9839.008069] R13: ffff8800d9173350 R14: 0000000000000000 R15: ffff8800c0067b98 [ 9839.008069] FS: 0000000000000000(0000) GS:ffff88011fc00000(0000) knlGS:0000000000000000 [ 9839.008069] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 9839.008069] CR2: 00007f988c9c8bb0 CR3: 00000000d99b6000 CR4: 00000000000407f0 [ 9839.008069] Stack: [ 9839.008069] ffff88003667bbc8 ffffffffa03412c5 00000000c6c55680 ffff880000000003 [ 9839.008069] 0000000000000088 00000010c6c55680 0001000000000002 ffffffff816e87e9 [ 9839.008069] 0000000000000000 00000000477290e2 ffff88003667bab8 ffffffff81327ba3 [ 9839.008069] Call Trace: [ 9839.008069] [<ffffffffa03412c5>] encode_attrs+0x435/0x530 [nfsv4] [ 9839.008069] [<ffffffff816e87e9>] ? inet_sendmsg+0x69/0xb0 [ 9839.008069] [<ffffffff81327ba3>] ? selinux_socket_sendmsg+0x23/0x30 [ 9839.008069] [<ffffffff8164c1df>] ? do_sock_sendmsg+0x9f/0xc0 [ 9839.008069] [<ffffffff8164c278>] ? kernel_sendmsg+0x58/0x70 [ 9839.008069] [<ffffffffa011acc0>] ? xdr_reserve_space+0x20/0x170 [sunrpc] [ 9839.008069] [<ffffffffa011acc0>] ? xdr_reserve_space+0x20/0x170 [sunrpc] [ 9839.008069] [<ffffffffa0341b40>] ? nfs4_xdr_enc_open_noattr+0x130/0x130 [nfsv4] [ 9839.008069] [<ffffffffa03419a5>] encode_open+0x2d5/0x340 [nfsv4] [ 9839.008069] [<ffffffffa0341b40>] ? nfs4_xdr_enc_open_noattr+0x130/0x130 [nfsv4] [ 9839.008069] [<ffffffffa011ab89>] ? xdr_encode_opaque+0x19/0x20 [sunrpc] [ 9839.008069] [<ffffffffa0339cfb>] ? encode_string+0x2b/0x40 [nfsv4] [ 9839.008069] [<ffffffffa0341bf3>] nfs4_xdr_enc_open+0xb3/0x140 [nfsv4] [ 9839.008069] [<ffffffffa0110a4c>] rpcauth_wrap_req+0xac/0xf0 [sunrpc] [ 9839.008069] [<ffffffffa01017db>] call_transmit+0x18b/0x2d0 [sunrpc] [ 9839.008069] [<ffffffffa0101650>] ? call_decode+0x860/0x860 [sunrpc] [ 9839.008069] [<ffffffffa0101650>] ? call_decode+0x860/0x860 [sunrpc] [ 9839.008069] [<ffffffffa010caa0>] __rpc_execute+0x90/0x460 [sunrpc] [ 9839.008069] [<ffffffffa010ce85>] rpc_async_schedule+0x15/0x20 [sunrpc] [ 9839.008069] [<ffffffff810b452b>] process_one_work+0x1bb/0x410 [ 9839.008069] [<ffffffff810b47d3>] worker_thread+0x53/0x470 [ 9839.008069] [<ffffffff810b4780>] ? process_one_work+0x410/0x410 [ 9839.008069] [<ffffffff810b4780>] ? process_one_work+0x410/0x410 [ 9839.008069] [<ffffffff810ba7b8>] kthread+0xd8/0xf0 [ 9839.008069] [<ffffffff810ba6e0>] ? kthread_worker_fn+0x180/0x180 [ 9839.008069] [<ffffffff81786418>] ret_from_fork+0x58/0x90 [ 9839.008069] [<ffffffff810ba6e0>] ? kthread_worker_fn+0x180/0x180 [ 9839.008069] Code: 00 00 48 c7 c7 21 fa 37 a0 e8 94 1c d6 e0 c6 05 d2 17 05 00 01 8b 03 eb d7 66 0f 1f 84 00 00 00 00 00 66 66 66 66 90 55 48 89 e5 <0f> 0b 0f 1f 44 00 00 66 66 66 66 90 55 48 89 e5 41 54 53 89 f3 [ 9839.008069] RIP [<ffffffffa0339cc9>] reserve_space.part.73+0x9/0x10 [nfsv4] [ 9839.008069] RSP <ffff88003667ba58> [ 9839.071114] ---[ end trace cc14c03adb522e94 ]--- Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2015-07-27 07:31:38 +00:00
static inline struct nfs4_label *
nfs4_label_copy(struct nfs4_label *dst, struct nfs4_label *src)
{
return NULL;
}
#endif /* CONFIG_NFS_V4_SECURITY_LABEL */
/* proc.c */
void nfs_close_context(struct nfs_open_context *ctx, int is_sync);
extern struct nfs_client *nfs_init_client(struct nfs_client *clp,
NFS: Fix an Oops in the pNFS files and flexfiles connection setup to the DS Chris Worley reports: RIP: 0010:[<ffffffffa0245f80>] [<ffffffffa0245f80>] rpc_new_client+0x2a0/0x2e0 [sunrpc] RSP: 0018:ffff880158f6f548 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff880234f8bc00 RCX: 000000000000ea60 RDX: 0000000000074cc0 RSI: 000000000000ea60 RDI: ffff880234f8bcf0 RBP: ffff880158f6f588 R08: 000000000001ac80 R09: ffff880237003300 R10: ffff880201171000 R11: ffffea0000d75200 R12: ffffffffa03afc60 R13: ffff880230c18800 R14: 0000000000000000 R15: ffff880158f6f680 FS: 00007f0e32673740(0000) GS:ffff88023fc40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000008 CR3: 0000000234886000 CR4: 00000000001406e0 Stack: ffffffffa047a680 0000000000000000 ffff880158f6f598 ffff880158f6f680 ffff880158f6f680 ffff880234d11d00 ffff88023357f800 ffff880158f6f7d0 ffff880158f6f5b8 ffffffffa024660a ffff880158f6f5b8 ffffffffa02492ec Call Trace: [<ffffffffa024660a>] rpc_create_xprt+0x1a/0xb0 [sunrpc] [<ffffffffa02492ec>] ? xprt_create_transport+0x13c/0x240 [sunrpc] [<ffffffffa0246766>] rpc_create+0xc6/0x1a0 [sunrpc] [<ffffffffa038e695>] nfs_create_rpc_client+0xf5/0x140 [nfs] [<ffffffffa038f31a>] nfs_init_client+0x3a/0xd0 [nfs] [<ffffffffa038f22f>] nfs_get_client+0x25f/0x310 [nfs] [<ffffffffa025cef8>] ? rpc_ntop+0xe8/0x100 [sunrpc] [<ffffffffa047512c>] nfs3_set_ds_client+0xcc/0x100 [nfsv3] [<ffffffffa041fa10>] nfs4_pnfs_ds_connect+0x120/0x400 [nfsv4] [<ffffffffa03d41c7>] nfs4_ff_layout_prepare_ds+0xe7/0x330 [nfs_layout_flexfiles] [<ffffffffa03d1b1b>] ff_layout_pg_init_write+0xcb/0x280 [nfs_layout_flexfiles] [<ffffffffa03a14dc>] __nfs_pageio_add_request+0x12c/0x490 [nfs] [<ffffffffa03a1fa2>] nfs_pageio_add_request+0xc2/0x2a0 [nfs] [<ffffffffa03a0365>] ? nfs_pageio_init+0x75/0x120 [nfs] [<ffffffffa03a5b50>] nfs_do_writepage+0x120/0x270 [nfs] [<ffffffffa03a5d31>] nfs_writepage_locked+0x61/0xc0 [nfs] [<ffffffff813d4115>] ? __percpu_counter_add+0x55/0x70 [<ffffffffa03a6a9f>] nfs_wb_single_page+0xef/0x1c0 [nfs] [<ffffffff811ca4a3>] ? __dec_zone_page_state+0x33/0x40 [<ffffffffa0395b21>] nfs_launder_page+0x41/0x90 [nfs] [<ffffffff811baba0>] invalidate_inode_pages2_range+0x340/0x3a0 [<ffffffff811bac17>] invalidate_inode_pages2+0x17/0x20 [<ffffffffa039960e>] nfs_release+0x9e/0xb0 [nfs] [<ffffffffa0399570>] ? nfs_open+0x60/0x60 [nfs] [<ffffffffa0394dad>] nfs_file_release+0x3d/0x60 [nfs] [<ffffffff81226e6c>] __fput+0xdc/0x1e0 [<ffffffff81226fbe>] ____fput+0xe/0x10 [<ffffffff810bf2e4>] task_work_run+0xc4/0xe0 [<ffffffff810a4188>] do_exit+0x2e8/0xb30 [<ffffffff8102471c>] ? do_audit_syscall_entry+0x6c/0x70 [<ffffffff811464e6>] ? __audit_syscall_exit+0x1e6/0x280 [<ffffffff810a4a5f>] do_group_exit+0x3f/0xa0 [<ffffffff810a4ad4>] SyS_exit_group+0x14/0x20 [<ffffffff8179b76e>] system_call_fastpath+0x12/0x71 Which seems to be due to a call to utsname() when in a task exit context in order to determine the hostname to set in rpc_new_client(). In reality, what we want here is not the hostname of the current task, but the hostname that was used to set up the metadata server. Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2016-06-22 18:13:12 +00:00
const struct nfs_client_initdata *);
/* dir.c */
extern void nfs_readdir_record_entry_cache_hit(struct inode *dir);
extern void nfs_readdir_record_entry_cache_miss(struct inode *dir);
fs: convert fs shrinkers to new scan/count API Convert the filesystem shrinkers to use the new API, and standardise some of the behaviours of the shrinkers at the same time. For example, nr_to_scan means the number of objects to scan, not the number of objects to free. I refactored the CIFS idmap shrinker a little - it really needs to be broken up into a shrinker per tree and keep an item count with the tree root so that we don't need to walk the tree every time the shrinker needs to count the number of objects in the tree (i.e. all the time under memory pressure). [glommer@openvz.org: fixes for ext4, ubifs, nfs, cifs and glock. Fixes are needed mainly due to new code merged in the tree] [assorted fixes folded in] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Acked-by: Jan Kara <jack@suse.cz> Acked-by: Steven Whitehouse <swhiteho@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:09 +00:00
extern unsigned long nfs_access_cache_count(struct shrinker *shrink,
struct shrink_control *sc);
extern unsigned long nfs_access_cache_scan(struct shrinker *shrink,
struct shrink_control *sc);
struct dentry *nfs_lookup(struct inode *, struct dentry *, unsigned int);
void nfs_d_prune_case_insensitive_aliases(struct inode *inode);
int nfs_create(struct mnt_idmap *, struct inode *, struct dentry *,
umode_t, bool);
int nfs_mkdir(struct mnt_idmap *, struct inode *, struct dentry *,
umode_t);
int nfs_rmdir(struct inode *, struct dentry *);
int nfs_unlink(struct inode *, struct dentry *);
int nfs_symlink(struct mnt_idmap *, struct inode *, struct dentry *,
const char *);
int nfs_link(struct dentry *, struct inode *, struct dentry *);
int nfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, umode_t,
dev_t);
int nfs_rename(struct mnt_idmap *, struct inode *, struct dentry *,
struct inode *, struct dentry *, unsigned int);
#ifdef CONFIG_NFS_V4_2
static inline __u32 nfs_access_xattr_mask(const struct nfs_server *server)
{
if (!(server->caps & NFS_CAP_XATTR))
return 0;
return NFS4_ACCESS_XAREAD | NFS4_ACCESS_XAWRITE | NFS4_ACCESS_XALIST;
}
#else
static inline __u32 nfs_access_xattr_mask(const struct nfs_server *server)
{
return 0;
}
#endif
/* file.c */
int nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync);
loff_t nfs_file_llseek(struct file *, loff_t, int);
ssize_t nfs_file_read(struct kiocb *, struct iov_iter *);
ssize_t nfs_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe,
size_t len, unsigned int flags);
int nfs_file_mmap(struct file *, struct vm_area_struct *);
ssize_t nfs_file_write(struct kiocb *, struct iov_iter *);
int nfs_file_release(struct inode *, struct file *);
int nfs_lock(struct file *, int, struct file_lock *);
int nfs_flock(struct file *, int, struct file_lock *);
int nfs_check_flags(int);
/* inode.c */
extern struct workqueue_struct *nfsiod_workqueue;
extern struct inode *nfs_alloc_inode(struct super_block *sb);
extern void nfs_free_inode(struct inode *);
extern int nfs_write_inode(struct inode *, struct writeback_control *);
extern int nfs_drop_inode(struct inode *);
extern void nfs_clear_inode(struct inode *);
extern void nfs_evict_inode(struct inode *);
extern void nfs_zap_acl_cache(struct inode *inode);
extern void nfs_set_cache_invalid(struct inode *inode, unsigned long flags);
extern bool nfs_check_cache_invalid(struct inode *, unsigned long);
extern int nfs_wait_bit_killable(struct wait_bit_key *key, int mode);
/* super.c */
extern const struct super_operations nfs_sops;
bool nfs_auth_info_match(const struct nfs_auth_info *, rpc_authflavor_t);
NFS: Add fs_context support. Add filesystem context support to NFS, parsing the options in advance and attaching the information to struct nfs_fs_context. The highlights are: (*) Merge nfs_mount_info and nfs_clone_mount into nfs_fs_context. This structure represents NFS's superblock config. (*) Make use of the VFS's parsing support to split comma-separated lists (*) Pin the NFS protocol module in the nfs_fs_context. (*) Attach supplementary error information to fs_context. This has the downside that these strings must be static and can't be formatted. (*) Remove the auxiliary file_system_type structs since the information necessary can be conveyed in the nfs_fs_context struct instead. (*) Root mounts are made by duplicating the config for the requested mount so as to have the same parameters. Submounts pick up their parameters from the parent superblock. [AV -- retrans is u32, not string] [SM -- Renamed cfg to ctx in a few functions in an earlier patch] [SM -- Moved fs_context mount option parsing to an earlier patch] [SM -- Moved fs_context error logging to a later patch] [SM -- Fixed printks in nfs4_try_get_tree() and nfs4_get_referral_tree()] [SM -- Added is_remount_fc() helper] [SM -- Deferred some refactoring to a later patch] [SM -- Fixed referral mounts, which were broken in the original patch] [SM -- Fixed leak of nfs_fattr when fs_context is freed] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Scott Mayhew <smayhew@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2019-12-10 12:31:13 +00:00
int nfs_try_get_tree(struct fs_context *);
int nfs_get_tree_common(struct fs_context *);
void nfs_kill_super(struct super_block *);
extern struct rpc_stat nfs_rpcstat;
extern int __init register_nfs_fs(void);
extern void __exit unregister_nfs_fs(void);
extern bool nfs_sb_active(struct super_block *sb);
extern void nfs_sb_deactive(struct super_block *sb);
extern int nfs_client_for_each_server(struct nfs_client *clp,
int (*fn)(struct nfs_server *, void *),
void *data);
NFS: Convert buffered read paths to use netfs when fscache is enabled Convert the NFS buffered read code paths to corresponding netfs APIs, but only when fscache is configured and enabled. The netfs API defines struct netfs_request_ops which must be filled in by the network filesystem. For NFS, we only need to define 5 of the functions, the main one being the issue_read() function. The issue_read() function is called by the netfs layer when a read cannot be fulfilled locally, and must be sent to the server (either the cache is not active, or it is active but the data is not available). Once the read from the server is complete, netfs requires a call to netfs_subreq_terminated() which conveys either how many bytes were read successfully, or an error. Note that issue_read() is called with a structure, netfs_io_subrequest, which defines the IO requested, and contains a start and a length (both in bytes), and assumes the underlying netfs will return a either an error on the whole region, or the number of bytes successfully read. The NFS IO path is page based and the main APIs are the pgio APIs defined in pagelist.c. For the pgio APIs, there is no way for the caller to know how many RPCs will be sent and how the pages will be broken up into underlying RPCs, each of which will have their own completion and return code. In contrast, netfs is subrequest based, a single subrequest may contain multiple pages, and a single subrequest is initiated with issue_read() and terminated with netfs_subreq_terminated(). Thus, to utilze the netfs APIs, NFS needs some way to accommodate the netfs API requirement on the single response to the whole subrequest, while also minimizing disruptive changes to the NFS pgio layer. The approach taken with this patch is to allocate a small structure for each nfs_netfs_issue_read() call, store the final error and number of bytes successfully transferred in the structure, and update these values as each RPC completes. The refcount on the structure is used as a marker for the last RPC completion, is incremented in nfs_netfs_read_initiate(), and decremented inside nfs_netfs_read_completion(), when a nfs_pgio_header contains a valid pointer to the data. On the final put (which signals the final outstanding RPC is complete) in nfs_netfs_read_completion(), call netfs_subreq_terminated() with either the final error value (if one or more READs complete with an error) or the number of bytes successfully transferred (if all RPCs complete successfully). Note that when all RPCs complete successfully, the number of bytes transferred is capped to the length of the subrequest. Capping the transferred length to the subrequest length prevents "Subreq overread" warnings from netfs. This is due to the "aligned_len" in nfs_pageio_add_page(), and the corner case where NFS requests a full page at the end of the file, even when i_size reflects only a partial page (NFS overread). Signed-off-by: Dave Wysochanski <dwysocha@redhat.com> Tested-by: Daire Byrne <daire@dneg.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2023-02-20 13:43:06 +00:00
#ifdef CONFIG_NFS_FSCACHE
extern const struct netfs_request_ops nfs_netfs_ops;
#endif
/* io.c */
extern void nfs_start_io_read(struct inode *inode);
extern void nfs_end_io_read(struct inode *inode);
extern void nfs_start_io_write(struct inode *inode);
extern void nfs_end_io_write(struct inode *inode);
extern void nfs_start_io_direct(struct inode *inode);
extern void nfs_end_io_direct(struct inode *inode);
static inline bool nfs_file_io_is_buffered(struct nfs_inode *nfsi)
{
return test_bit(NFS_INO_ODIRECT, &nfsi->flags) == 0;
}
/* namespace.c */
#define NFS_PATH_CANONICAL 1
extern char *nfs_path(char **p, struct dentry *dentry,
char *buffer, ssize_t buflen, unsigned flags);
extern struct vfsmount *nfs_d_automount(struct path *path);
NFS: Add fs_context support. Add filesystem context support to NFS, parsing the options in advance and attaching the information to struct nfs_fs_context. The highlights are: (*) Merge nfs_mount_info and nfs_clone_mount into nfs_fs_context. This structure represents NFS's superblock config. (*) Make use of the VFS's parsing support to split comma-separated lists (*) Pin the NFS protocol module in the nfs_fs_context. (*) Attach supplementary error information to fs_context. This has the downside that these strings must be static and can't be formatted. (*) Remove the auxiliary file_system_type structs since the information necessary can be conveyed in the nfs_fs_context struct instead. (*) Root mounts are made by duplicating the config for the requested mount so as to have the same parameters. Submounts pick up their parameters from the parent superblock. [AV -- retrans is u32, not string] [SM -- Renamed cfg to ctx in a few functions in an earlier patch] [SM -- Moved fs_context mount option parsing to an earlier patch] [SM -- Moved fs_context error logging to a later patch] [SM -- Fixed printks in nfs4_try_get_tree() and nfs4_get_referral_tree()] [SM -- Added is_remount_fc() helper] [SM -- Deferred some refactoring to a later patch] [SM -- Fixed referral mounts, which were broken in the original patch] [SM -- Fixed leak of nfs_fattr when fs_context is freed] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Scott Mayhew <smayhew@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2019-12-10 12:31:13 +00:00
int nfs_submount(struct fs_context *, struct nfs_server *);
int nfs_do_submount(struct fs_context *);
NFS: Share NFS superblocks per-protocol per-server per-FSID The attached patch makes NFS share superblocks between mounts from the same server and FSID over the same protocol. It does this by creating each superblock with a false root and returning the real root dentry in the vfsmount presented by get_sb(). The root dentry set starts off as an anonymous dentry if we don't already have the dentry for its inode, otherwise it simply returns the dentry we already have. We may thus end up with several trees of dentries in the superblock, and if at some later point one of anonymous tree roots is discovered by normal filesystem activity to be located in another tree within the superblock, the anonymous root is named and materialises attached to the second tree at the appropriate point. Why do it this way? Why not pass an extra argument to the mount() syscall to indicate the subpath and then pathwalk from the server root to the desired directory? You can't guarantee this will work for two reasons: (1) The root and intervening nodes may not be accessible to the client. With NFS2 and NFS3, for instance, mountd is called on the server to get the filehandle for the tip of a path. mountd won't give us handles for anything we don't have permission to access, and so we can't set up NFS inodes for such nodes, and so can't easily set up dentries (we'd have to have ghost inodes or something). With this patch we don't actually create dentries until we get handles from the server that we can use to set up their inodes, and we don't actually bind them into the tree until we know for sure where they go. (2) Inaccessible symbolic links. If we're asked to mount two exports from the server, eg: mount warthog:/warthog/aaa/xxx /mmm mount warthog:/warthog/bbb/yyy /nnn We may not be able to access anything nearer the root than xxx and yyy, but we may find out later that /mmm/www/yyy, say, is actually the same directory as the one mounted on /nnn. What we might then find out, for example, is that /warthog/bbb was actually a symbolic link to /warthog/aaa/xxx/www, but we can't actually determine that by talking to the server until /warthog is made available by NFS. This would lead to having constructed an errneous dentry tree which we can't easily fix. We can end up with a dentry marked as a directory when it should actually be a symlink, or we could end up with an apparently hardlinked directory. With this patch we need not make assumptions about the type of a dentry for which we can't retrieve information, nor need we assume we know its place in the grand scheme of things until we actually see that place. This patch reduces the possibility of aliasing in the inode and page caches for inodes that may be accessed by more than one NFS export. It also reduces the number of superblocks required for NFS where there are many NFS exports being used from a server (home directory server + autofs for example). This in turn makes it simpler to do local caching of network filesystems, as it can then be guaranteed that there won't be links from multiple inodes in separate superblocks to the same cache file. Obviously, cache aliasing between different levels of NFS protocol could still be a problem, but at least that gives us another key to use when indexing the cache. This patch makes the following changes: (1) The server record construction/destruction has been abstracted out into its own set of functions to make things easier to get right. These have been moved into fs/nfs/client.c. All the code in fs/nfs/client.c has to do with the management of connections to servers, and doesn't touch superblocks in any way; the remaining code in fs/nfs/super.c has to do with VFS superblock management. (2) The sequence of events undertaken by NFS mount is now reordered: (a) A volume representation (struct nfs_server) is allocated. (b) A server representation (struct nfs_client) is acquired. This may be allocated or shared, and is keyed on server address, port and NFS version. (c) If allocated, the client representation is initialised. The state member variable of nfs_client is used to prevent a race during initialisation from two mounts. (d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we are given the root FH in advance. (e) The volume FSID is probed for on the root FH. (f) The volume representation is initialised from the FSINFO record retrieved on the root FH. (g) sget() is called to acquire a superblock. This may be allocated or shared, keyed on client pointer and FSID. (h) If allocated, the superblock is initialised. (i) If the superblock is shared, then the new nfs_server record is discarded. (j) The root dentry for this mount is looked up from the root FH. (k) The root dentry for this mount is assigned to the vfsmount. (3) nfs_readdir_lookup() creates dentries for each of the entries readdir() returns; this function now attaches disconnected trees from alternate roots that happen to be discovered attached to a directory being read (in the same way nfs_lookup() is made to do for lookup ops). The new d_materialise_unique() function is now used to do this, thus permitting the whole thing to be done under one set of locks, and thus avoiding any race between mount and lookup operations on the same directory. (4) The client management code uses a new debug facility: NFSDBG_CLIENT which is set by echoing 1024 to /proc/net/sunrpc/nfs_debug. (5) Clone mounts are now called xdev mounts. (6) Use the dentry passed to the statfs() op as the handle for retrieving fs statistics rather than the root dentry of the superblock (which is now a dummy). Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 00:06:13 +00:00
/* getroot.c */
extern int nfs_get_root(struct super_block *s, struct fs_context *fc);
#if IS_ENABLED(CONFIG_NFS_V4)
extern int nfs4_get_rootfh(struct nfs_server *server, struct nfs_fh *mntfh, bool);
#endif
struct nfs_pgio_completion_ops;
/* read.c */
NFS: Convert buffered read paths to use netfs when fscache is enabled Convert the NFS buffered read code paths to corresponding netfs APIs, but only when fscache is configured and enabled. The netfs API defines struct netfs_request_ops which must be filled in by the network filesystem. For NFS, we only need to define 5 of the functions, the main one being the issue_read() function. The issue_read() function is called by the netfs layer when a read cannot be fulfilled locally, and must be sent to the server (either the cache is not active, or it is active but the data is not available). Once the read from the server is complete, netfs requires a call to netfs_subreq_terminated() which conveys either how many bytes were read successfully, or an error. Note that issue_read() is called with a structure, netfs_io_subrequest, which defines the IO requested, and contains a start and a length (both in bytes), and assumes the underlying netfs will return a either an error on the whole region, or the number of bytes successfully read. The NFS IO path is page based and the main APIs are the pgio APIs defined in pagelist.c. For the pgio APIs, there is no way for the caller to know how many RPCs will be sent and how the pages will be broken up into underlying RPCs, each of which will have their own completion and return code. In contrast, netfs is subrequest based, a single subrequest may contain multiple pages, and a single subrequest is initiated with issue_read() and terminated with netfs_subreq_terminated(). Thus, to utilze the netfs APIs, NFS needs some way to accommodate the netfs API requirement on the single response to the whole subrequest, while also minimizing disruptive changes to the NFS pgio layer. The approach taken with this patch is to allocate a small structure for each nfs_netfs_issue_read() call, store the final error and number of bytes successfully transferred in the structure, and update these values as each RPC completes. The refcount on the structure is used as a marker for the last RPC completion, is incremented in nfs_netfs_read_initiate(), and decremented inside nfs_netfs_read_completion(), when a nfs_pgio_header contains a valid pointer to the data. On the final put (which signals the final outstanding RPC is complete) in nfs_netfs_read_completion(), call netfs_subreq_terminated() with either the final error value (if one or more READs complete with an error) or the number of bytes successfully transferred (if all RPCs complete successfully). Note that when all RPCs complete successfully, the number of bytes transferred is capped to the length of the subrequest. Capping the transferred length to the subrequest length prevents "Subreq overread" warnings from netfs. This is due to the "aligned_len" in nfs_pageio_add_page(), and the corner case where NFS requests a full page at the end of the file, even when i_size reflects only a partial page (NFS overread). Signed-off-by: Dave Wysochanski <dwysocha@redhat.com> Tested-by: Daire Byrne <daire@dneg.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2023-02-20 13:43:06 +00:00
extern const struct nfs_pgio_completion_ops nfs_async_read_completion_ops;
extern void nfs_pageio_init_read(struct nfs_pageio_descriptor *pgio,
struct inode *inode, bool force_mds,
const struct nfs_pgio_completion_ops *compl_ops);
extern bool nfs_read_alloc_scratch(struct nfs_pgio_header *hdr, size_t size);
NFS: Convert buffered read paths to use netfs when fscache is enabled Convert the NFS buffered read code paths to corresponding netfs APIs, but only when fscache is configured and enabled. The netfs API defines struct netfs_request_ops which must be filled in by the network filesystem. For NFS, we only need to define 5 of the functions, the main one being the issue_read() function. The issue_read() function is called by the netfs layer when a read cannot be fulfilled locally, and must be sent to the server (either the cache is not active, or it is active but the data is not available). Once the read from the server is complete, netfs requires a call to netfs_subreq_terminated() which conveys either how many bytes were read successfully, or an error. Note that issue_read() is called with a structure, netfs_io_subrequest, which defines the IO requested, and contains a start and a length (both in bytes), and assumes the underlying netfs will return a either an error on the whole region, or the number of bytes successfully read. The NFS IO path is page based and the main APIs are the pgio APIs defined in pagelist.c. For the pgio APIs, there is no way for the caller to know how many RPCs will be sent and how the pages will be broken up into underlying RPCs, each of which will have their own completion and return code. In contrast, netfs is subrequest based, a single subrequest may contain multiple pages, and a single subrequest is initiated with issue_read() and terminated with netfs_subreq_terminated(). Thus, to utilze the netfs APIs, NFS needs some way to accommodate the netfs API requirement on the single response to the whole subrequest, while also minimizing disruptive changes to the NFS pgio layer. The approach taken with this patch is to allocate a small structure for each nfs_netfs_issue_read() call, store the final error and number of bytes successfully transferred in the structure, and update these values as each RPC completes. The refcount on the structure is used as a marker for the last RPC completion, is incremented in nfs_netfs_read_initiate(), and decremented inside nfs_netfs_read_completion(), when a nfs_pgio_header contains a valid pointer to the data. On the final put (which signals the final outstanding RPC is complete) in nfs_netfs_read_completion(), call netfs_subreq_terminated() with either the final error value (if one or more READs complete with an error) or the number of bytes successfully transferred (if all RPCs complete successfully). Note that when all RPCs complete successfully, the number of bytes transferred is capped to the length of the subrequest. Capping the transferred length to the subrequest length prevents "Subreq overread" warnings from netfs. This is due to the "aligned_len" in nfs_pageio_add_page(), and the corner case where NFS requests a full page at the end of the file, even when i_size reflects only a partial page (NFS overread). Signed-off-by: Dave Wysochanski <dwysocha@redhat.com> Tested-by: Daire Byrne <daire@dneg.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2023-02-20 13:43:06 +00:00
extern int nfs_read_add_folio(struct nfs_pageio_descriptor *pgio,
struct nfs_open_context *ctx,
struct folio *folio);
extern void nfs_pageio_complete_read(struct nfs_pageio_descriptor *pgio);
extern void nfs_read_prepare(struct rpc_task *task, void *calldata);
extern void nfs_pageio_reset_read_mds(struct nfs_pageio_descriptor *pgio);
/* super.c */
void nfs_umount_begin(struct super_block *);
int nfs_statfs(struct dentry *, struct kstatfs *);
int nfs_show_options(struct seq_file *, struct dentry *);
int nfs_show_devname(struct seq_file *, struct dentry *);
int nfs_show_path(struct seq_file *, struct dentry *);
int nfs_show_stats(struct seq_file *, struct dentry *);
NFS: Add fs_context support. Add filesystem context support to NFS, parsing the options in advance and attaching the information to struct nfs_fs_context. The highlights are: (*) Merge nfs_mount_info and nfs_clone_mount into nfs_fs_context. This structure represents NFS's superblock config. (*) Make use of the VFS's parsing support to split comma-separated lists (*) Pin the NFS protocol module in the nfs_fs_context. (*) Attach supplementary error information to fs_context. This has the downside that these strings must be static and can't be formatted. (*) Remove the auxiliary file_system_type structs since the information necessary can be conveyed in the nfs_fs_context struct instead. (*) Root mounts are made by duplicating the config for the requested mount so as to have the same parameters. Submounts pick up their parameters from the parent superblock. [AV -- retrans is u32, not string] [SM -- Renamed cfg to ctx in a few functions in an earlier patch] [SM -- Moved fs_context mount option parsing to an earlier patch] [SM -- Moved fs_context error logging to a later patch] [SM -- Fixed printks in nfs4_try_get_tree() and nfs4_get_referral_tree()] [SM -- Added is_remount_fc() helper] [SM -- Deferred some refactoring to a later patch] [SM -- Fixed referral mounts, which were broken in the original patch] [SM -- Fixed leak of nfs_fattr when fs_context is freed] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Scott Mayhew <smayhew@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2019-12-10 12:31:13 +00:00
int nfs_reconfigure(struct fs_context *);
/* write.c */
extern void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
struct inode *inode, int ioflags, bool force_mds,
const struct nfs_pgio_completion_ops *compl_ops);
extern void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio);
extern void nfs_commit_free(struct nfs_commit_data *p);
extern void nfs_commit_prepare(struct rpc_task *task, void *calldata);
extern int nfs_initiate_commit(struct rpc_clnt *clnt,
struct nfs_commit_data *data,
const struct nfs_rpc_ops *nfs_ops,
const struct rpc_call_ops *call_ops,
int how, int flags);
extern void nfs_init_commit(struct nfs_commit_data *data,
struct list_head *head,
struct pnfs_layout_segment *lseg,
struct nfs_commit_info *cinfo);
int nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
struct nfs_commit_info *cinfo, int max);
unsigned long nfs_reqs_to_commit(struct nfs_commit_info *);
int nfs_scan_commit(struct inode *inode, struct list_head *dst,
struct nfs_commit_info *cinfo);
void nfs_mark_request_commit(struct nfs_page *req,
struct pnfs_layout_segment *lseg,
struct nfs_commit_info *cinfo,
u32 ds_commit_idx);
int nfs_write_need_commit(struct nfs_pgio_header *);
void nfs_writeback_update_inode(struct nfs_pgio_header *hdr);
int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
int how, struct nfs_commit_info *cinfo);
void nfs_retry_commit(struct list_head *page_list,
struct pnfs_layout_segment *lseg,
struct nfs_commit_info *cinfo,
u32 ds_commit_idx);
void nfs_commitdata_release(struct nfs_commit_data *data);
void nfs_request_add_commit_list(struct nfs_page *req,
struct nfs_commit_info *cinfo);
void nfs_request_add_commit_list_locked(struct nfs_page *req,
struct list_head *dst,
struct nfs_commit_info *cinfo);
void nfs_request_remove_commit_list(struct nfs_page *req,
struct nfs_commit_info *cinfo);
void nfs_init_cinfo(struct nfs_commit_info *cinfo,
struct inode *inode,
struct nfs_direct_req *dreq);
int nfs_key_timeout_notify(struct file *filp, struct inode *inode);
sunrpc: move NO_CRKEY_TIMEOUT to the auth->au_flags A generic_cred can be used to look up a unx_cred or a gss_cred, so it's not really safe to use the the generic_cred->acred->ac_flags to store the NO_CRKEY_TIMEOUT flag. A lookup for a unx_cred triggered while the KEY_EXPIRE_SOON flag is already set will cause both NO_CRKEY_TIMEOUT and KEY_EXPIRE_SOON to be set in the ac_flags, leaving the user associated with the auth_cred to be in a state where they're perpetually doing 4K NFS_FILE_SYNC writes. This can be reproduced as follows: 1. Mount two NFS filesystems, one with sec=krb5 and one with sec=sys. They do not need to be the same export, nor do they even need to be from the same NFS server. Also, v3 is fine. $ sudo mount -o v3,sec=krb5 server1:/export /mnt/krb5 $ sudo mount -o v3,sec=sys server2:/export /mnt/sys 2. As the normal user, before accessing the kerberized mount, kinit with a short lifetime (but not so short that renewing the ticket would leave you within the 4-minute window again by the time the original ticket expires), e.g. $ kinit -l 10m -r 60m 3. Do some I/O to the kerberized mount and verify that the writes are wsize, UNSTABLE: $ dd if=/dev/zero of=/mnt/krb5/file bs=1M count=1 4. Wait until you're within 4 minutes of key expiry, then do some more I/O to the kerberized mount to ensure that RPC_CRED_KEY_EXPIRE_SOON gets set. Verify that the writes are 4K, FILE_SYNC: $ dd if=/dev/zero of=/mnt/krb5/file bs=1M count=1 5. Now do some I/O to the sec=sys mount. This will cause RPC_CRED_NO_CRKEY_TIMEOUT to be set: $ dd if=/dev/zero of=/mnt/sys/file bs=1M count=1 6. Writes for that user will now be permanently 4K, FILE_SYNC for that user, regardless of which mount is being written to, until you reboot the client. Renewing the kerberos ticket (assuming it hasn't already expired) will have no effect. Grabbing a new kerberos ticket at this point will have no effect either. Move the flag to the auth->au_flags field (which is currently unused) and rename it slightly to reflect that it's no longer associated with the auth_cred->ac_flags. Add the rpc_auth to the arg list of rpcauth_cred_key_to_expire and check the au_flags there too. Finally, add the inode to the arg list of nfs_ctx_key_to_expire so we can determine the rpc_auth to pass to rpcauth_cred_key_to_expire. Signed-off-by: Scott Mayhew <smayhew@redhat.com> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2016-06-07 19:14:48 +00:00
bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode);
void nfs_pageio_stop_mirroring(struct nfs_pageio_descriptor *pgio);
int nfs_filemap_write_and_wait_range(struct address_space *mapping,
loff_t lstart, loff_t lend);
#ifdef CONFIG_NFS_V4_1
static inline void
pnfs_bucket_clear_pnfs_ds_commit_verifiers(struct pnfs_commit_bucket *buckets,
unsigned int nbuckets)
{
unsigned int i;
for (i = 0; i < nbuckets; i++)
buckets[i].direct_verf.committed = NFS_INVALID_STABLE_HOW;
}
static inline
void nfs_clear_pnfs_ds_commit_verifiers(struct pnfs_ds_commit_info *cinfo)
{
struct pnfs_commit_array *array;
rcu_read_lock();
list_for_each_entry_rcu(array, &cinfo->commits, cinfo_list)
pnfs_bucket_clear_pnfs_ds_commit_verifiers(array->buckets,
array->nbuckets);
rcu_read_unlock();
}
#else
static inline
void nfs_clear_pnfs_ds_commit_verifiers(struct pnfs_ds_commit_info *cinfo)
{
}
#endif
#ifdef CONFIG_MIGRATION
int nfs_migrate_folio(struct address_space *, struct folio *dst,
struct folio *src, enum migrate_mode);
#else
#define nfs_migrate_folio NULL
#endif
static inline int
nfs_write_verifier_cmp(const struct nfs_write_verifier *v1,
const struct nfs_write_verifier *v2)
{
return memcmp(v1->data, v2->data, sizeof(v1->data));
}
static inline bool
nfs_write_match_verf(const struct nfs_writeverf *verf,
struct nfs_page *req)
{
return verf->committed > NFS_UNSTABLE &&
!nfs_write_verifier_cmp(&req->wb_verf, &verf->verifier);
}
static inline gfp_t nfs_io_gfp_mask(void)
{
if (current->flags & PF_WQ_WORKER)
return GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
return GFP_KERNEL;
}
/*
* Special version of should_remove_suid() that ignores capabilities.
*/
static inline int nfs_should_remove_suid(const struct inode *inode)
{
umode_t mode = inode->i_mode;
int kill = 0;
/* suid always must be killed */
if (unlikely(mode & S_ISUID))
kill = ATTR_KILL_SUID;
/*
* sgid without any exec bits is just a mandatory locking mark; leave
* it alone. If some exec bits are set, it's a real sgid; kill it.
*/
if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
kill |= ATTR_KILL_SGID;
if (unlikely(kill && S_ISREG(mode)))
return kill;
return 0;
}
/* unlink.c */
extern struct rpc_task *
nfs_async_rename(struct inode *old_dir, struct inode *new_dir,
struct dentry *old_dentry, struct dentry *new_dentry,
void (*complete)(struct rpc_task *, struct nfs_renamedata *));
extern int nfs_sillyrename(struct inode *dir, struct dentry *dentry);
/* direct.c */
void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
struct nfs_direct_req *dreq);
extern ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq, loff_t offset);
nfs41: introduce nfs4_call_sync Use nfs4_call_sync rather than rpc_call_sync to provide for a nfs41 sessions-enabled interface for sessions manipulation. The nfs41 rpc logic uses the rpc_call_prepare method to recover and create the session, as well as selecting a free slot id and the rpc_call_done to free the slot and update slot table related metadata. In the coming patches we'll add rpc prepare and done routines for setting up the sequence op and processing the sequence result. Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: nfs4_call_sync] As per 11-14-08 review. Squash into "nfs41: introduce nfs4_call_sync" and "nfs41: nfs4_setup_sequence" Define two functions one for v4 and one for v41 add a pointer to struct nfs4_client to the correct one. Signed-off-by: Andy Adamson <andros@netapp.com> [added BUG() in _nfs4_call_sync_session if !CONFIG_NFS_V4_1] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: check for session not minorversion] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [group minorversion specific stuff together] Signed-off-by: Alexandros Batsakis <Alexandros.Batsakis@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamson <andros@netapp.com> [nfs41: fixup nfs4_clear_client_minor_version] [introduce nfs4_init_client_minor_version() in this patch] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [cleaned-up patch: got rid of nfs_call_sync_t, dprintks, cosmetics, extra server defs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2009-04-01 13:22:03 +00:00
/* nfs4proc.c */
extern struct nfs_client *nfs4_init_client(struct nfs_client *clp,
NFS: Fix an Oops in the pNFS files and flexfiles connection setup to the DS Chris Worley reports: RIP: 0010:[<ffffffffa0245f80>] [<ffffffffa0245f80>] rpc_new_client+0x2a0/0x2e0 [sunrpc] RSP: 0018:ffff880158f6f548 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff880234f8bc00 RCX: 000000000000ea60 RDX: 0000000000074cc0 RSI: 000000000000ea60 RDI: ffff880234f8bcf0 RBP: ffff880158f6f588 R08: 000000000001ac80 R09: ffff880237003300 R10: ffff880201171000 R11: ffffea0000d75200 R12: ffffffffa03afc60 R13: ffff880230c18800 R14: 0000000000000000 R15: ffff880158f6f680 FS: 00007f0e32673740(0000) GS:ffff88023fc40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000008 CR3: 0000000234886000 CR4: 00000000001406e0 Stack: ffffffffa047a680 0000000000000000 ffff880158f6f598 ffff880158f6f680 ffff880158f6f680 ffff880234d11d00 ffff88023357f800 ffff880158f6f7d0 ffff880158f6f5b8 ffffffffa024660a ffff880158f6f5b8 ffffffffa02492ec Call Trace: [<ffffffffa024660a>] rpc_create_xprt+0x1a/0xb0 [sunrpc] [<ffffffffa02492ec>] ? xprt_create_transport+0x13c/0x240 [sunrpc] [<ffffffffa0246766>] rpc_create+0xc6/0x1a0 [sunrpc] [<ffffffffa038e695>] nfs_create_rpc_client+0xf5/0x140 [nfs] [<ffffffffa038f31a>] nfs_init_client+0x3a/0xd0 [nfs] [<ffffffffa038f22f>] nfs_get_client+0x25f/0x310 [nfs] [<ffffffffa025cef8>] ? rpc_ntop+0xe8/0x100 [sunrpc] [<ffffffffa047512c>] nfs3_set_ds_client+0xcc/0x100 [nfsv3] [<ffffffffa041fa10>] nfs4_pnfs_ds_connect+0x120/0x400 [nfsv4] [<ffffffffa03d41c7>] nfs4_ff_layout_prepare_ds+0xe7/0x330 [nfs_layout_flexfiles] [<ffffffffa03d1b1b>] ff_layout_pg_init_write+0xcb/0x280 [nfs_layout_flexfiles] [<ffffffffa03a14dc>] __nfs_pageio_add_request+0x12c/0x490 [nfs] [<ffffffffa03a1fa2>] nfs_pageio_add_request+0xc2/0x2a0 [nfs] [<ffffffffa03a0365>] ? nfs_pageio_init+0x75/0x120 [nfs] [<ffffffffa03a5b50>] nfs_do_writepage+0x120/0x270 [nfs] [<ffffffffa03a5d31>] nfs_writepage_locked+0x61/0xc0 [nfs] [<ffffffff813d4115>] ? __percpu_counter_add+0x55/0x70 [<ffffffffa03a6a9f>] nfs_wb_single_page+0xef/0x1c0 [nfs] [<ffffffff811ca4a3>] ? __dec_zone_page_state+0x33/0x40 [<ffffffffa0395b21>] nfs_launder_page+0x41/0x90 [nfs] [<ffffffff811baba0>] invalidate_inode_pages2_range+0x340/0x3a0 [<ffffffff811bac17>] invalidate_inode_pages2+0x17/0x20 [<ffffffffa039960e>] nfs_release+0x9e/0xb0 [nfs] [<ffffffffa0399570>] ? nfs_open+0x60/0x60 [nfs] [<ffffffffa0394dad>] nfs_file_release+0x3d/0x60 [nfs] [<ffffffff81226e6c>] __fput+0xdc/0x1e0 [<ffffffff81226fbe>] ____fput+0xe/0x10 [<ffffffff810bf2e4>] task_work_run+0xc4/0xe0 [<ffffffff810a4188>] do_exit+0x2e8/0xb30 [<ffffffff8102471c>] ? do_audit_syscall_entry+0x6c/0x70 [<ffffffff811464e6>] ? __audit_syscall_exit+0x1e6/0x280 [<ffffffff810a4a5f>] do_group_exit+0x3f/0xa0 [<ffffffff810a4ad4>] SyS_exit_group+0x14/0x20 [<ffffffff8179b76e>] system_call_fastpath+0x12/0x71 Which seems to be due to a call to utsname() when in a task exit context in order to determine the hostname to set in rpc_new_client(). In reality, what we want here is not the hostname of the current task, but the hostname that was used to set up the metadata server. Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2016-06-22 18:13:12 +00:00
const struct nfs_client_initdata *);
NFS: Discover NFSv4 server trunking when mounting "Server trunking" is a fancy named for a multi-homed NFS server. Trunking might occur if a client sends NFS requests for a single workload to multiple network interfaces on the same server. There are some implications for NFSv4 state management that make it useful for a client to know if a single NFSv4 server instance is multi-homed. (Note this is only a consideration for NFSv4, not for legacy versions of NFS, which are stateless). If a client cares about server trunking, no NFSv4 operations can proceed until that client determines who it is talking to. Thus server IP trunking discovery must be done when the client first encounters an unfamiliar server IP address. The nfs_get_client() function walks the nfs_client_list and matches on server IP address. The outcome of that walk tells us immediately if we have an unfamiliar server IP address. It invokes nfs_init_client() in this case. Thus, nfs4_init_client() is a good spot to perform trunking discovery. Discovery requires a client to establish a fresh client ID, so our client will now send SETCLIENTID or EXCHANGE_ID as the first NFS operation after a successful ping, rather than waiting for an application to perform an operation that requires NFSv4 state. The exact process for detecting trunking is different for NFSv4.0 and NFSv4.1, so a minorversion-specific init_client callout method is introduced. CLID_INUSE recovery is important for the trunking discovery process. CLID_INUSE is a sign the server recognizes the client's nfs_client_id4 id string, but the client is using the wrong principal this time for the SETCLIENTID operation. The SETCLIENTID must be retried with a series of different principals until one works, and then the rest of trunking discovery can proceed. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2012-09-14 21:24:32 +00:00
extern int nfs40_walk_client_list(struct nfs_client *clp,
struct nfs_client **result,
const struct cred *cred);
NFS: Discover NFSv4 server trunking when mounting "Server trunking" is a fancy named for a multi-homed NFS server. Trunking might occur if a client sends NFS requests for a single workload to multiple network interfaces on the same server. There are some implications for NFSv4 state management that make it useful for a client to know if a single NFSv4 server instance is multi-homed. (Note this is only a consideration for NFSv4, not for legacy versions of NFS, which are stateless). If a client cares about server trunking, no NFSv4 operations can proceed until that client determines who it is talking to. Thus server IP trunking discovery must be done when the client first encounters an unfamiliar server IP address. The nfs_get_client() function walks the nfs_client_list and matches on server IP address. The outcome of that walk tells us immediately if we have an unfamiliar server IP address. It invokes nfs_init_client() in this case. Thus, nfs4_init_client() is a good spot to perform trunking discovery. Discovery requires a client to establish a fresh client ID, so our client will now send SETCLIENTID or EXCHANGE_ID as the first NFS operation after a successful ping, rather than waiting for an application to perform an operation that requires NFSv4 state. The exact process for detecting trunking is different for NFSv4.0 and NFSv4.1, so a minorversion-specific init_client callout method is introduced. CLID_INUSE recovery is important for the trunking discovery process. CLID_INUSE is a sign the server recognizes the client's nfs_client_id4 id string, but the client is using the wrong principal this time for the SETCLIENTID operation. The SETCLIENTID must be retried with a series of different principals until one works, and then the rest of trunking discovery can proceed. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2012-09-14 21:24:32 +00:00
extern int nfs41_walk_client_list(struct nfs_client *clp,
struct nfs_client **result,
const struct cred *cred);
extern void nfs4_test_session_trunk(struct rpc_clnt *clnt,
struct rpc_xprt *xprt,
void *data);
nfs41: introduce nfs4_call_sync Use nfs4_call_sync rather than rpc_call_sync to provide for a nfs41 sessions-enabled interface for sessions manipulation. The nfs41 rpc logic uses the rpc_call_prepare method to recover and create the session, as well as selecting a free slot id and the rpc_call_done to free the slot and update slot table related metadata. In the coming patches we'll add rpc prepare and done routines for setting up the sequence op and processing the sequence result. Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: nfs4_call_sync] As per 11-14-08 review. Squash into "nfs41: introduce nfs4_call_sync" and "nfs41: nfs4_setup_sequence" Define two functions one for v4 and one for v41 add a pointer to struct nfs4_client to the correct one. Signed-off-by: Andy Adamson <andros@netapp.com> [added BUG() in _nfs4_call_sync_session if !CONFIG_NFS_V4_1] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: check for session not minorversion] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [group minorversion specific stuff together] Signed-off-by: Alexandros Batsakis <Alexandros.Batsakis@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Andy Adamson <andros@netapp.com> [nfs41: fixup nfs4_clear_client_minor_version] [introduce nfs4_init_client_minor_version() in this patch] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [cleaned-up patch: got rid of nfs_call_sync_t, dprintks, cosmetics, extra server defs] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2009-04-01 13:22:03 +00:00
static inline struct inode *nfs_igrab_and_active(struct inode *inode)
{
struct super_block *sb = inode->i_sb;
if (sb && nfs_sb_active(sb)) {
if (igrab(inode))
return inode;
nfs_sb_deactive(sb);
}
return NULL;
}
static inline void nfs_iput_and_deactive(struct inode *inode)
{
if (inode != NULL) {
struct super_block *sb = inode->i_sb;
iput(inode);
nfs_sb_deactive(sb);
}
}
/*
* Determine the device name as a string
*/
static inline char *nfs_devname(struct dentry *dentry,
NFS: Share NFS superblocks per-protocol per-server per-FSID The attached patch makes NFS share superblocks between mounts from the same server and FSID over the same protocol. It does this by creating each superblock with a false root and returning the real root dentry in the vfsmount presented by get_sb(). The root dentry set starts off as an anonymous dentry if we don't already have the dentry for its inode, otherwise it simply returns the dentry we already have. We may thus end up with several trees of dentries in the superblock, and if at some later point one of anonymous tree roots is discovered by normal filesystem activity to be located in another tree within the superblock, the anonymous root is named and materialises attached to the second tree at the appropriate point. Why do it this way? Why not pass an extra argument to the mount() syscall to indicate the subpath and then pathwalk from the server root to the desired directory? You can't guarantee this will work for two reasons: (1) The root and intervening nodes may not be accessible to the client. With NFS2 and NFS3, for instance, mountd is called on the server to get the filehandle for the tip of a path. mountd won't give us handles for anything we don't have permission to access, and so we can't set up NFS inodes for such nodes, and so can't easily set up dentries (we'd have to have ghost inodes or something). With this patch we don't actually create dentries until we get handles from the server that we can use to set up their inodes, and we don't actually bind them into the tree until we know for sure where they go. (2) Inaccessible symbolic links. If we're asked to mount two exports from the server, eg: mount warthog:/warthog/aaa/xxx /mmm mount warthog:/warthog/bbb/yyy /nnn We may not be able to access anything nearer the root than xxx and yyy, but we may find out later that /mmm/www/yyy, say, is actually the same directory as the one mounted on /nnn. What we might then find out, for example, is that /warthog/bbb was actually a symbolic link to /warthog/aaa/xxx/www, but we can't actually determine that by talking to the server until /warthog is made available by NFS. This would lead to having constructed an errneous dentry tree which we can't easily fix. We can end up with a dentry marked as a directory when it should actually be a symlink, or we could end up with an apparently hardlinked directory. With this patch we need not make assumptions about the type of a dentry for which we can't retrieve information, nor need we assume we know its place in the grand scheme of things until we actually see that place. This patch reduces the possibility of aliasing in the inode and page caches for inodes that may be accessed by more than one NFS export. It also reduces the number of superblocks required for NFS where there are many NFS exports being used from a server (home directory server + autofs for example). This in turn makes it simpler to do local caching of network filesystems, as it can then be guaranteed that there won't be links from multiple inodes in separate superblocks to the same cache file. Obviously, cache aliasing between different levels of NFS protocol could still be a problem, but at least that gives us another key to use when indexing the cache. This patch makes the following changes: (1) The server record construction/destruction has been abstracted out into its own set of functions to make things easier to get right. These have been moved into fs/nfs/client.c. All the code in fs/nfs/client.c has to do with the management of connections to servers, and doesn't touch superblocks in any way; the remaining code in fs/nfs/super.c has to do with VFS superblock management. (2) The sequence of events undertaken by NFS mount is now reordered: (a) A volume representation (struct nfs_server) is allocated. (b) A server representation (struct nfs_client) is acquired. This may be allocated or shared, and is keyed on server address, port and NFS version. (c) If allocated, the client representation is initialised. The state member variable of nfs_client is used to prevent a race during initialisation from two mounts. (d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we are given the root FH in advance. (e) The volume FSID is probed for on the root FH. (f) The volume representation is initialised from the FSINFO record retrieved on the root FH. (g) sget() is called to acquire a superblock. This may be allocated or shared, keyed on client pointer and FSID. (h) If allocated, the superblock is initialised. (i) If the superblock is shared, then the new nfs_server record is discarded. (j) The root dentry for this mount is looked up from the root FH. (k) The root dentry for this mount is assigned to the vfsmount. (3) nfs_readdir_lookup() creates dentries for each of the entries readdir() returns; this function now attaches disconnected trees from alternate roots that happen to be discovered attached to a directory being read (in the same way nfs_lookup() is made to do for lookup ops). The new d_materialise_unique() function is now used to do this, thus permitting the whole thing to be done under one set of locks, and thus avoiding any race between mount and lookup operations on the same directory. (4) The client management code uses a new debug facility: NFSDBG_CLIENT which is set by echoing 1024 to /proc/net/sunrpc/nfs_debug. (5) Clone mounts are now called xdev mounts. (6) Use the dentry passed to the statfs() op as the handle for retrieving fs statistics rather than the root dentry of the superblock (which is now a dummy). Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 00:06:13 +00:00
char *buffer, ssize_t buflen)
{
char *dummy;
return nfs_path(&dummy, dentry, buffer, buflen, NFS_PATH_CANONICAL);
}
/*
* Determine the actual block size (and log2 thereof)
*/
static inline
unsigned long nfs_block_bits(unsigned long bsize, unsigned char *nrbitsp)
{
/* make sure blocksize is a power of two */
if ((bsize & (bsize - 1)) || nrbitsp) {
unsigned char nrbits;
for (nrbits = 31; nrbits && !(bsize & (1 << nrbits)); nrbits--)
;
bsize = 1 << nrbits;
if (nrbitsp)
*nrbitsp = nrbits;
}
return bsize;
}
/*
* Calculate the number of 512byte blocks used.
*/
static inline blkcnt_t nfs_calc_block_size(u64 tsize)
{
blkcnt_t used = (tsize + 511) >> 9;
return (used > ULONG_MAX) ? ULONG_MAX : used;
}
/*
* Compute and set NFS server blocksize
*/
static inline
unsigned long nfs_block_size(unsigned long bsize, unsigned char *nrbitsp)
{
if (bsize < NFS_MIN_FILE_IO_SIZE)
bsize = NFS_DEF_FILE_IO_SIZE;
else if (bsize >= NFS_MAX_FILE_IO_SIZE)
bsize = NFS_MAX_FILE_IO_SIZE;
return nfs_block_bits(bsize, nrbitsp);
}
/*
* Compute and set NFS server rsize / wsize
*/
static inline
unsigned long nfs_io_size(unsigned long iosize, enum xprt_transports proto)
{
if (iosize < NFS_MIN_FILE_IO_SIZE)
iosize = NFS_DEF_FILE_IO_SIZE;
else if (iosize >= NFS_MAX_FILE_IO_SIZE)
iosize = NFS_MAX_FILE_IO_SIZE;
if (proto == XPRT_TRANSPORT_UDP || iosize < PAGE_SIZE)
return nfs_block_bits(iosize, NULL);
return iosize & PAGE_MASK;
}
/*
* Determine the maximum file size for a superblock
*/
static inline
void nfs_super_set_maxbytes(struct super_block *sb, __u64 maxfilesize)
{
sb->s_maxbytes = (loff_t)maxfilesize;
if (sb->s_maxbytes > MAX_LFS_FILESIZE || sb->s_maxbytes <= 0)
sb->s_maxbytes = MAX_LFS_FILESIZE;
}
/*
mm/writeback: discard NR_UNSTABLE_NFS, use NR_WRITEBACK instead After an NFS page has been written it is considered "unstable" until a COMMIT request succeeds. If the COMMIT fails, the page will be re-written. These "unstable" pages are currently accounted as "reclaimable", either in WB_RECLAIMABLE, or in NR_UNSTABLE_NFS which is included in a 'reclaimable' count. This might have made sense when sending the COMMIT required a separate action by the VFS/MM (e.g. releasepage() used to send a COMMIT). However now that all writes generated by ->writepages() will automatically be followed by a COMMIT (since commit 919e3bd9a875 ("NFS: Ensure we commit after writeback is complete")) it makes more sense to treat them as writeback pages. So this patch removes NR_UNSTABLE_NFS and accounts unstable pages in NR_WRITEBACK and WB_WRITEBACK. A particular effect of this change is that when wb_check_background_flush() calls wb_over_bg_threshold(), the latter will report 'true' a lot less often as the 'unstable' pages are no longer considered 'dirty' (as there is nothing that writeback can do about them anyway). Currently wb_check_background_flush() will trigger writeback to NFS even when there are relatively few dirty pages (if there are lots of unstable pages), this can result in small writes going to the server (10s of Kilobytes rather than a Megabyte) which hurts throughput. With this patch, there are fewer writes which are each larger on average. Where the NR_UNSTABLE_NFS count was included in statistics virtual-files, the entry is retained, but the value is hard-coded as zero. static trace points and warning printks which mentioned this counter no longer report it. [akpm@linux-foundation.org: re-layout comment] [akpm@linux-foundation.org: fix printk warning] Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Trond Myklebust <trond.myklebust@hammerspace.com> Acked-by: Michal Hocko <mhocko@suse.com> [mm] Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Link: http://lkml.kernel.org/r/87d06j7gqa.fsf@notabene.neil.brown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 04:48:21 +00:00
* Record the page as unstable (an extra writeback period) and mark its
* inode as dirty.
*/
static inline void nfs_folio_mark_unstable(struct folio *folio,
struct nfs_commit_info *cinfo)
{
if (folio && !cinfo->dreq) {
struct inode *inode = folio_file_mapping(folio)->host;
long nr = folio_nr_pages(folio);
mm/writeback: discard NR_UNSTABLE_NFS, use NR_WRITEBACK instead After an NFS page has been written it is considered "unstable" until a COMMIT request succeeds. If the COMMIT fails, the page will be re-written. These "unstable" pages are currently accounted as "reclaimable", either in WB_RECLAIMABLE, or in NR_UNSTABLE_NFS which is included in a 'reclaimable' count. This might have made sense when sending the COMMIT required a separate action by the VFS/MM (e.g. releasepage() used to send a COMMIT). However now that all writes generated by ->writepages() will automatically be followed by a COMMIT (since commit 919e3bd9a875 ("NFS: Ensure we commit after writeback is complete")) it makes more sense to treat them as writeback pages. So this patch removes NR_UNSTABLE_NFS and accounts unstable pages in NR_WRITEBACK and WB_WRITEBACK. A particular effect of this change is that when wb_check_background_flush() calls wb_over_bg_threshold(), the latter will report 'true' a lot less often as the 'unstable' pages are no longer considered 'dirty' (as there is nothing that writeback can do about them anyway). Currently wb_check_background_flush() will trigger writeback to NFS even when there are relatively few dirty pages (if there are lots of unstable pages), this can result in small writes going to the server (10s of Kilobytes rather than a Megabyte) which hurts throughput. With this patch, there are fewer writes which are each larger on average. Where the NR_UNSTABLE_NFS count was included in statistics virtual-files, the entry is retained, but the value is hard-coded as zero. static trace points and warning printks which mentioned this counter no longer report it. [akpm@linux-foundation.org: re-layout comment] [akpm@linux-foundation.org: fix printk warning] Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Trond Myklebust <trond.myklebust@hammerspace.com> Acked-by: Michal Hocko <mhocko@suse.com> [mm] Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Link: http://lkml.kernel.org/r/87d06j7gqa.fsf@notabene.neil.brown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 04:48:21 +00:00
/* This page is really still in write-back - just that the
* writeback is happening on the server now.
*/
node_stat_mod_folio(folio, NR_WRITEBACK, nr);
wb_stat_mod(&inode_to_bdi(inode)->wb, WB_WRITEBACK, nr);
__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
}
}
/*
* Determine the number of bytes of data the page contains
*/
static inline
unsigned int nfs_page_length(struct page *page)
{
loff_t i_size = i_size_read(page_file_mapping(page)->host);
if (i_size > 0) {
pgoff_t index = page_index(page);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
pgoff_t end_index = (i_size - 1) >> PAGE_SHIFT;
if (index < end_index)
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
return PAGE_SIZE;
if (index == end_index)
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
return ((i_size - 1) & ~PAGE_MASK) + 1;
}
return 0;
}
/*
* Determine the number of bytes of data the page contains
*/
static inline size_t nfs_folio_length(struct folio *folio)
{
loff_t i_size = i_size_read(folio_file_mapping(folio)->host);
if (i_size > 0) {
pgoff_t index = folio_index(folio) >> folio_order(folio);
pgoff_t end_index = (i_size - 1) >> folio_shift(folio);
if (index < end_index)
return folio_size(folio);
if (index == end_index)
return offset_in_folio(folio, i_size - 1) + 1;
}
return 0;
}
/*
* Convert a umode to a dirent->d_type
*/
static inline
unsigned char nfs_umode_to_dtype(umode_t mode)
{
return (mode >> 12) & 15;
}
/*
* Determine the number of pages in an array of length 'len' and
* with a base offset of 'base'
*/
static inline unsigned int nfs_page_array_len(unsigned int base, size_t len)
{
return ((unsigned long)len + (unsigned long)base + PAGE_SIZE - 1) >>
PAGE_SHIFT;
}
/*
* Convert a struct timespec64 into a 64-bit change attribute
*
* This does approximately the same thing as timespec64_to_ns(),
* but for calculation efficiency, we multiply the seconds by
* 1024*1024*1024.
*/
static inline
u64 nfs_timespec_to_change_attr(const struct timespec64 *ts)
{
return ((u64)ts->tv_sec << 30) + ts->tv_nsec;
}
#ifdef CONFIG_CRC32
static inline u32 nfs_stateid_hash(const nfs4_stateid *stateid)
{
return ~crc32_le(0xFFFFFFFF, &stateid->other[0],
NFS4_STATEID_OTHER_SIZE);
}
#else
static inline u32 nfs_stateid_hash(nfs4_stateid *stateid)
{
return 0;
}
#endif
static inline bool nfs_error_is_fatal(int err)
{
switch (err) {
case -ERESTARTSYS:
case -EINTR:
case -EACCES:
case -EDQUOT:
case -EFBIG:
case -EIO:
case -ENOSPC:
case -EROFS:
case -ESTALE:
case -E2BIG:
case -ENOMEM:
case -ETIMEDOUT:
return true;
default:
return false;
}
}
static inline bool nfs_error_is_fatal_on_server(int err)
{
switch (err) {
case 0:
case -ERESTARTSYS:
case -EINTR:
case -ENOMEM:
return false;
}
return nfs_error_is_fatal(err);
}
/*
* Select between a default port value and a user-specified port value.
* If a zero value is set, then autobind will be used.
*/
static inline void nfs_set_port(struct sockaddr_storage *sap, int *port,
const unsigned short default_port)
{
if (*port == NFS_UNSPEC_PORT)
*port = default_port;
rpc_set_port((struct sockaddr *)sap, *port);
}
struct nfs_direct_req {
struct kref kref; /* release manager */
/* I/O parameters */
struct nfs_open_context *ctx; /* file open context info */
struct nfs_lock_context *l_ctx; /* Lock context info */
struct kiocb * iocb; /* controlling i/o request */
struct inode * inode; /* target file of i/o */
/* completion state */
atomic_t io_count; /* i/os we're waiting for */
spinlock_t lock; /* protect completion state */
loff_t io_start; /* Start offset for I/O */
ssize_t count, /* bytes actually processed */
max_count, /* max expected count */
error; /* any reported error */
struct completion completion; /* wait for i/o completion */
/* commit state */
struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
struct work_struct work;
int flags;
/* for write */
#define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
#define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
/* for read */
#define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */
#define NFS_ODIRECT_DONE INT_MAX /* write verification failed */
};