linux/include/asm-x86/system_32.h

320 lines
8.3 KiB
C
Raw Normal View History

#ifndef __ASM_SYSTEM_H
#define __ASM_SYSTEM_H
#include <linux/kernel.h>
#include <asm/segment.h>
#include <asm/cpufeature.h>
#include <asm/cmpxchg.h>
#ifdef __KERNEL__
#define AT_VECTOR_SIZE_ARCH 2 /* entries in ARCH_DLINFO */
struct task_struct; /* one of the stranger aspects of C forward declarations.. */
extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
/*
* Saving eflags is important. It switches not only IOPL between tasks,
* it also protects other tasks from NT leaking through sysenter etc.
*/
#define switch_to(prev,next,last) do { \
unsigned long esi,edi; \
asm volatile("pushfl\n\t" /* Save flags */ \
"pushl %%ebp\n\t" \
"movl %%esp,%0\n\t" /* save ESP */ \
"movl %5,%%esp\n\t" /* restore ESP */ \
"movl $1f,%1\n\t" /* save EIP */ \
"pushl %6\n\t" /* restore EIP */ \
"jmp __switch_to\n" \
"1:\t" \
"popl %%ebp\n\t" \
"popfl" \
:"=m" (prev->thread.esp),"=m" (prev->thread.eip), \
"=a" (last),"=S" (esi),"=D" (edi) \
:"m" (next->thread.esp),"m" (next->thread.eip), \
"2" (prev), "d" (next)); \
} while (0)
#define _set_base(addr,base) do { unsigned long __pr; \
__asm__ __volatile__ ("movw %%dx,%1\n\t" \
"rorl $16,%%edx\n\t" \
"movb %%dl,%2\n\t" \
"movb %%dh,%3" \
:"=&d" (__pr) \
:"m" (*((addr)+2)), \
"m" (*((addr)+4)), \
"m" (*((addr)+7)), \
"0" (base) \
); } while(0)
#define _set_limit(addr,limit) do { unsigned long __lr; \
__asm__ __volatile__ ("movw %%dx,%1\n\t" \
"rorl $16,%%edx\n\t" \
"movb %2,%%dh\n\t" \
"andb $0xf0,%%dh\n\t" \
"orb %%dh,%%dl\n\t" \
"movb %%dl,%2" \
:"=&d" (__lr) \
:"m" (*(addr)), \
"m" (*((addr)+6)), \
"0" (limit) \
); } while(0)
#define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
#define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )
/*
* Load a segment. Fall back on loading the zero
* segment if something goes wrong..
*/
#define loadsegment(seg,value) \
asm volatile("\n" \
"1:\t" \
"mov %0,%%" #seg "\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3:\t" \
"pushl $0\n\t" \
"popl %%" #seg "\n\t" \
"jmp 2b\n" \
".previous\n" \
".section __ex_table,\"a\"\n\t" \
".align 4\n\t" \
".long 1b,3b\n" \
".previous" \
: :"rm" (value))
/*
* Save a segment register away
*/
#define savesegment(seg, value) \
asm volatile("mov %%" #seg ",%0":"=rm" (value))
static inline void native_clts(void)
{
asm volatile ("clts");
}
static inline unsigned long native_read_cr0(void)
{
unsigned long val;
asm volatile("movl %%cr0,%0\n\t" :"=r" (val));
return val;
}
static inline void native_write_cr0(unsigned long val)
{
asm volatile("movl %0,%%cr0": :"r" (val));
}
static inline unsigned long native_read_cr2(void)
{
unsigned long val;
asm volatile("movl %%cr2,%0\n\t" :"=r" (val));
return val;
}
static inline void native_write_cr2(unsigned long val)
{
asm volatile("movl %0,%%cr2": :"r" (val));
}
static inline unsigned long native_read_cr3(void)
{
unsigned long val;
asm volatile("movl %%cr3,%0\n\t" :"=r" (val));
return val;
}
static inline void native_write_cr3(unsigned long val)
{
asm volatile("movl %0,%%cr3": :"r" (val));
}
static inline unsigned long native_read_cr4(void)
{
unsigned long val;
asm volatile("movl %%cr4,%0\n\t" :"=r" (val));
return val;
}
static inline unsigned long native_read_cr4_safe(void)
{
unsigned long val;
/* This could fault if %cr4 does not exist */
asm volatile("1: movl %%cr4, %0 \n"
"2: \n"
".section __ex_table,\"a\" \n"
".long 1b,2b \n"
".previous \n"
: "=r" (val): "0" (0));
return val;
}
static inline void native_write_cr4(unsigned long val)
{
asm volatile("movl %0,%%cr4": :"r" (val));
}
static inline void native_wbinvd(void)
{
asm volatile("wbinvd": : :"memory");
}
static inline void clflush(volatile void *__p)
{
asm volatile("clflush %0" : "+m" (*(char __force *)__p));
}
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#else
#define read_cr0() (native_read_cr0())
#define write_cr0(x) (native_write_cr0(x))
#define read_cr2() (native_read_cr2())
#define write_cr2(x) (native_write_cr2(x))
#define read_cr3() (native_read_cr3())
#define write_cr3(x) (native_write_cr3(x))
#define read_cr4() (native_read_cr4())
#define read_cr4_safe() (native_read_cr4_safe())
#define write_cr4(x) (native_write_cr4(x))
#define wbinvd() (native_wbinvd())
/* Clear the 'TS' bit */
#define clts() (native_clts())
#endif/* CONFIG_PARAVIRT */
/* Set the 'TS' bit */
#define stts() write_cr0(8 | read_cr0())
#endif /* __KERNEL__ */
static inline unsigned long get_limit(unsigned long segment)
{
unsigned long __limit;
__asm__("lsll %1,%0"
:"=r" (__limit):"r" (segment));
return __limit+1;
}
#define nop() __asm__ __volatile__ ("nop")
/*
* Force strict CPU ordering.
* And yes, this is required on UP too when we're talking
* to devices.
*
* For now, "wmb()" doesn't actually do anything, as all
* Intel CPU's follow what Intel calls a *Processor Order*,
* in which all writes are seen in the program order even
* outside the CPU.
*
* I expect future Intel CPU's to have a weaker ordering,
* but I'd also expect them to finally get their act together
* and add some real memory barriers if so.
*
* Some non intel clones support out of order store. wmb() ceases to be a
* nop for these.
*/
#define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
#define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
#define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
/**
* read_barrier_depends - Flush all pending reads that subsequents reads
* depend on.
*
* No data-dependent reads from memory-like regions are ever reordered
* over this barrier. All reads preceding this primitive are guaranteed
* to access memory (but not necessarily other CPUs' caches) before any
* reads following this primitive that depend on the data return by
* any of the preceding reads. This primitive is much lighter weight than
* rmb() on most CPUs, and is never heavier weight than is
* rmb().
*
* These ordering constraints are respected by both the local CPU
* and the compiler.
*
* Ordering is not guaranteed by anything other than these primitives,
* not even by data dependencies. See the documentation for
* memory_barrier() for examples and URLs to more information.
*
* For example, the following code would force ordering (the initial
* value of "a" is zero, "b" is one, and "p" is "&a"):
*
* <programlisting>
* CPU 0 CPU 1
*
* b = 2;
* memory_barrier();
* p = &b; q = p;
* read_barrier_depends();
* d = *q;
* </programlisting>
*
* because the read of "*q" depends on the read of "p" and these
* two reads are separated by a read_barrier_depends(). However,
* the following code, with the same initial values for "a" and "b":
*
* <programlisting>
* CPU 0 CPU 1
*
* a = 2;
* memory_barrier();
* b = 3; y = b;
* read_barrier_depends();
* x = a;
* </programlisting>
*
* does not enforce ordering, since there is no data dependency between
* the read of "a" and the read of "b". Therefore, on some CPUs, such
* as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
* in cases like this where there are no data dependencies.
**/
#define read_barrier_depends() do { } while(0)
#ifdef CONFIG_SMP
#define smp_mb() mb()
#ifdef CONFIG_X86_PPRO_FENCE
# define smp_rmb() rmb()
#else
# define smp_rmb() barrier()
#endif
#ifdef CONFIG_X86_OOSTORE
# define smp_wmb() wmb()
#else
# define smp_wmb() barrier()
#endif
#define smp_read_barrier_depends() read_barrier_depends()
#define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
#else
#define smp_mb() barrier()
#define smp_rmb() barrier()
#define smp_wmb() barrier()
#define smp_read_barrier_depends() do { } while(0)
#define set_mb(var, value) do { var = value; barrier(); } while (0)
#endif
#include <linux/irqflags.h>
/*
* disable hlt during certain critical i/o operations
*/
#define HAVE_DISABLE_HLT
void disable_hlt(void);
void enable_hlt(void);
extern int es7000_plat;
void cpu_idle_wait(void);
extern unsigned long arch_align_stack(unsigned long sp);
[PATCH] x86: SMP alternatives Implement SMP alternatives, i.e. switching at runtime between different code versions for UP and SMP. The code can patch both SMP->UP and UP->SMP. The UP->SMP case is useful for CPU hotplug. With CONFIG_CPU_HOTPLUG enabled the code switches to UP at boot time and when the number of CPUs goes down to 1, and switches to SMP when the number of CPUs goes up to 2. Without CONFIG_CPU_HOTPLUG or on non-SMP-capable systems the code is patched once at boot time (if needed) and the tables are released afterwards. The changes in detail: * The current alternatives bits are moved to a separate file, the SMP alternatives code is added there. * The patch adds some new elf sections to the kernel: .smp_altinstructions like .altinstructions, also contains a list of alt_instr structs. .smp_altinstr_replacement like .altinstr_replacement, but also has some space to save original instruction before replaving it. .smp_locks list of pointers to lock prefixes which can be nop'ed out on UP. The first two are used to replace more complex instruction sequences such as spinlocks and semaphores. It would be possible to deal with the lock prefixes with that as well, but by handling them as special case the table sizes become much smaller. * The sections are page-aligned and padded up to page size, so they can be free if they are not needed. * Splitted the code to release init pages to a separate function and use it to release the elf sections if they are unused. Signed-off-by: Gerd Hoffmann <kraxel@suse.de> Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23 10:59:32 +00:00
extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
void default_idle(void);
#endif