linux/drivers/ptp/ptp_idt82p33.c

945 lines
20 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
//
// Copyright (C) 2018 Integrated Device Technology, Inc
//
#define pr_fmt(fmt) "IDT_82p33xxx: " fmt
#include <linux/firmware.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/timekeeping.h>
#include <linux/bitops.h>
#include <linux/of.h>
#include <linux/mfd/rsmu.h>
#include <linux/mfd/idt82p33_reg.h>
#include "ptp_private.h"
#include "ptp_idt82p33.h"
MODULE_DESCRIPTION("Driver for IDT 82p33xxx clock devices");
MODULE_AUTHOR("IDT support-1588 <IDT-support-1588@lm.renesas.com>");
MODULE_VERSION("1.0");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(FW_FILENAME);
/* Module Parameters */
static u32 phase_snap_threshold = SNAP_THRESHOLD_NS;
module_param(phase_snap_threshold, uint, 0);
MODULE_PARM_DESC(phase_snap_threshold,
"threshold (10000ns by default) below which adjtime would use double dco");
static char *firmware;
module_param(firmware, charp, 0);
static inline int idt82p33_read(struct idt82p33 *idt82p33, u16 regaddr,
u8 *buf, u16 count)
{
return regmap_bulk_read(idt82p33->regmap, regaddr, buf, count);
}
static inline int idt82p33_write(struct idt82p33 *idt82p33, u16 regaddr,
u8 *buf, u16 count)
{
return regmap_bulk_write(idt82p33->regmap, regaddr, buf, count);
}
static void idt82p33_byte_array_to_timespec(struct timespec64 *ts,
u8 buf[TOD_BYTE_COUNT])
{
time64_t sec;
s32 nsec;
u8 i;
nsec = buf[3];
for (i = 0; i < 3; i++) {
nsec <<= 8;
nsec |= buf[2 - i];
}
sec = buf[9];
for (i = 0; i < 5; i++) {
sec <<= 8;
sec |= buf[8 - i];
}
ts->tv_sec = sec;
ts->tv_nsec = nsec;
}
static void idt82p33_timespec_to_byte_array(struct timespec64 const *ts,
u8 buf[TOD_BYTE_COUNT])
{
time64_t sec;
s32 nsec;
u8 i;
nsec = ts->tv_nsec;
sec = ts->tv_sec;
for (i = 0; i < 4; i++) {
buf[i] = nsec & 0xff;
nsec >>= 8;
}
for (i = 4; i < TOD_BYTE_COUNT; i++) {
buf[i] = sec & 0xff;
sec >>= 8;
}
}
static int idt82p33_dpll_set_mode(struct idt82p33_channel *channel,
enum pll_mode mode)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
u8 dpll_mode;
int err;
if (channel->pll_mode == mode)
return 0;
err = idt82p33_read(idt82p33, channel->dpll_mode_cnfg,
&dpll_mode, sizeof(dpll_mode));
if (err)
return err;
dpll_mode &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT);
dpll_mode |= (mode << PLL_MODE_SHIFT);
err = idt82p33_write(idt82p33, channel->dpll_mode_cnfg,
&dpll_mode, sizeof(dpll_mode));
if (err)
return err;
channel->pll_mode = mode;
return 0;
}
static int _idt82p33_gettime(struct idt82p33_channel *channel,
struct timespec64 *ts)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
u8 buf[TOD_BYTE_COUNT];
u8 trigger;
int err;
trigger = TOD_TRIGGER(HW_TOD_WR_TRIG_SEL_MSB_TOD_CNFG,
HW_TOD_RD_TRIG_SEL_LSB_TOD_STS);
err = idt82p33_write(idt82p33, channel->dpll_tod_trigger,
&trigger, sizeof(trigger));
if (err)
return err;
if (idt82p33->calculate_overhead_flag)
idt82p33->start_time = ktime_get_raw();
err = idt82p33_read(idt82p33, channel->dpll_tod_sts, buf, sizeof(buf));
if (err)
return err;
idt82p33_byte_array_to_timespec(ts, buf);
return 0;
}
/*
* TOD Trigger:
* Bits[7:4] Write 0x9, MSB write
* Bits[3:0] Read 0x9, LSB read
*/
static int _idt82p33_settime(struct idt82p33_channel *channel,
struct timespec64 const *ts)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
struct timespec64 local_ts = *ts;
char buf[TOD_BYTE_COUNT];
s64 dynamic_overhead_ns;
unsigned char trigger;
int err;
u8 i;
trigger = TOD_TRIGGER(HW_TOD_WR_TRIG_SEL_MSB_TOD_CNFG,
HW_TOD_RD_TRIG_SEL_LSB_TOD_STS);
err = idt82p33_write(idt82p33, channel->dpll_tod_trigger,
&trigger, sizeof(trigger));
if (err)
return err;
if (idt82p33->calculate_overhead_flag) {
dynamic_overhead_ns = ktime_to_ns(ktime_get_raw())
- ktime_to_ns(idt82p33->start_time);
timespec64_add_ns(&local_ts, dynamic_overhead_ns);
idt82p33->calculate_overhead_flag = 0;
}
idt82p33_timespec_to_byte_array(&local_ts, buf);
/*
* Store the new time value.
*/
for (i = 0; i < TOD_BYTE_COUNT; i++) {
err = idt82p33_write(idt82p33, channel->dpll_tod_cnfg + i,
&buf[i], sizeof(buf[i]));
if (err)
return err;
}
return err;
}
static int _idt82p33_adjtime(struct idt82p33_channel *channel, s64 delta_ns)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
struct timespec64 ts;
s64 now_ns;
int err;
idt82p33->calculate_overhead_flag = 1;
err = _idt82p33_gettime(channel, &ts);
if (err)
return err;
now_ns = timespec64_to_ns(&ts);
now_ns += delta_ns + idt82p33->tod_write_overhead_ns;
ts = ns_to_timespec64(now_ns);
err = _idt82p33_settime(channel, &ts);
return err;
}
static int _idt82p33_adjfine(struct idt82p33_channel *channel, long scaled_ppm)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
unsigned char buf[5] = {0};
int err, i;
s64 fcw;
if (scaled_ppm == channel->current_freq_ppb)
return 0;
/*
* Frequency Control Word unit is: 1.68 * 10^-10 ppm
*
* adjfreq:
* ppb * 10^9
* FCW = ----------
* 168
*
* adjfine:
* scaled_ppm * 5^12
* FCW = -------------
* 168 * 2^4
*/
fcw = scaled_ppm * 244140625ULL;
fcw = div_s64(fcw, 2688);
for (i = 0; i < 5; i++) {
buf[i] = fcw & 0xff;
fcw >>= 8;
}
err = idt82p33_dpll_set_mode(channel, PLL_MODE_DCO);
if (err)
return err;
err = idt82p33_write(idt82p33, channel->dpll_freq_cnfg,
buf, sizeof(buf));
if (err == 0)
channel->current_freq_ppb = scaled_ppm;
return err;
}
static int idt82p33_measure_one_byte_write_overhead(
struct idt82p33_channel *channel, s64 *overhead_ns)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
ktime_t start, stop;
s64 total_ns;
u8 trigger;
int err;
u8 i;
total_ns = 0;
*overhead_ns = 0;
trigger = TOD_TRIGGER(HW_TOD_WR_TRIG_SEL_MSB_TOD_CNFG,
HW_TOD_RD_TRIG_SEL_LSB_TOD_STS);
for (i = 0; i < MAX_MEASURMENT_COUNT; i++) {
start = ktime_get_raw();
err = idt82p33_write(idt82p33, channel->dpll_tod_trigger,
&trigger, sizeof(trigger));
stop = ktime_get_raw();
if (err)
return err;
total_ns += ktime_to_ns(stop) - ktime_to_ns(start);
}
*overhead_ns = div_s64(total_ns, MAX_MEASURMENT_COUNT);
return err;
}
static int idt82p33_measure_tod_write_9_byte_overhead(
struct idt82p33_channel *channel)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
u8 buf[TOD_BYTE_COUNT];
ktime_t start, stop;
s64 total_ns;
int err = 0;
u8 i, j;
total_ns = 0;
idt82p33->tod_write_overhead_ns = 0;
for (i = 0; i < MAX_MEASURMENT_COUNT; i++) {
start = ktime_get_raw();
/* Need one less byte for applicable overhead */
for (j = 0; j < (TOD_BYTE_COUNT - 1); j++) {
err = idt82p33_write(idt82p33,
channel->dpll_tod_cnfg + i,
&buf[i], sizeof(buf[i]));
if (err)
return err;
}
stop = ktime_get_raw();
total_ns += ktime_to_ns(stop) - ktime_to_ns(start);
}
idt82p33->tod_write_overhead_ns = div_s64(total_ns,
MAX_MEASURMENT_COUNT);
return err;
}
static int idt82p33_measure_settime_gettime_gap_overhead(
struct idt82p33_channel *channel, s64 *overhead_ns)
{
struct timespec64 ts1 = {0, 0};
struct timespec64 ts2;
int err;
*overhead_ns = 0;
err = _idt82p33_settime(channel, &ts1);
if (err)
return err;
err = _idt82p33_gettime(channel, &ts2);
if (!err)
*overhead_ns = timespec64_to_ns(&ts2) - timespec64_to_ns(&ts1);
return err;
}
static int idt82p33_measure_tod_write_overhead(struct idt82p33_channel *channel)
{
s64 trailing_overhead_ns, one_byte_write_ns, gap_ns;
struct idt82p33 *idt82p33 = channel->idt82p33;
int err;
idt82p33->tod_write_overhead_ns = 0;
err = idt82p33_measure_settime_gettime_gap_overhead(channel, &gap_ns);
if (err) {
dev_err(idt82p33->dev,
"Failed in %s with err %d!\n", __func__, err);
return err;
}
err = idt82p33_measure_one_byte_write_overhead(channel,
&one_byte_write_ns);
if (err)
return err;
err = idt82p33_measure_tod_write_9_byte_overhead(channel);
if (err)
return err;
trailing_overhead_ns = gap_ns - (2 * one_byte_write_ns);
idt82p33->tod_write_overhead_ns -= trailing_overhead_ns;
return err;
}
static int idt82p33_check_and_set_masks(struct idt82p33 *idt82p33,
u8 page,
u8 offset,
u8 val)
{
int err = 0;
if (page == PLLMASK_ADDR_HI && offset == PLLMASK_ADDR_LO) {
if ((val & 0xfc) || !(val & 0x3)) {
dev_err(idt82p33->dev,
"Invalid PLL mask 0x%x\n", val);
err = -EINVAL;
} else {
idt82p33->pll_mask = val;
}
} else if (page == PLL0_OUTMASK_ADDR_HI &&
offset == PLL0_OUTMASK_ADDR_LO) {
idt82p33->channel[0].output_mask = val;
} else if (page == PLL1_OUTMASK_ADDR_HI &&
offset == PLL1_OUTMASK_ADDR_LO) {
idt82p33->channel[1].output_mask = val;
}
return err;
}
static void idt82p33_display_masks(struct idt82p33 *idt82p33)
{
u8 mask, i;
dev_info(idt82p33->dev,
"pllmask = 0x%02x\n", idt82p33->pll_mask);
for (i = 0; i < MAX_PHC_PLL; i++) {
mask = 1 << i;
if (mask & idt82p33->pll_mask)
dev_info(idt82p33->dev,
"PLL%d output_mask = 0x%04x\n",
i, idt82p33->channel[i].output_mask);
}
}
static int idt82p33_sync_tod(struct idt82p33_channel *channel, bool enable)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
u8 sync_cnfg;
int err;
err = idt82p33_read(idt82p33, channel->dpll_sync_cnfg,
&sync_cnfg, sizeof(sync_cnfg));
if (err)
return err;
sync_cnfg &= ~SYNC_TOD;
if (enable)
sync_cnfg |= SYNC_TOD;
return idt82p33_write(idt82p33, channel->dpll_sync_cnfg,
&sync_cnfg, sizeof(sync_cnfg));
}
static int idt82p33_output_enable(struct idt82p33_channel *channel,
bool enable, unsigned int outn)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
int err;
u8 val;
err = idt82p33_read(idt82p33, OUT_MUX_CNFG(outn), &val, sizeof(val));
if (err)
return err;
if (enable)
val &= ~SQUELCH_ENABLE;
else
val |= SQUELCH_ENABLE;
return idt82p33_write(idt82p33, OUT_MUX_CNFG(outn), &val, sizeof(val));
}
static int idt82p33_output_mask_enable(struct idt82p33_channel *channel,
bool enable)
{
u16 mask;
int err;
u8 outn;
mask = channel->output_mask;
outn = 0;
while (mask) {
if (mask & 0x1) {
err = idt82p33_output_enable(channel, enable, outn);
if (err)
return err;
}
mask >>= 0x1;
outn++;
}
return 0;
}
static int idt82p33_perout_enable(struct idt82p33_channel *channel,
bool enable,
struct ptp_perout_request *perout)
{
unsigned int flags = perout->flags;
/* Enable/disable output based on output_mask */
if (flags == PEROUT_ENABLE_OUTPUT_MASK)
return idt82p33_output_mask_enable(channel, enable);
/* Enable/disable individual output instead */
return idt82p33_output_enable(channel, enable, perout->index);
}
static int idt82p33_enable_tod(struct idt82p33_channel *channel)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
struct timespec64 ts = {0, 0};
int err;
err = idt82p33_measure_tod_write_overhead(channel);
if (err) {
dev_err(idt82p33->dev,
"Failed in %s with err %d!\n", __func__, err);
return err;
}
err = _idt82p33_settime(channel, &ts);
if (err)
return err;
return idt82p33_sync_tod(channel, true);
}
static void idt82p33_ptp_clock_unregister_all(struct idt82p33 *idt82p33)
{
struct idt82p33_channel *channel;
u8 i;
for (i = 0; i < MAX_PHC_PLL; i++) {
channel = &idt82p33->channel[i];
if (channel->ptp_clock)
ptp_clock_unregister(channel->ptp_clock);
}
}
static int idt82p33_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct idt82p33_channel *channel =
container_of(ptp, struct idt82p33_channel, caps);
struct idt82p33 *idt82p33 = channel->idt82p33;
int err = -EOPNOTSUPP;
mutex_lock(idt82p33->lock);
if (rq->type == PTP_CLK_REQ_PEROUT) {
if (!on)
err = idt82p33_perout_enable(channel, false,
&rq->perout);
/* Only accept a 1-PPS aligned to the second. */
else if (rq->perout.start.nsec || rq->perout.period.sec != 1 ||
rq->perout.period.nsec)
err = -ERANGE;
else
err = idt82p33_perout_enable(channel, true,
&rq->perout);
}
mutex_unlock(idt82p33->lock);
if (err)
dev_err(idt82p33->dev,
"Failed in %s with err %d!\n", __func__, err);
return err;
}
static int idt82p33_adjwritephase(struct ptp_clock_info *ptp, s32 offset_ns)
{
struct idt82p33_channel *channel =
container_of(ptp, struct idt82p33_channel, caps);
struct idt82p33 *idt82p33 = channel->idt82p33;
s64 offset_regval, offset_fs;
u8 val[4] = {0};
int err;
offset_fs = (s64)(-offset_ns) * 1000000;
if (offset_fs > WRITE_PHASE_OFFSET_LIMIT)
offset_fs = WRITE_PHASE_OFFSET_LIMIT;
else if (offset_fs < -WRITE_PHASE_OFFSET_LIMIT)
offset_fs = -WRITE_PHASE_OFFSET_LIMIT;
/* Convert from phaseoffset_fs to register value */
offset_regval = div_s64(offset_fs * 1000, IDT_T0DPLL_PHASE_RESOL);
val[0] = offset_regval & 0xFF;
val[1] = (offset_regval >> 8) & 0xFF;
val[2] = (offset_regval >> 16) & 0xFF;
val[3] = (offset_regval >> 24) & 0x1F;
val[3] |= PH_OFFSET_EN;
mutex_lock(idt82p33->lock);
err = idt82p33_dpll_set_mode(channel, PLL_MODE_WPH);
if (err) {
dev_err(idt82p33->dev,
"Failed in %s with err %d!\n", __func__, err);
goto out;
}
err = idt82p33_write(idt82p33, channel->dpll_phase_cnfg, val,
sizeof(val));
out:
mutex_unlock(idt82p33->lock);
return err;
}
static int idt82p33_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct idt82p33_channel *channel =
container_of(ptp, struct idt82p33_channel, caps);
struct idt82p33 *idt82p33 = channel->idt82p33;
int err;
mutex_lock(idt82p33->lock);
err = _idt82p33_adjfine(channel, scaled_ppm);
mutex_unlock(idt82p33->lock);
if (err)
dev_err(idt82p33->dev,
"Failed in %s with err %d!\n", __func__, err);
return err;
}
static int idt82p33_adjtime(struct ptp_clock_info *ptp, s64 delta_ns)
{
struct idt82p33_channel *channel =
container_of(ptp, struct idt82p33_channel, caps);
struct idt82p33 *idt82p33 = channel->idt82p33;
int err;
mutex_lock(idt82p33->lock);
if (abs(delta_ns) < phase_snap_threshold) {
mutex_unlock(idt82p33->lock);
return 0;
}
err = _idt82p33_adjtime(channel, delta_ns);
mutex_unlock(idt82p33->lock);
if (err)
dev_err(idt82p33->dev,
"Failed in %s with err %d!\n", __func__, err);
return err;
}
static int idt82p33_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
struct idt82p33_channel *channel =
container_of(ptp, struct idt82p33_channel, caps);
struct idt82p33 *idt82p33 = channel->idt82p33;
int err;
mutex_lock(idt82p33->lock);
err = _idt82p33_gettime(channel, ts);
mutex_unlock(idt82p33->lock);
if (err)
dev_err(idt82p33->dev,
"Failed in %s with err %d!\n", __func__, err);
return err;
}
static int idt82p33_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct idt82p33_channel *channel =
container_of(ptp, struct idt82p33_channel, caps);
struct idt82p33 *idt82p33 = channel->idt82p33;
int err;
mutex_lock(idt82p33->lock);
err = _idt82p33_settime(channel, ts);
mutex_unlock(idt82p33->lock);
if (err)
dev_err(idt82p33->dev,
"Failed in %s with err %d!\n", __func__, err);
return err;
}
static int idt82p33_channel_init(struct idt82p33_channel *channel, int index)
{
switch (index) {
case 0:
channel->dpll_tod_cnfg = DPLL1_TOD_CNFG;
channel->dpll_tod_trigger = DPLL1_TOD_TRIGGER;
channel->dpll_tod_sts = DPLL1_TOD_STS;
channel->dpll_mode_cnfg = DPLL1_OPERATING_MODE_CNFG;
channel->dpll_freq_cnfg = DPLL1_HOLDOVER_FREQ_CNFG;
channel->dpll_phase_cnfg = DPLL1_PHASE_OFFSET_CNFG;
channel->dpll_sync_cnfg = DPLL1_SYNC_EDGE_CNFG;
channel->dpll_input_mode_cnfg = DPLL1_INPUT_MODE_CNFG;
break;
case 1:
channel->dpll_tod_cnfg = DPLL2_TOD_CNFG;
channel->dpll_tod_trigger = DPLL2_TOD_TRIGGER;
channel->dpll_tod_sts = DPLL2_TOD_STS;
channel->dpll_mode_cnfg = DPLL2_OPERATING_MODE_CNFG;
channel->dpll_freq_cnfg = DPLL2_HOLDOVER_FREQ_CNFG;
channel->dpll_phase_cnfg = DPLL2_PHASE_OFFSET_CNFG;
channel->dpll_sync_cnfg = DPLL2_SYNC_EDGE_CNFG;
channel->dpll_input_mode_cnfg = DPLL2_INPUT_MODE_CNFG;
break;
default:
return -EINVAL;
}
channel->current_freq_ppb = 0;
return 0;
}
static void idt82p33_caps_init(struct ptp_clock_info *caps)
{
caps->owner = THIS_MODULE;
caps->max_adj = DCO_MAX_PPB;
caps->n_per_out = 11;
caps->adjphase = idt82p33_adjwritephase;
caps->adjfine = idt82p33_adjfine;
caps->adjtime = idt82p33_adjtime;
caps->gettime64 = idt82p33_gettime;
caps->settime64 = idt82p33_settime;
caps->enable = idt82p33_enable;
}
static int idt82p33_enable_channel(struct idt82p33 *idt82p33, u32 index)
{
struct idt82p33_channel *channel;
int err;
if (!(index < MAX_PHC_PLL))
return -EINVAL;
channel = &idt82p33->channel[index];
err = idt82p33_channel_init(channel, index);
if (err) {
dev_err(idt82p33->dev,
"Channel_init failed in %s with err %d!\n",
__func__, err);
return err;
}
channel->idt82p33 = idt82p33;
idt82p33_caps_init(&channel->caps);
snprintf(channel->caps.name, sizeof(channel->caps.name),
"IDT 82P33 PLL%u", index);
channel->ptp_clock = ptp_clock_register(&channel->caps, NULL);
if (IS_ERR(channel->ptp_clock)) {
err = PTR_ERR(channel->ptp_clock);
channel->ptp_clock = NULL;
return err;
}
if (!channel->ptp_clock)
return -ENOTSUPP;
err = idt82p33_dpll_set_mode(channel, PLL_MODE_DCO);
if (err) {
dev_err(idt82p33->dev,
"Dpll_set_mode failed in %s with err %d!\n",
__func__, err);
return err;
}
err = idt82p33_enable_tod(channel);
if (err) {
dev_err(idt82p33->dev,
"Enable_tod failed in %s with err %d!\n",
__func__, err);
return err;
}
dev_info(idt82p33->dev, "PLL%d registered as ptp%d\n",
index, channel->ptp_clock->index);
return 0;
}
static int idt82p33_load_firmware(struct idt82p33 *idt82p33)
{
const struct firmware *fw;
struct idt82p33_fwrc *rec;
u8 loaddr, page, val;
int err;
s32 len;
dev_dbg(idt82p33->dev, "requesting firmware '%s'\n", FW_FILENAME);
err = request_firmware(&fw, FW_FILENAME, idt82p33->dev);
if (err) {
dev_err(idt82p33->dev,
"Failed in %s with err %d!\n", __func__, err);
return err;
}
dev_dbg(idt82p33->dev, "firmware size %zu bytes\n", fw->size);
rec = (struct idt82p33_fwrc *) fw->data;
for (len = fw->size; len > 0; len -= sizeof(*rec)) {
if (rec->reserved) {
dev_err(idt82p33->dev,
"bad firmware, reserved field non-zero\n");
err = -EINVAL;
} else {
val = rec->value;
loaddr = rec->loaddr;
page = rec->hiaddr;
rec++;
err = idt82p33_check_and_set_masks(idt82p33, page,
loaddr, val);
}
if (err == 0) {
/* Page size 128, last 4 bytes of page skipped */
if (loaddr > 0x7b)
continue;
err = idt82p33_write(idt82p33, REG_ADDR(page, loaddr),
&val, sizeof(val));
}
if (err)
goto out;
}
idt82p33_display_masks(idt82p33);
out:
release_firmware(fw);
return err;
}
static int idt82p33_probe(struct platform_device *pdev)
{
struct rsmu_ddata *ddata = dev_get_drvdata(pdev->dev.parent);
struct idt82p33 *idt82p33;
int err;
u8 i;
idt82p33 = devm_kzalloc(&pdev->dev,
sizeof(struct idt82p33), GFP_KERNEL);
if (!idt82p33)
return -ENOMEM;
idt82p33->dev = &pdev->dev;
idt82p33->mfd = pdev->dev.parent;
idt82p33->lock = &ddata->lock;
idt82p33->regmap = ddata->regmap;
idt82p33->tod_write_overhead_ns = 0;
idt82p33->calculate_overhead_flag = 0;
idt82p33->pll_mask = DEFAULT_PLL_MASK;
idt82p33->channel[0].output_mask = DEFAULT_OUTPUT_MASK_PLL0;
idt82p33->channel[1].output_mask = DEFAULT_OUTPUT_MASK_PLL1;
mutex_lock(idt82p33->lock);
err = idt82p33_load_firmware(idt82p33);
if (err)
dev_warn(idt82p33->dev,
"loading firmware failed with %d\n", err);
if (idt82p33->pll_mask) {
for (i = 0; i < MAX_PHC_PLL; i++) {
if (idt82p33->pll_mask & (1 << i)) {
err = idt82p33_enable_channel(idt82p33, i);
if (err) {
dev_err(idt82p33->dev,
"Failed in %s with err %d!\n",
__func__, err);
break;
}
}
}
} else {
dev_err(idt82p33->dev,
"no PLLs flagged as PHCs, nothing to do\n");
err = -ENODEV;
}
mutex_unlock(idt82p33->lock);
if (err) {
idt82p33_ptp_clock_unregister_all(idt82p33);
return err;
}
platform_set_drvdata(pdev, idt82p33);
return 0;
}
static int idt82p33_remove(struct platform_device *pdev)
{
struct idt82p33 *idt82p33 = platform_get_drvdata(pdev);
idt82p33_ptp_clock_unregister_all(idt82p33);
return 0;
}
static struct platform_driver idt82p33_driver = {
.driver = {
.name = "82p33x1x-phc",
},
.probe = idt82p33_probe,
.remove = idt82p33_remove,
};
module_platform_driver(idt82p33_driver);